
Symbiotic Routing in Future Data Centers

Hussam Abu-Libdeh
∗

Microsoft Research
Cambridge, UK.

hussam@cs.cornell.edu

Paolo Costa
Microsoft Research

Cambridge, UK.
costa@microsoft.com

Antony Rowstron
Microsoft Research

Cambridge, UK.
antr@microsoft.com

Greg O’Shea
Microsoft Research

Cambridge, UK.
gregos@microsoft.com

Austin Donnelly
Microsoft Research

Cambridge, UK.
austind@microsoft.com

ABSTRACT
Building distributed applications that run in data centers is
hard. The CamCube project explores the design of a ship-
ping container sized data center with the goal of building an
easier platform on which to build these applications. Cam-
Cube replaces the traditional switch-based network with a
3D torus topology, with each server directly connected to
six other servers. As in other proposals, e.g. DCell and
BCube, multi-hop routing in CamCube requires servers to
participate in packet forwarding. To date, as in existing data
centers, these approaches have all provided a single routing
protocol for the applications.

In this paper we explore if allowing applications to im-
plement their own routing services is advantageous, and if
we can support it efficiently. This is based on the obser-
vation that, due to the flexibility offered by the CamCube
API, many applications implemented their own routing pro-
tocol in order to achieve specific application-level charac-
teristics, such as trading off higher-latency for better path
convergence. Using large-scale simulations we demonstrate
the benefits and network-level impact of running multiple
routing protocols. We demonstrate that applications are
more efficient and do not generate additional control traffic
overhead. This motivates us to design an extended routing
service allowing easy implementation of application-specific
routing protocols on CamCube. Finally, we demonstrate
that the additional performance overhead incurred when us-
ing the extended routing service on a prototype CamCube
is very low.
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1. INTRODUCTION
The networks in large-scale data centers, such as those

owned by Amazon, Google, Microsoft and Yahoo, adopt
principles evolved from enterprise and Internet networking.
Applications and services use UDP datagrams or TCP sock-
ets as the primary interface to other services and applica-
tions running inside the data center. This effectively iso-
lates the network from the end-systems, which then have
little control over how the network routes packets. The net-
work operator controls the routing policies and configura-
tions used in the data center.

This design impacts the services that run in the data cen-
ter. External facing applications, like Search, Hotmail or
Shopping Carts, rely on a set of internal distributed ser-
vices. These services act as the building blocks for the ex-
ternal facing applications, and examples of such services in-
clude Google GFS [14], Google BigTable [6], Amazon Dy-
namo [15], Yahoo Hadoop [4], and Microsoft Dryad [20].
Building services efficiently on current data centers is hard,
in part because the network is a black box, and the services
have to infer properties like end-system network proximity
within the data center.

We have been exploring new data center architectures tar-
geted at shipping container sized data centers, aimed at
making it easier to build efficient services. We exploit the
observation that many of the services running in data centers
are key-based and have similarities with services that run on
overlays. Conceptually, we want to take a topology used in
a structured overlay and create a physical instantiation of
that topology. Our prototype, called CamCube [7], uses a
3D torus (also known as a k-ary 3-cube) which is the topol-
ogy used in the Content Addressable Network (CAN) [28]
structured overlay. This creates a direct-connect topology,



where each server connects directly to a small set of other
servers, without using any switches or routers. Using this
topology means that the virtual and physical topologies are
the same, and the key space is a 3D wrapped coordinate
space, where each server is assigned an (x, y, z) coordinate
that represents the server’s location within the 3D torus.
The core CamCube API then exposes the coordinate space,
and only provides functionality to send and receive packets
to and from physical one-hop neighbors. This API with the
coordinate space provides properties similar to those used in
structured overlays. There have been other proposals for fu-
ture data centers, including DCell [18] and BCube [17], that
also explore incorporating hybrid direct-connect topologies
in data centers.

Current data centers, as well as proposals for future ones,
use a single routing protocol to route packets between ar-
bitrary servers. They make explicit trade-offs, for example
between exploiting multi-path and latency or server over-
head. CamCube also has a base multi-hop routing service,
using a link-state routing protocol that routes packets on
shortest paths and exploits, where possible, the multipath
characteristics of CamCube. As in existing data centers and
proposals, we expected services running on CamCube to just
use the base routing protocol. However, to provide simi-
lar functionality to that of structured overlays, we allowed
servers to intercept and modify packets as they routed them.
We then observed that service designers exploited this flexi-
bility to implement their own customized routing protocols,
optimized for their particular performance requirements. In-
tuitively, services implemented their own routing protocols
because exposing the coordinate space and structure made
implementing protocols that exploit the structure easy. Ser-
vices often relied on the base routing protocol to handle cor-
ner cases, such as coping with voids in the coordinate space.
This leads to a commensal symbiotic relationship with multi-
ple routing protocols running concurrently, all working with,
and benefiting from, the base routing protocol.

In this paper, we examine four services developed for Cam-
Cube that all implemented their own routing protocol. Each
protocol is unique and makes different trade-offs, and we
show that each service achieves better performance at the
service-level by using its own routing protocol. We also ex-
amine the network-level impact of having each service use its
own routing protocol. Do the customized protocols increase
network load? Do they induce higher control traffic? Are
the traffic patterns skewed? Is there correlation between
the sets of links used across protocol? We conclude that
also at the network-level they achieve better performance
while consuming less network resources. We also show, that
across the set of services we have examined, that there is
no correlated link usage, despite the fact that each service
was designed independently. This leads us to conclude that
enabling services to create their own routing protocols is
advantageous.

Having determined that enabling services to use their own
routing protocols is advantageous; we examine the core prop-
erties of each protocol and extract a set of common func-
tionality. We observe that in many cases the core properties
required are conflicting. We then describe an extended rout-
ing service that makes it easier for developers to simply and
efficiently express their routing protocols. This ensures that
wherever possible they can share state and resources, and
hence decrease the likelihood that information is indepen-

dently maintained in multiple services, which would induce
unnecessary overhead. It also makes it easier for service
writers to write protocols and encourages reuse of already
designed routing protocols.

The rest of the paper is organized as follows. Section 2
provides background on CamCube and direct-connect data
centers. Section 3 outlines four services that use customized
routing protocols. Section 4 examines the core properties of
the routing protocols, and Section 5 describes the extended
routing service to support them. Section 6 evaluates the
overhead of using the extended routing service on CamCube.
Section 7 shows an example service that uses the extended
routing service. Finally, Section 8 describes related work
and Section 9 concludes.

2. BACKGROUND
Recently, there have been several proposals for data center

architectures aimed at supporting shipping container-sized
data centers. They currently have between 1,500 and 2,500
servers. Larger data centers are created by co-locating mul-
tiple containers and, when delivered to site, the containers
are provisioned with cooling, power and network links.

Many of the recent proposals have explored using non-
traditional network topologies that are not simply based on
switches and routers. Examples, include DCell, BCube and
CamCube [18, 17, 7]. In these topologies, routing between
two servers uses paths that traverse servers that are required
to forward the packets. DCell [18] uses a hybrid topology,
where conceptually servers (in the same rack) are connected
to a local switch forming a DCell. Each server is then con-
nected to another server in a different DCell. Hence, each
DCell is connected to every other DCell via at least one
server in the rack. To route packets between two servers in
different DCells requires the packets to be sent via a server
that is connected to a server in the other DCell. This server
then routes the message to the other DCell server, which
then locally delivers it within the DCell.

CamCube [7] uses a direct-connect 3D torus topology,
formed by having each server directly connected to six other
servers. All intra-CamCube traffic uses the direct-connect
network, and hence no switches or routers are required. Un-
like DCell and CamCube, in BCube [17] servers are only
connected to switches, and a hierarchical structure is used.
Conceptually, at the bottom of the hierarchy, servers in a
rack are connected to a switch, that allows servers to com-
municate within a rack. Each sever is also connected to one
of k other switches which are in the next level of the hierar-
chy, such that each rack has one server connected to each of
the k switches. A packet can then be routed between racks
by traversing multiple switches and multiple servers, using
a source routing protocol.

Many of these topologies provide a significant number of
independent paths between servers in the data center. In
this paper we are exploring the viability and value of al-
lowing services to explicitly exploit this multi-path. Before
considering this further, we provide more details about Cam-
Cube, the platform which we will use in this paper.

2.1 CamCube overview
CamCube is designed to make it easier to develop ser-

vices in data centers. We provide a high-level overview of
CamCube, for a complete description and design motivation
see [7].



Communication between CamCube servers uses a direct-
connect 3D torus topology. This is formed by having each
server directly connected to six other servers and it does not
use switches or routers. Each server is assigned an address,
which takes the form of an (x, y, z) coordinate that repre-
sents its relative offset from an arbitrary origin server in the
3D torus. We refer to the address of the server as the server
coordinate and, once assigned, it is fixed for the lifetime of
the server. The CamCube API exposes the wrapped 3D co-
ordinate space to services running on CamCube, and allows
sending and receiving of raw (Ethernet) packets to one-hop
physical neighbors. All higher-level functionality is built as
services that run on top of this API, including multi-hop
routing. The direct-connect topology is used for all intra-
CamCube communication. Traffic from servers outside the
CamCube is delivered over an IP-based switched network.
We assume that any number from 1 to all servers can be con-
nected to this network and, subsequently, CamCube servers
do not assume that this network can be used to route packets
to other CamCube servers. This allows the switched network
to be provisioned just to support the expected ingress/egress
bandwidth of CamCube.

The motivation for using the 3D torus topology, API and
the use of the 3D coordinate space are structured overlays,
specifically the CAN structured overlay [28]. The CamCube
uses a physical wiring that is the same as the virtual topol-
ogy used in CAN. The API is inspired by the Key-Based
Routing (KBR) API [8] used in many structured overlays.
Services written for CamCube can exploit the explicit struc-
ture and are able to map keys into the coordinate space.
This is motivated by the observation that many services
built for data centers are very similar to applications built
for structured overlays. However, CamCube applications
benefit from the physical topology and virtual topology be-
ing identical, meaning that the services do not need to try
and infer properties, like end-system proximity, as it is more
explicit.

We have written a number of network-level services that
run over the direct-connect network, including a multi-hop
routing service and a TCP/IP service that enables unmodi-
fied TCP/IP applications to be run on CamCube. We also
have a number of higher-level services, including a VM/file
distribution service, an aggregation service that underpins
a MapReduce-like service, and a memcached [13] inspired in-
memory object cache. All services are implemented in user
space, and the CamCube API communicates with a pair of
drivers that run in the kernel.

2.1.1 CamCube API
Next, we provide more details about the CamCube API.

We assume that each service running is assigned a unique
serviceId, and that an instance of each service runs on every
server, which registers with the CamCube runtime. It is
common to run services in data centers that are horizontally
partitioned across all servers in the data center.

Packets have a simple two-byte header that contains the
serviceId of the service that should handle the packet on
each server. Each time a packet is received on a link, the
kernel runtime delivers it and information about the source
link to the service with the corresponding serviceId, which
runs in user space, via a callback.

Originally, wanting to allow services to be able to manage
queuing internally and exploiting the fact that all services

are cooperating, we used a multi-packet queue for each out-
bound link. The CamCube API allowed a service to queue
packets on the queue and query the queue length. How-
ever, this simple approach made implementing fairness, even
across multiple cooperating services, difficult. We therefore
adopted a more complex hierarchical queuing mechanism,
where conceptually there is a single packet queue per link.
To send a packet a service can atomically check if the queue
is empty and insert the packet if so. If not, the service is
required to internally queue the packet. Whenever a packet
is actually transmitted on a link, the services are polled in
order until one has a packet to send. The packet is then
queued, and the process repeats, ensuring fair queuing across
services and allows the services to manage their own packet
queues. In the runtime system we use an optimized im-
plementation with low overhead. It is obviously trivial to
extend this to incorporate weighted queuing across services,
if required.

2.1.2 Core services
The CamCube API provides very limited functionality,

and all other functionality is implemented as services that
run on top of this API. We provide a number of core services
that are assumed to be running on all servers in CamCube.
These services provide the additional functionality required
to write services that can perform higher-level operations on
CamCube. The runtime allows services running on the same
server to interact locally, so for example, the routing service
can be accessed by all services running on the server.

The core services include a service that exposes the server
coordinate, as well as the server coordinates of the one-hop
neighbors, and also the size of the coordinate space. There is
also a service to monitor liveness of one-hop neighbors, and
if due to a server or link failure, other services are informed.

Another core service is the multi-hop routing service that
can be used to route a packet to a server. This uses a simple
link state-based protocol, and maintains information about
the reachability of all servers in CamCube. There is a high
degree of path redundancy, meaning that there are multiple
paths between servers. Routing uses shortest paths, but
due to multi-path, it is often the case that multiple one-
hop neighbors offer the same shortest path length to the
destination. Therefore, this is exploited to allow packets to
use the first free link that is on a shortest path. Any service
that uses the routing service is able to intercept and modify,
or even drop, a packet at each hop on the path. Packets
routed to a failed or unreachable server will be dropped.

The routing service is able to perform key-based routing
as well as server-based routing. In CamCube, as in CAN,
keys are mapped into the coordinate space. In key-based
routing the packet is delivered to the server responsible for
the destination key (referred to as the key’s root server).
Without failures, the mapping of keys to servers is trivial,
and uses the servers 3D coordinate (as in CAN). In the pres-
ence of failures, key-based routing will route the packet to
another server which is numerically closest to the key. The
service remaps the key consistently across all servers pro-
viding a consistent key-space. In order to ensure good load
distribution of keys to servers in the presence of failures, a
deterministic tie-breaking mechanism is used. In the rest of
the paper, we refer to a key coordinate when we are refer-
ring to a coordinate independently of a server and a server
coordinate when we are using the coordinate to refer to the



particular server with that address. The key-based routing,
plus CamCube API, with the ability to perform per-hop
inspection and modification of packets implements the full
KBR API [9], widely used in structured overlays.

We did not use a greedy protocol in the routing service be-
cause the server coordinates are static and, therefore, server
failures create voids in the coordinate space. In 2D topolo-
gies, techniques like perimeter routing [22] are able to route
around the voids. However, in a 3D space these techniques
are known not to work [12]. In overlays like CAN, the ad-
dress of a server is a function of the live nodes. This means
that on node failure the mapping between nodes and coor-
dinates changes. This ensures that voids do not occur and
enables using greedy routing but it makes writing services
much more complex. In CamCube, instead, server coor-
dinates are fixed and the routing service uses a link-state
protocol to route around voids.

2.1.3 Properties
Finally, we use CamCube as the example architecture

throughout the paper. In general, there are two proper-
ties that we exploit: multi-path and the ability to perform
on-path operations. Topologies, like the BCube and DCell,
could also offer these properties. However, in CamCube
these are directly exposed to the services that running on
CamCube, through the APIs. BCube and DCell assume
that the applications will use a standard TCP/IP stack and
mask the multi-path and the ability to perform on-path op-
erations from the applications running on them.

3. DOES ONE SIZE FIT ALL?
Routing protocols often make explicit trade-offs. In the

case of the CamCube base routing service the trade-off is
between latency and exploiting multi-path. It uses multi-
ple paths when they will not result in increased hop count.
Traditionally, it is hard for a service running in the data
center to implement, or modify, the underlying routing, as
this is normally hidden from the services by the TCP/IP
stack. When there is little or no multi-path, the benefit of
supporting multiple routing protocols seems unclear. Ser-
vices written for CamCube can use their own routing pro-
tocol, or a modified version of the base routing protocol.
This is enabled by the flexibility of the CamCube API, and
in particular the way it exposes the multi-path via explicit
structure and allowing services to intercept and modify pack-
ets on path. This allows them to make different trade-offs,
such as increased latency for higher throughput. As dif-
ferent services have conflicting requirements for routing it
is not feasible to build a single non-configurable end-to-end
routing protocol that can provide the required properties for
all services.

Many services implement their own routing protocols to
handle the common cases and rely on the routing service
to handle corner cases, for example voids in the coordinate
space. Services also exploit the internal state of the routing
service while not explicitly using it, for example, to discover
if a server is reachable (and hence not failed). This has
the advantage of minimizing control traffic required by each
service, because multiple services run concurrently within a
single CamCube.

Next, we consider in more detail four example services,
describe the properties they wanted, and show how effec-

tive they were at achieving them with their custom routing
protocols.
Simulator To evaluate the services we use a large-scale
packet-level simulator. We have a small prototype Cam-
Cube with 27 servers, and we will present some results from
it in Section 6. The services that we describe in this paper
have been run on this testbed. However, to understand how
a shipping container size CamCube would perform we use
larger-scale simulations. Current shipping container-based
data centers have between 1,500 and 2,500 servers. We ex-
pect the density of these to increase, so conservatively we
run all the simulations with 8,000 servers (a 20-ary 3-cube).
The diameter of the network is 30 and the average path
length is 15. In contrast, at 1,728 servers (12-ary 3-cube)
the diameter is 18 and the average path is 9. The simulator
accurately models links as unidirectional 1 Gbps links. With
8,000 servers, the simulator is simulating 48,000 links.

3.1 TCP/IP service
The TCP/IP service allows us to run unmodified TCP/IP

applications on top of CamCube, thereby supporting legacy
applications. On the CamCube prototype, this service inter-
cepts all the packets from the operating system’s TCP/IP
stack, tunnels them across CamCube, and then injects them
into the TCP/IP stack at the destination. The aim of the
TCP/IP service is to achieve the maximum throughput be-
tween the source and destination.

Originally IP packets were encapsulated and routed using
the base routing service. Between a source and destination
there will usually be multiple shortest paths. The routing
service exploits all these paths, with the goal of maximizing
throughput. This induces out-of-order packet delivery, but
the service masks this using a small buffer at the destination.
However, the multiple paths are not disjoint, and the fate-
sharing of links creates congestion and packet loss on these
links, decreasing end-to-end throughput.

To address this, we use a custom routing protocol that
routes packets using link-disjoint paths. The source deter-
mines the set of outbound links that lie on a shortest path.
For each of the three axes, if the set of links does not in-
clude any neighbor on a particular axis, then the source
adds both neighboring servers lying on that axis to the set
of outbound links. All these links are then used to route
packets out of the source. At each hop a packet is greedily
routed towards the destination, with preference to forward it
on that same axis as the neighbor who delivered the packet
lies, with the constraint that a packet cannot be sent back to
the same neighbor. If progress cannot be made, then another
axis on which progress can be made is deterministically se-
lected and this is then used to route towards the destination.
This yields at least three disjoint paths between source and
destination for all pairs. The approach provides increased
throughput at a cost of at most two-hop path stretch on the
non-shortest paths, which increases packet delivery jitter but
also decreases the out-of-order delivery.

We ran a simple experiment to show the performance in-
crease achieved by the custom routing protocol over the
routing service (base). To avoid the overhead of simulating
a full TCP/IP stack, we instead compared the raw through-
put achieved by both protocols. Hence, there is no explicit
end-to-end flow control or acknowledgments used in the ex-
periment. We selected a single server at random to act as
the source, and then measured the raw throughput to 2,000
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Figure 1: Increase in raw throughput over the base
routing service.

randomly selected servers. We use 1,500 byte packets, with
the service on the source generating a packet each time it is
polled from a link over which it could route a packet. The
experiment iterates over the 2,000 servers sequentially, so
that at any point in time there was only one packet flow
from the source to a single destination. Each destination
receives 10,000 packets and the source re-transmits packets
if they are dropped along the path due to congestion.

Figure 1 shows a CDF of the 2,000 flows versus the in-
crease in throughput achieved when using the custom rout-
ing protocol over the routing service (base). As expected,
the custom routing protocol provided benefit in all cases,
with the most benefit being obtained when the number of
shortest paths between two servers was less than three.

3.2 VM distribution service
The Virtual Machine (VM) distribution service enables

the distribution of arbitrary large files, although primarily
intended for VM images, to multiple servers in CamCube.
The first version of the service used a multicast tree to dis-
tribute files. The tree was created by taking the union of
the paths from each member to a specified key coordinate.
Join requests were routed using the routing service to a key
coordinate. At each hop, the service would explicitly record
the incoming link as a child in the tree. If the service was
not already a member of the tree, then the routing service
would be used to forward the join message.

However, this created trees with significantly higher num-
bers of interior servers and edges than was necessary. This
incurred higher server and link stress during the file distri-
bution. To address this, the VM distribution service was
updated with a custom routing protocol. The custom rout-
ing protocol creates paths such that the union of them yields
trees with fewer interior servers and, therefore, less edges.

The custom routing protocol is hierarchical, recursively
dividing the coordinate space into 3D mini-cubes. At the
top-level there are eight mini-cubes, with the root key co-
ordinate at the intersection of the eight mini-cubes. At the
next level down in the hierarchy, there are 64 mini-cubes,
such that each of the top-level mini-cubes is subdivided into
eight further mini-cubes. This is recursively repeated until
the mini-cube is indivisible. At this bottom-level in the hi-
erarchy, there is a path from each server, along the edges of
the hierarchical mini-cubes to the root key coordinate. Intu-
itively, the packet is routed towards the root key coordinate,
ascending the hierarchy via mini-cube corners. At each hop
a server determines the current mini-cube level and selects
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Figure 2: Reduction in links used by VM distribu-
tion service.

a neighbor that can make progress towards the next corner.
If more than one such neighbor exists, then a precedence
order over the axes is used to select the next hop, e.g., first
x, then y and then z. This completes when the join packet
is delivered to a server that is already part of the distribu-
tion tree, or is the root. If greedy progress cannot be made
towards the next corner, the routing service is used to route
to the next key coordinate.

This custom routing protocol reduces the overall number
of interior links and servers, as it restricts the set of paths
that join requests can traverse. In absence of failures, no
path stretch is introduced because packets are always for-
warded to servers that are closer to the root key coordinate.

We ran an experiment to determine the reduction in the
number of links used with the custom routing protocol. We
randomly select a key coordinate as the root of the VM
distribution tree, and vary the fraction of the servers joining
the VM distribution tree. In each run, the servers that join
the tree are selected at random. We compare building the
tree using the custom routing protocol to using the base
routing service. In each case, we measure the number of
links that represent edges in the distribution tree.

Figure 2 shows the reduction of links used in the VM
service when using the custom protocol versus the fraction
of servers joining the group. When the group size is small,
e.g. less than 0.01 of the servers in the network, there is
little opportunity for sharing links as the servers are picked
randomly, so the benefit is small. As the group size increases
to 0.1 the benefit increases, as the higher number of group
members increases the opportunity for link sharing. As the
number of group members increases above this, the benefit
decreases again as a higher fraction of the links are used. At
the limit, when all servers join the group then there is no
benefit in using the modified protocol.

3.3 Cache service
Memory-based soft caches, like the popular memcached,

are commonly used in large-scale data centers. They provide
a simple API, with insert, read, modify and delete function-
ality on key-object pairs. Usually the key is a textual string
which encodes information (e.g. user::img::file.jpg) and
the object is a string or byte array.

In the design of the cache service, the textual key is hashed
and a primary key coordinate derived from the hash, such
that the keys are uniformly distributed within the coordi-
nate space. As in a DHT, the object is cached on the server
responsible for the key coordinate. In order to handle popu-
lar keys the caching service also maintains up to k secondary
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Figure 3: Hops to a cache hit with one primary
replica and eight secondary replicas.

replicas of the object. The secondary replicas are generated
on demand per key, so the total number of replicas is a func-
tion of the popularity of the object. In order to induce better
locality, the k secondary replicas are uniformly distributed
within the coordinate space. The cache service achieves this
by using a function, parameterized on the primary key coor-
dinate, the number of secondary replicas (k) and coordinate
space size. The function returns k key coordinates repre-
senting the coordinates of each secondary replica.

When a read operation is performed on a key-object pair,
the service calculates the primary key coordinate, and the
k secondary replica key coordinates. These are ranked by
rectilinear distance from the local key coordinate and the set
of closest replicas are selected. If there are multiple closest
replicas, and one is the primary replica, then it is selected,
else one is randomly selected. The cache service then routes
the request via the selected replica key coordinate. If the
server responsible for the key coordinate has a copy of the
key, then it responds with the associated object and the
request is not routed to the primary key coordinate. Oth-
erwise, the server forwards the request to the primary key
coordinate. If an entry for the key being looked up is found,
then this is returned to the original requester via the replica
key coordinate. This populates the secondary replica. A
cache miss may increase the path length from source to the
primary replica, and in the worst case the path would be
stretched by a factor of 3. However, the maximum path
length, even in case of cache miss, from a source to the pri-
mary replica is still bounded by the network diameter.

The caching service uses the default routing service to
route between the source and secondary replica, and the sec-
ondary replica and primary replica. It also relies on the rout-
ing service to remap consistently the key coordinate space on
server failure. This is similar to using loose source routing,
except the intermediate server address is a key coordinate
not a server coordinate, and it does not need to be stored in
the packet, as every server on route can determine it using
information already in the request packet.

We ran an experiment where the system was populated
with 8,000,000 key-object pairs evenly distributed among
the servers in CamCube. We performed 800,000 key lookups
based on a Zipf distribution (α = 1.5). Each lookup was
performed by a server picked uniformly at random (average
of 100 lookups per server). We use k = 8 secondary replicas,
created on demand as previously described. We compare the
performance using the base routing service and the modified
routing protocol described. In the routing service version,

the lookup is routed to the primary key coordinate. At each
server, before forwarding the lookup, a check is performed to
see if a local copy exists. If so, the current server responds
to the lookup. Figure 3 shows the CDF of lookup versus
path length for both routing protocols. The upper bound in
both cases is 30 hops, which is the network diameter. When
using the base routing service the median path length is 15,
as would be expected, since the probability of encountering
a replica by chance on the path is low. With the custom
routing protocol, instead, the median path length drops to
7. This means that the median lookup latency is reduced
by a factor of 2.

3.4 Aggregation service
The aggregation service is used primarily to support a

MapReduce-like [10, 4] application. MapReduce supports
data parallel computation. Conceptually a data set is split
into M chunks, which are equally distributed across a set
of N servers. During the map phase each server applies a
map function to each local chunk. This generates a set of
key-value pairs per server, where multiple servers can have
entries for the same key. The keys are then mapped to a set
of R servers. During the reduce phase each key-value pair is
sent to the server to which the key is mapped. The server
then combines all the values for the same key, generating a
final value for the key. In general, if there are M chunks used
in the map phase, and R servers used in the reduction phase,
then there will be O(R ·M) flows, with M flows going to
each of the R servers. Usually a significant number of servers
(N) are used, often on the order of thousands. Normally, at
least M = N and, for load balancing and failure resilience,
often M >> N .

Most MapReduce jobs have multiple entries for each key
and, hence, if the reduce function is associative and com-
mutative, we can reduce the amount of data transferred by
performing on-path aggregation across multiple flows. In-
deed, already in MapReduce-like systems, if M >> N , then
on each server the output of the locally executed map func-
tions are combined, hence doing aggregation per server.

The aggregation service exploits a customized routing pro-
tocol that routes packets from a source server to a destina-
tion server coordinate (the reducer) on a deterministic path.
This ensures that flows for the same reducer deterministi-
cally meet along the path and can be aggregated. The path
is made deterministic by fixing each of the axes in turn, so
for example, first routing the packet to the correct x plane.
Once the x plane has been reached, then routing to the
correct y plane, then finally the z plane. This yields a de-
terministic path, that in the absence of failures is also the
shortest. At each hop, if the link is congested, the service
locally buffers the packet until it can be transmitted.

Clearly, if all source servers always route to destinations
fixing the x, y, z coordinate in the same order (e.g. x then y
and finally z), then the set of links that can be used will be
constrained across instances. To ensure that, when R > 1,
all N servers share the load of performing the aggregation we
exploit the fact that there are six different orderings possible.
To achieve this we hash the destination coordinate, and use
these to seed which order we fix the axes.

The customized routing protocol in this service exploits
the topology to ensure a good distribution of computational
load over the servers. To deterministically select the aggre-
gation points, they are considered as key coordinates. If the



Routing Aggregation
service service

None Full
Total number of links used 19,646 7,999 7,999
Percentage of links used 41% 17% 17%
Aggregate packets sent 120,000 120,000 7,999
Median packets (per link) 3 5 1
90th Percentile (per link) 7 9 1
99th Percentile (per link) 51 160 1
Maximum (per link) 1,494 4,000 1

Table 1: Link statistics comparing the aggregation
service and routing service.

next aggregation key coordinate cannot be reached using
a greedy protocol, the aggregation service uses the routing
service to route to the key coordinate. This means that all
the packets belonging to a flow are routed through the same
server regardless of failures. This provides determinism and
is exploited to achieve fault tolerance.

Next, we compare using the customized routing protocol
against the routing service. In the routing service case, we
route all the packets to a single server that performs the
aggregation. Current MapReduce-like systems cannot per-
form on-path aggregation. It is hard to perform aggregation
using the routing service because it exploits multipath at
the packet level. This means different packets belonging
to the same flow traverse different paths; no single server
sees all packets belonging the flow except for the source and
destination. In the experiment each server ran a process
that generated a single packet containing a key-value pair
and sent these packets to a destination server. In one case,
(Full), a single key was used across all servers. Hence, two or
more packets can always be aggregated into a single packet,
and this represents the best case. For the worst case, we
also ran an experiment where each server used a unique key
in the key-value packet (None). This means that no aggre-
gation across packets can be performed and, hence there is
no reduction in traffic.

Table 1 reports the number of links and the link stress
statistics for using the routing service and the aggregation
service with full and no aggregation. Obviously, for the rout-
ing service, the statistics are the same whether aggregation is
possible or not so we show only one column. Table 1 demon-
strates that the aggregation service uses less links in total
compared to the routing service; the aggregation service uses
deterministic paths and therefore, effectively, restricts the
set of paths over which the packets can be routed. In the Full
aggregation case, the link load is uniform at one. The max-
imum number of packets that any server has to aggregate is
seven, and this is at the destination server, assuming that
the destination also generates a key-value packet. Clearly,
performing aggregation provides considerable benefit. In the
no aggregation case both have the same total packet count,
as would be expected, but clearly as the number of links
used in the aggregation service is lower, the link stress on
each of the links is higher. The median and 90th percentile
shows a small increase, but it is clear from the max and 99th
percentile that a subset of the links sustains a considerably
higher load. In the aggregation service, two of the six in-
coming links to the destination server sustain the highest
and second highest load. The customized routing protocol
is designed to provide particular properties, assuming that
aggregation is possible. When aggregation is not possible,

 0

 0.2

 0.4

 0.6

 0.8

 1

Cache

VM 0.1

VM 0.5

No Agg

Full Agg

TCP

M
od

ifi
ed

/B
as

e 
pa

ck
et

 ra
tio

Figure 4: Total packet overhead per service normal-
ized by the base routing service.

the customized protocol arguably performs worse than the
routing service.

This highlights the need to allow services to select the
right routing protocol; one size does not fit all!

3.5 Network-level impact
In the previous part of the section, we have shown that

implementing customized routing protocols achieves better
service-level properties. Do these customized routing pro-
tocols have a negative impact on the network performance?
In this section, we consider if the custom protocols tend to
induce higher link stress or have very skewed traffic patterns.

To evaluate this, we used the same experiments as in
the previous section, and measured the aggregate link stress
across all links for the experiments with the customized rout-
ing protocols and routing service version. Figure 4 shows,
for each service, the ratio between the total packets sent us-
ing routing service and the customized routing protocols. A
value less than one means that the customized routing proto-
col generated less network overhead compared to the routing
service version. It should be noted that for the VM distri-
bution service we compare two points, when 10% (VM 0.1)
and 50% (VM 0.5) of the servers join the group. Further,
for the VM distribution service we are measuring the over-
head of tree building, but when distributing a VM through
the tree, the same packet saving will hold. The results in
Figure 4 show that in all cases the overhead induced by the
customized routing protocol is lower, and is therefore, ben-
eficial. It might seem counter-intuitive that the TCP/IP
service achieves a higher throughput with a lower packet
overhead. However, in the base routing protocol the source
has to retransmit packets that are dropped due to conges-
tion induced by overlapping paths, which increases packet
overhead. In contrast, the custom routing protocol used by
the TCP/IP service ensures that packets are routed on dis-
joint paths and, hence, it does not incur congestion and no
packets are retransmitted.

In order to understand if we were inducing significantly
higher link stress on each link, we looked at the distribution
of link stress. We ranked the links in ascending order, exam-
ining the 99th percentile and maximum. In both measures,
the aggregation service in the no aggregation case performed
significantly worse than the routing service, over 2.5 times
higher. However, for the full aggregation case, and for all
other services, the link stress was equal or lower.

All the results so far have ignored any maintenance over-
head induced by the customized routing protocols. The
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routing service uses a link-state routing protocol and gener-
ates overhead whenever links fail. However, one interesting
aspect of all the other routing protocols is that none of them
have any explicit maintenance overhead, and simply exploit
the properties of the coordinate space to obtain the property
that they want. The reason that the routing service uses a
link-state protocol is to enable it to continue routing when
failures occur, when a greedy coordinate-based approach will
fail. All the other protocols use the routing service in such
circumstances, which allows them to avoid the need to have
their own maintenance traffic.

We have been considering each service in isolation. The
customized routing protocols could have some correlated
way in which they use links, which would yield poor perfor-
mance when they operate concurrently. We ran an exper-
iment to understand if these four protocols described here
interfere. We ran all four services and examined the link
sharing across services. For the aggregation service we had
all servers sending a packet to a single root. For the caching
service each server looked up the same object. For the VM
distribution server we had 50% of the servers in the distri-
bution tree, and for the TCP/IP service we had 1,000 server
pairs transmit data.

We determined how many of the services had used each
link. So, for each link we generated a value between zero
and four. Figure 5 shows the distribution of the links versus
the number of services that used the link. This allows us to
see the general trend of whether the services are all using
the same subset of links, as the absolute number of packets
per link is dominated by the TCP/IP service. The results
show that the majority of links are used by a single service,
and there are few links used by three or more services. This
indicates that, in this set of custom protocols, we are not
seeing a general preference for a particular subset of links.

4. PROPERTIES
Next, we identify a number of properties that underpin the

routing protocols described, which are used to motivate the
design of an extended routing service, that allows services
to easily develop their own.
Key coordinate versus server coordinate Many ser-
vices use the routing service for key-based routing. This
exploits its ability to deterministically manage the mapping
of keys to servers. However, some services also need server-
based routing.
Path specification The path from a source to destination
is often via one or more specified intermediate (x, y, z) coor-
dinates. However, rarely is the full path specified, most ser-

vices just use a small set of intermediate coordinates through
which packets must traverse. The routing service routes be-
tween the intermediate coordinates. This provides function-
ality similar to loose source routing.
Fault-tolerance Many services use greedy-based proto-
cols, which exploit the coordinate space. A key challenge
for greedy protocols is to make them resilient to failures
which, in corner cases, can cause voids in the static coordi-
nate space used in CamCube, as described in Section 2.1.2.
As voids are rare the services do not implement their own
mechanism to handle them, but rely on the routing service
which is able to route around any voids. This avoids adding
complexity to the services. This is also beneficial in terms of
network load, as each service does not need to generate any
maintenance traffic. The services leverage the state main-
tained by the existing routing service.
Multipath The 3D torus topology provides multiple paths
between servers. Some services exploit this path diversity to
increase the end-to-end throughput and to avoid congested
links. Other services require all packets in the same flow be
routed through the same set of servers, for example in the
aggregation service.
Packet buffers Services have different requirements for
packet buffer sizes. Small buffers generate packet loss in the
presence of congestion whereas large buffers incur queuing
delay which increases end-to-end latency. All services use
end-to-end reliability mechanisms but some also use per-hop
mechanisms. These services tend to buffer packets for long
periods, depending on the service from seconds to hours.
Prioritization We have a few services that prioritize traf-
fic, e.g., the routing service prioritizes control packets over
data packets. We believe many more services could benefit
from this, but the current complexity means it is normally
only added in when it fixes an observed problem.

5. EXTENDED ROUTING SERVICE
Next we describe the extended routing service, which aims

to make it simple for services to specify their own routing
protocols. Services that use the routing service are expected
to provide a per-service function F that operates in the co-
ordinate space and defines a set of key coordinates through
which packets are routed. Services also provide a policy
that controls queuing of packets for the service. The exist-
ing routing service is split into two components: one that
provides failure information, and a forwarding engine that
forwards messages towards a specified key coordinate.

Services register with the routing service to use it. A
registering service provides the function F to be used and the
queue policy parameters. In the simplest form the function F
is a function that returns the destination key coordinate, and
the only queuing parameter required is the queue length (in
milliseconds) and is the upper bound on the time that any
packet can be queued locally. When a service registers with
the routing service, the routing service registers, on behalf
of the other service, with each link. Recall that a polling
mechanism is used per link to obtain packets to transmit.

When a service, S, wishes to route a packet, it creates
the packet and hands it to the routing service. The routing
service calls the instance of F associated with S, passing
in the packet. The role of function F is to return a set of
possible next key coordinates (K) in the coordinate space,
K = {k1, k2, . . . , kn}. The function F operates in the coor-
dinate space with the assumption that if the returned key



coordinates correspond to a failed server, then the forward-
ing engine will remap them. Hence, the packet will be routed
towards a server responsible for one of the coordinates in K.
Note that the function F does not return the entire set of
key coordinates through which the packet should be routed,
just the next possible key coordinates. Further, the next key
coordinate could be mapped to a physical one-hop neighbor
of the current server, it could be mapped to a server that
is multiple hops from the current server, or indeed, due to
failures, the next key coordinate could be mapped onto the
current server. As the function F works in the key coor-
dinate space, when invoked, it needs to determine the key
coordinate for which the F is being performed. When there
are no failures then this will be the local server coordinate.
However, in the presence of failures the coordinate may not
be the same as the local servers coordinate. The function F
is able to access local state information maintained within
S, as well as information within the packet and information
from the failure component.

When the routing service has determined the set K, the
packet is then queued to be sent out on a link. The routing
service maintains a separate queue per-service. When the
routing service is polled for a packet by a link L for S, it
checks the packets queued for S, in order, to see if any packet
can go out on L. It does this by checking if the shortest path
to any of the key coordinates in K goes through L, provided
that the packet was not received from the server connected
on L. Before transmitting, the destination of the packet is
set to the key coordinate that matched in K. If L is on the
shortest path for multiple entries in K then one is randomly
selected from this subset.

When a packet is received by a server, it is delivered to the
service identified by serviceId, not the routing service. This
allows CamCube to easily perform fine-grained accounting
of resources on the server and, also enables a service to in-
spect (and modify) that packet. For instance, in the VM
distribution service, at each physical hop a request to join a
group is checked, and if the local server is already part of the
tree, the request is locally handled and the request is not for-
warded further. The VM service internal state is updated to
reflect that a new child has been added. However, normally,
most services simply pass the packet to the routing service.
The routing service determines if the local server is responsi-
ble for the current destination key coordinate and, if so, the
function F is called. This will generate a set K containing
the set of possible next key coordinates. If the current server
is not responsible for the current destination key coordinate,
then the routing service simply takes the current destination
key coordinate and queues the packet on service’s queue. If
a link on the shortest path to the destination key coordinate
polls the service, and no older packets can be transmitted
on the link this packet is transmitted, again provided it was
not delivered from the server on that link.

In some cases, the F function may need to create ad-
ditional copies of a packet and forward them to different
intermediate destinations. For example, in the VM distri-
bution service, when a packet is distributed along the tree, if
a server has more than one child, the packet must be repli-
cated for each child. This is accomplished by means of a
function transmit that takes as arguments the packet to
send and the corresponding set K.

Much of the power of the approach is enabled through
the F function. In Section 7 we will look in detail at how a

number of routing protocols use it. However, most services
simply use the F function to return a single intermediate
coordinate. For instance, in the aggregation service, this is
the key of the next point in the coordinate space to perform
aggregation. However, F can also return more than one
possible intermediate destination, as in the TCP/IP service.

Finally, a powerful component of the extended routing
service is the way in which it handles queues. Earlier we
observed that it was harder for service designers to incorpo-
rate classes of traffic with different priorities. To make this
easier, the extended routing service allows multiple queues
to be maintained per service. A service can then map pack-
ets, or flows, onto a particular queue. To enable this, each
service is required to provide a function classify that takes
a packet and returns a queue identifier. There is a default
queue which is created when the service first registers with
the extended routing service. In the simple case, the func-
tion classify always returns the default value. However, if
traffic differentiation is required, then the function classify
can capture this by returning different queue identifiers. If
the queue identifier is new then the service also has to pro-
vide the maximum time for which a packet can be queued in
the queue and a per-queue weighting. The extended routing
service, per service, implements a simple weighted fair queu-
ing mechanism across the queues belonging to the service.
Across services, we use a simple fair queuing mechanism.
The intuition is that internally within a service prioritizing
traffic is easy, requiring just the service writers to under-
stand their requirements. In contrast, across services, even
in an environment where all services are cooperative, us-
ing a weighted scheme requires understanding the relative
importance of services. Our initial experiences lead us to
believe that doing this across services introduces significant
complexity. This is compounded when most services are, by
design, oblivious to the other services running.

6. PERFORMANCE EVALUATION
To evaluate the performance overhead of the extended

routing service, we experimented with our CamCube testbed.
The testbed consists of 27 servers. The direct-connect net-
work has 3 servers on each axis, creating a 3x3x3 cube. Each
server is a Dell Precision T3500 with a quad-core Intel Xeon
5520 2.27 GHz processor and 4 GB RAM, running an un-
modified version of Windows Server 2008 R2. We equip each
server with one 1 Gbps Intel PRO/1000 PT Quadport NIC
and two 1 Gbps Intel PRO/1000 PT Dualport NICs, in PCIe
slots. One port of the four port card is connected to a dedi-
cated 48-port 1 Gbps NetGear GS748Tv3 switch. This pro-
vides the switch network giving external connectivity to the
CamCube. Six of the remaining ports, two per multi-port
NIC, are used for the direct-connect network. The extended
routing service only routes traffic only on the direct-connect
topology. The Intel NICs support jumbo Ethernet frames of
9,014 bytes (including the 14 byte Ethernet header). In the
experiment we use jumbo frames and use default settings for
all other parameters on the NICs.

We ran two experiments, a base experiment, where the
six one-hop neighbors of a server S attempt to saturate the
1 Gbps link from them to S. S runs a simple service, that
when it receives a packet from a one-hop neighbor it simply
bounces the packet back to the neighbor. This represents a
service that forwards packets, and the per-packet overhead
is the lowest that can be achieved. We also ran an experi-



 0

 5

 10

 15

 20

 25

 30

Baseline 1 key 2 keys 3 keys

C
P

U
 U

til
iz

at
io

n 
(%

)

Figure 6: CPU overhead for baseline and extended
routing services with |K| =1,2 and 3.

ment, the extended experiment, with a service that uses the
extended routing service. Again, the six neighbors of S send
packets at line rate to S, but they specify the destination as
a key for which S is responsible. However, the neighbors also
generate a set of q random keys which map onto themself,
and insert them into the packet. S then runs a service which
uses the extended routing service, and has a function F that
extracts the keys from the packet, and then returns the set
of keys embedded in the packet as the next coordinates, K.
In the extended routing service the cardinality of K domi-
nates the CPU overhead. We observe that in the majority
of services implemented to date that cardinality of K (|K|)
is usually one or two. We therefore, run the experiment for
q = 1, 2 and 3, where |K| = q.

For each experiment we record the aggregate throughput
in Gbps and the CPU utilization at server S. The aggregate
throughput excludes the Ethernet headers, but includes the
CamCube service header. We measure the CPU utilization
by using Windows performance counters which provide, per
core, an estimate of the CPU utilization as a percentage.
As we have quad core processors, with hyper-threading, we
obtain eight CPU readings. We then calculate the average
CPU utilization across all eight and use that as the utiliza-
tion per server. We observe that the CPU utilization is not
skewed across the cores.

The aggregate throughput achieved in the baseline case
was 11.88 Gbps, and given that each server is using six
1 Gbps links there is a theoretical upper bound of 12 Gbps.
When using the extended routing service we observe less
than a 0.9% loss in maximum throughput between based
line and when |K| = 3. Figure 6 shows the CPU utilization,
for the base line as we vary |K|. These results show that
in the baseline case the CPU utilization is 22.01%, and this
rises to 25.35% when |K| = 3. These results demonstrate
the low overhead that the extended routing service induces.

7. USING THE ROUTING SERVICE
When evaluating the extended routing service it is hard to

make strong claims about its expressiveness. However, we
have successfully re-implemented all our routing protocols
in the extended routing service and achieved performance
comparable to the original versions. In this section we briefly
discuss the F functions for all the services described in this
paper, and provide a detailed example of the F function
used in the VM distribution service, which represents the
most complex routing protocol used.

We provide a number of support functions:

dist(coordA, coordB): returns the rectilinear distance be-
tween two coordinates, e.g. dist((1, 1, 1), (0, 0, 0)) = 3;
distAxis(coordA, coordB, a): returns the distance of the two
coordinates relative to axis a, e.g., distAxis((1, 1, 1), (2, 3, 4),
x) = 1;
getCoordNeigh(coord, a, dir): returns the key coordinate
of the neighbor of coord that lies on axis a, in the direc-
tion specified by dir, e.g., getCoordNeigh((0, 0, 0), y, 1) =
(0, 1, 0).

The F function of the cache service is straightforward. At
the source of a lookup, F determines the key coordinate of
the object to be retrieved and returns the set of key coordi-
nates of the closest replicas, utilizing the dist function. The
routing service will route the packet to the server responsible
for the selected key coordinate. When the packet reaches the
key coordinate, the cache service checks whether the object
has been cached locally and, if so, the packet is discarded
and a copy of the object is returned to the source. Other-
wise, F is re-evaluated on the packet, and will return the key
coordinate of the primary replica as the next destination.

The F function for the aggregation service defines a de-
terministic path through the key coordinate space. The
function greedily attempts to minimize the distance on each
axis, obtained through distAxis, by continuously selecting a
neighbor key coordinate on that axis that is closer to the fi-
nal destination key coordinate. The order in which the axes
are used is a function of the hash of the key coordinate of
the final destination.

The F function used by the TCP/IP service at the source
returns the key coordinates of all one-hop neighbors, except
those that are on the same axis, but in the opposite direc-
tion, of the one-hop neighbors lying on the shortest paths.
Then, at the next hops, F returns the key coordinate of the
one-hop neighbor that is on the same axis of the neighbor
from which the packet was received, if this is closer to the
destination. Otherwise, it deterministically selects another
axis and routes the packet to the neighbor on that axis that
is closer to the destination. This raises an interesting exam-
ple of the relationship between key coordinates and server
coordinates. The F function returns key coordinates. In
the event of a server failure, this may cause packets to be
delivered to the server to which the key coordinates of the
failed server have been assigned. The TCP/IP service on
that server will drop the packet.

As a more elaborate example, Figure 7 provides pseudo-
code for the F functions used by the VM distribution service.
In this service, we have two different type of packets: join
packets, which are used to construct the tree, and data pack-
ets, which contain the chunks of the file being distributed.

When a server wishes to become a member of the distribu-
tion tree, it issues a new join packet and forwards it towards
the root, following the protocol detailed in Section 3.2. At
each hop, the VM distribution service intercepts the join
packet. The key coordinate of the neighbor from which the
packet was received is added to the set of child nodes (C).
Then, if the local server is already part of the tree or it is
the root, the packet is dropped. Otherwise, the packet is
handed to the extended routing service to continue forward-
ing it towards the root.

The F function used to forward join packets is shown in
Figure 7(a). It recursively partitions the coordinate space
into smaller mini-cubes. To route to the root coordinate
of the VM distribution tree, it traverse the corners of the



1: min l←∞
2: for all axis ∈ {x, y, z} do
3: if CurrKeyaxis 6= Rootaxis then
4: l← log2 E − 1

5: while distAxis(CurrKey, Root, axis) mod 2l 6= 0 do
6: l← l − 1
7: if l < min l then
8: min l← l
9: min axis← axis

10: upN ← getCoordNeigh(CurrKey,min axis, 1)
11: downN ← getCoordNeigh(CurrKey,min axis,−1)
12: if dist(upN,Root) < dist(downN,Root) then
13: return {upN}
14: else
15: return {downN}

(a) Join packets.

1: for all c ∈ C do
2: transmit(p, {c})
3: return �

(b) Data packets.

Figure 7: Pseudo-code for the F functions of the VM
distribution service to handle join and data packets.

hierarchical mini-cubes. In the pseudo-code we indicate with
CurrKey the key coordinate for which F is being performed
and with Root the key coordinate of the root. These are all
included in the packet. Finally, coordx, coordy and coordz
denote the value of the x, y, and z elements of coordinate
coord, and E denotes the length of the edge of the cube. For
simplicity, we assume that E = 2k with k > 0.

The first stage is for F to determine the level l of CurrKey
in the mini-cube hierarchy (lines 2–9). Intuitively, the size
S of the edge of the largest mini-cube that has a vertex in
CurrKey is equal to 2l. For example, if CurrKey is at the
bottom of the hierarchy, i.e., l = 0, we have that S = 1.
Dually, if CurrKey is a vertex of one of the eight top-level
mini-cubes, then S = E

2
= 2k−1. The value of S can be com-

puted by observing that on each axis the distance between
CurrKey and the root (obtained through distAxis) must be
an exact multiple of S. Therefore, F iterates over each axis
and recursively halves the length of the mini-cube edge un-
til it exactly divides the distance from CurrKey to the root
key coordinate along that axis (lines 5–6). This indicates the
level in the hierarchy for that axis. The lowest level across
all axes represents the level of CurrKey in the hierarchy. At
line 10, F has successfully identified the level of CurrKey in
the hierarchy and the axis with the lowest level in the hier-
archy. This is contained in the variable min axis. F then
greedily selects the neighbor in the key space that is closer
to the root and returns it as next intermediate destination
(lines 10–15).

This function is used to perform tree construction and dur-
ing the multicast phase the simpler function in Figure 7(b)
is used. This simply forwards a copy of received packets to
the children.

8. RELATED WORK
Networking infrastructure in data centers, including re-

cent research proposals [2, 16, 25], is influenced by tra-
ditional Internet architectures and standards. Packets are
routed through switches or routers and end-hosts have lit-

tle control on routing decisions. A single routing protocol
is provided to applications. Simple policies, like having an
application’s traffic go through a middlebox, are hard to
support [21]. In general, the IP protocol allows end-systems
to influence the path by using loose source routing. This,
however, is not widely supported due to the overhead of
maintaining network topology state at the end-systems and
the packet overhead of carrying the information. Propos-
als to address these issues, for example [23, 30, 31], provide
coarse-grained control to the end-hosts or edge ISPs. Our
approach can be seen as a similar to loose source routing,
with routes specified in terms of keys. However, the path
keys are computed dynamically rather than statically en-
coded in the packet. More generally, multi-service switched
networks [26] support multiple routing protocols on a single
physical network. In this approach, referred to as ships in
the night, routing protocols use separate control planes and
no state is shared among them. The work described here
aims to allow the routing protocols to share information, in
order to minimize control traffic.

Current data centers can exploit multi-path using network-
level configuration, for example using equal cost multi-path
protocol (ECMP) to balance flows across multiple paths.
They operate at a flow level to avoid packet reordering,
which would impact TCP. Centralized flow schedulers have
been proposed to allow more efficient network utilization [3]
and to enable energy savings by switching off redundant
links [19]. These schedulers are traffic agnostic. The work
proposed here allows services to individually specify and con-
trol the routing protocol that they use. Direct-connect [7]
and hybrid topologies [18, 17], where servers participate
in packet forwarding, have recently been proposed, as de-
scribed in Section 2. All provide a default routing protocol,
and in the case of BCube and DCell this runs transparently
beneath the TCP/IP stack. Hence, applications running on
them have limited ability to exploit the fact that packets are
routed through servers. CamCube, and the flexibility that
it provides by having a low-level API that explicitly exposes
the packets to services as they are routed through servers
enables services running on CamCube to exploit this. It
would be feasible to use some of the ideas of enabling mul-
tiple routing protocols on these other platforms.

Direct-connect topologies have been widely used in the
context of High Performance Computing (HPC) [11], e.g.
the IBM BlueGene and Cray XT3/Red Storm use a 3D
torus. They use variants of greedy geographic routing pro-
tocols [29, 1], and normally only tolerate small-scale failures,
for example, the IBM BlueGene/L tolerates only three server
failures [1]. It has been proposed to increase fault-tolerance
by running multiple routing protocols [27], a primary and a
secondary, where the secondary routing protocol is used only
when the primary cannot make progress due to server fail-
ures. HPC systems often use MPI [24] as the communication
API, which is process rather than server based. The com-
piler and job scheduler control the mapping between pro-
cesses and servers. MPI utilizes the multi-path and multi-
hop routing offered by the platforms but, therefore, cannot
exploit on-path interception and modification of packets.

The IBM Kittyhawk Project [5] evaluates using the IBM
BlueGene/P for data center workloads. They provide a flat
layer 2 IP network running over the 3D torus network, hid-
ing the different topology. In contrast, CamCube explicitly



exposes the underlying topology to the services, which then
exploit it.

9. CONCLUSIONS
We have explored the benefits and feasibility of using mul-

tiple service-specific routing protocols in a data center of the
future. We have done this in the context of the CamCube
architecture, which uses a 3D torus topology, where each
server directly connects to six other servers. We are target-
ing shipping container-sized data centers, and do not require
the use of any switches or dedicated networking within the
container. We are currently utilizing a low-level link orien-
tated API in CamCube, which provides the flexibility for
services to implement their own routing protocols.

We have demonstrated that the individual services can ob-
tain better application-level performance by utilizing their
own protocols, and that at the network level this can also
provide better performance. For all services the network
load is reduced when the service uses its own optimized pro-
tocol. This led us to extend our routing service to allow
services running on CamCube to easily implement their own
routing protocols.
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