Experiences of building an ATM switch for the Local Area

Richard Black, Ian Leslie, Derek McAuley
University of Cambridge Computer Laboratory

Abstract

The Fairisle project was concerned with ATM in the
local area. An earlier paper [9] described the prelimi-
nary work and plans for the project. Here we present
the experiences we have had with the Fairisle network,
describing how implementation has changed over the
life of the project, the lessons learned, and some con-
clusions about the work so far.

1 Introduction

The Fairisle project was a three year effort at the Com-
puter Laboratory begun in October 1989, to design and
build an ATM local area network, and to investigate
the architecture and management algorithms appropri-
ate to the local area.

The project included the construction of ATM
switches, host interfaces, device drivers, and man-
agement software. Within the Computer Laboratory,
other research projects such as multimedia, operating
systems, workstation architecture and distributed sys-
tems are now using the bandwidth provided by the
Fairisle network, and providing the network with real
data.

This paper presents a report of the the final outcome
of the construction phase of the project. Section 2
presents an overview of the switch design and other as-
sociated hardware components; section 3 describes the
associated low-level software and firmware; section 4
describes the switch services; section 5 presents the
raw performance figures for a variety of typical uses.

The network is now in use as a platform in support
of further ATM switch and network research, and as

a testbed for Quality of Service and Call Acceptance
Control experiments funded by British Telecom.

2 Components

2.1 The Switching Fabric

The Fairisle switch fabric is composed of 4 by 4 crossbar
elements implemented on a single 6400 gate equivalent
Xilinx device. The largest switch so far constructed
is a 16 by 16, the fabric built as a two stage delta.
More commonly, two stage 8 by 8 switches are used for
experimentation.

The fabric has an 8 bit data path and is clocked
at 20MHz (nominally) for a raw bandwidth per port
of 160Mbit/sec. The fabric is also cell-synchronous;
besides the 20MHz clock signal, a further frame start
signal is distributed to all port controllers, and any
pending cells at the inputs are injected a defined num-
ber of clock ticks after the frame pulse.

In common with many other designs the fabric ele-
ments are self routeing, that is each cell has routeing
tags prepended to it which indicate the requested out-
put (at each stage) for that cell; two bits of routeing
information and one priority bit are used. The arbi-
tration units in the switch elements implement round
robin like service — the winning input in each frame is
remembered in the arbitration unit and if contention
is experienced for the next cell, the “next” requesting
input wins (“next” in the obvious modulo 4 manner).
The format of the routeing tag is given in figure 1.

Bit | Name Use

0 | Active Always set for a cell

1 | Priority | Set if cell is a priority cell
2-3 | Route Output requested for this cell

Figure 1: Switching fabric routeing tag per stage

As a fabric element output or output port controller
may reject a cell due to contention or finding a full



output buffer, an acknowledgement signal is provided
to the input. During the routeing of a cell through
the switch fabric and into the output, a reverse path
is also established in each constituent fabric element
from the output to the input for the acknowledgement
signal — a cell which loses during contention within the
fabric asserts a negative acknowledgement through the
reverse path established up to that point.

Propagation of the cells through the switch fabric
takes two clock ticks per fabric stage, two at the output,
and we allow two for the propagation of the signal back
through the fabric. Hence, in our two stage fabric, a
stable acknowledgement signal can be observed by the
input after eight clock ticks and indicates whether or
not the cell has succeeded in traversing the fabric and is
being accepted by the output — in the case of failure, it
is the responsibility of the input port to decide what to
do with the cell. This scheme is simple to implement as
long as the acknowledgement is received while the cell
is still being injected into the fabric; fabrics of depth up
to about 16 could be supported in this manner — clearly
deeper than any sane person would consider building.

Since the switching fabric used in the Fairisle switch
is both internally and output blocking, the switch is
required to be input buffered; to minimise the ef-
fect of the blocking on throughput, the fabric is run
faster than the line rate (160Mbit/sec v. 100Mbit/sec),
which also has the side effect of requiring some modest
amount of output buffering.
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Figure 2: Throughput against fabric, line rate ratio

Many comparisons of input and output buffered
switches [8] assume a internal switching rate equal to
the line rate. Given the relative complexity of input
and output buffering this seems rather restrictive for
the input buffered case. Indeed our current fabric is
used well below it’s maximum rate; the 20MHz rate
currently used is dictated by the design and implemen-
tation of the clock distribution circuitry.

Figure 2 demonstrates the effect on throughput of
this speed-up for uniform random traffic; the graphs
are for a 16 by 16 crossbar (where only output block-
ing is experienced) and for the Fairisle two stage delta;
in both these examples, the worst case of fifo queue-
ing at the input is used. Hence for the 160:100 ratio
present in the Fairisle switch, while the fabric port util-
isation is the expected 53%, the line utilization achiev-
able (i.e. throughput) is approximately 87% (for this
oft used hypothetical traffic).

The work of the AN2 [1] designers has led to a re-
consideration of the use of the priority bit within the
Fairisle fabric. AN2 uses an iterative bipartite match-
ing algorithm to compute a switch schedule each cell
time. A key stage is the first iteration in which reserved
slots are removed from the scheduling if any data for
the relevant circuit has arrived at the input buffer; this
provides the mechanism to provide reserved bandwidth
for certain channels, while being able to use such ca-
pacity for other channels when not required. While
within Fairisle we use a self routeing switch fabric,
rather than separate routeing and scheduling mecha-
nisms as in AN2, the same ability to provided reserved
slots is being implemented using the priority bit. Non-
reserved slots, and reserved slots for which no reserved
traffic arrives are allocated on the strictly round robin
basis described above.

Finally, as part of an ongoing SERC funded research
project to apply formal techniques to networking prob-
lems, the fabric elements and fabric itself have been
formally verified [3] using the HOL system (Higher Or-
der Logic) for specification and proof of the relevant
theorems.

2.2 The Port Controller

Each Fairisle Port Controller provides an input port
and the corresponding output port for the switching
fabric. The port controller also interfaces to the trans-
mission system. A detailed description of the hardware
may be found in [16]. Three versions of the hardware
were produced:

Version | Processor | Xilinx | No. | Comments
FPC1 ARM3 3042 5 Prototypes
FPC2 ARM3 3064 20 Fairisle build
FPC3 ARM610 | 3090 60 BT build

FPCl1s have been retired; the FPC2s are in use to
provide a service network; the FPC3s are used for the
majority of the ongoing research work. The versions
are due to changes in processor availability, cost savings
based on volume, and increased low level functionality.

The port controller consists of three major sections:
the queue manager based around an ARM RISC pro-
cessor; network buffer memory and DMA engine; and
transmission system. The transmission system is dis-



cussed further below. Figure 3 shows an overview of
the port controller, the lower half forming the processor
section, and the upper the buffer section.

Transmi ssion Qutput FIFO Backpl ane
I:I SRAM
DVA
Buf f er Xi 1i nx

10 Menory
Busﬂ Bus

ARM é

vy == DR

Figure 3: Port controller schematic

The input buffer on the card consists of 128k bytes of
(35ns) static RAM arranged as 2048 cell buffers of 64
bytes each — room for the cell payload, header, fabric
routeing, VP/VC mapping and “next” pointer. This
buffer memory resides in the address space space of the
processor to enable the processor to both manipulate
the control information and to send and receive cells
from locally executing tasks (e.g. signalling cells). Cells
can be injected into the input buffer from both the
transmission line and, via a loop-back fifo, from the
output section of the fabric - this enables ports on the
same switch to easily communicate with each other.

The processing section of the port controller has an
ARM processor and runs the Wanda kernel [4] to pro-
vide an environment in which to implement services
such as switch and network management. The provi-
sion of the standard IO bus for the ARM chip-set also
enables the provision of other services; for example,
a port controller with an Ethernet interface has been
used as an Ethernet / ATM IP router.

The software responsible for cell queue management
is performed at a high interrupt priority (the so called
FIQ) and effectively runs asynchronously with respect
to the Wanda kernel. The software interacts with the
static RAM DMA engine (also implemented using a
Xilinx device) to both enqueue cells arriving from the
transmission system and dequeue cells for injection into
the switch fabric.

Each port controller is a double height extended
depth euro-card; a backplane connects port controllers
to their associated input and output ports on the
switch fabric and provides the clock and frame sync
distribution from a master clock. A complete switch of
16 ports, composed of a 16 by 16 fabric, master clock
board and Ethernet interface fits into a standard 19”
6U subrack (just).

2.2.1 TRANSMISSION SYSTEM

The transmission system is based on the ATM Forum
de-facto standard using AMD TAXI components at
100Mbit/sec. The majority of the physical media in
use is 502 coax — fibre is used only for long runs greater
than several hundred metres, as the coax has proved
very reliable for short runs. A Xilinx chip performs the
framing and HEC calculation, and small fifos are used
to decouple the transmission derived clocks from the
internal clock domain.

The transmission system was initially implemented
as a plug in card on the first two prototype versions of
the port controller — we intended to move to SONET
which was always going to be available “real soon now”
— version three port controllers include the TAXI trans-
mission systems on the main board.

The transmission system can be configured to inter-
leave data symbols with various numbers of idle sym-
bols on the line. This permits a range of line speeds
(512 different values) to be emulated, from 0.4Mbit/sec
up to 100Mbit/sec. This has been provided to enable
experiments into the effects on the network of links of
various speeds. It has a practical use in that when
using transmission converters, such as the TAXI to
34Mbit/sec G.703 used for early Super-JANET exper-
iments, the switch output rate can be matched to the
line.

At the physical layer and cell layer, Fairisle has
been demonstrated to interwork with currently avail-
able ATM products.

2.3 Host Interfaces

A VME interface developed early in the project was
shelved in favour of the Olivetti Research YES-v2 [16]*
interfaces when the project acquired DEC Turbo-
channel based systems. The switch performance re-
sults presented later have been obtained using such in-
terfaces.

Commercial product interfaces are also now in use,
although this now involves us in dealing with a range
of different incompatible signalling systems and restric-
tions on VC/VP space available.

2.4 Indirect Developments

The modular nature of the Fairisle switch has lead to
related developments which now form part of the ATM
environment in which the networking experiments are
being performed.

The Desk Area Network (DAN) reuses the port con-
trollers and switch fabric of the Fairisle switch to im-
plement a workstation in which the fabric is used
as the main bus of the system. Multimedia devices
(video and audio, capture and display) and processor

IThanks are due to Olivetti Research Ltd. for permission to
replicate the design.



cache/memory systems all using the Fairisle fabric have
been built and are described elsewhere [6, 11, 7].

Of more direct relevance to the network research are
the Null Port Controller and Multicast fabric.

2.4.1 NuLL PorT CONTROLLER

The Null Port Controller is a fifo queueing port con-
troller for the Fairisle switch. The device is extremely
basic; besides the standard transmission daughter
board, the port controller is composed of three compo-
nents: a Xilinx 3042, a 256K by 8 bit “triple ported”
VRAM, and a fifo memory.

The main buffering function is performed in the fifo.
The Xilinx is again used for all control functions.

The VRAM is used to perform the header remapping
and to prepend the fabric routeing tags. Arriving cell
data is shifted into one of the serial access memory
(SAM) ports of the VRAM at a tap point defined by
some bits of the VP/VC. After complete reception of
a cell, the payload and parts of the header are written
into the main DRAM array at a row address defined
by further VP/VC bits. This area of memory has been
initialised during call setup with the appropriate new
VCI and fabric routeing information?, so that when
the cell and new header are read back into the other
SAM, the new cell is ready for injection into the switch
fabric. 4K translations can be supported.

Hence the VRAM is used to provide both the header
mapping, high speed double buffering and the ability to
retransmit a cell. This compares with the initial (and
more obvious) designs which use an SRAM translation
table and either, a fifo with resettable read pointer, or
two fifos. VRAMs are cheaper.

Such a port controller clearly has minimal abilities
to provide quality of service to streams (different pri-
orities and retry count on blocking). However, our
main motivation for building the NPC was based on
the observation that many ATM switches will effec-
tively only be acting as low to high rate multiplexors
without overload and our desire was to investigate how
simple (cheap) this allowed port controllers to become.
In particular our aim was to attach 10 Ethernets to an
ATM link into an ATM backbone — the mazimum cell
buffer occupancy at each Ethernet input port is one> —
anything more complex than fifo in this circumstance
is gratuitous.

The Sapphire switch [12] is an experimental ATM
switch built by HP Labs based on the Null Port Con-
trollers and the 8 by 8 Fairisle fabric. Port controllers

2The hardware pedant will realise that this requires the use
of the appropriate bit masked write when copying from SAM to
DRAM.

3 Assuming the sensible cut-through design in which Ethernet
frames are segmented into cells and forwarded as soon as the
danger of Ethernet collision is past.

are attached to six of the fabric ports, the seventh is
used for connection of a switch management processor
and the eighth port is socketed for the addition of an
optional transmission port.

2.4.2 MurticasT CopPY FABRIC

The multicast copy fabric was an experimental addition
to the Fairisle Switch. This was a hardware device for
replicating multicast cells on the way into the switch
by presenting them across multiple inputs. The design
and performance of the system is described in [5].

3 Port Controller Firmware

Xilinx components have been extensively used in the
project as their reprogrammability provided the abil-
ity to migrate functions from software to hardware in
the light of experience. Furthermore as both de jure
and de facto standards have been accepted, it has been
possible to modify the firmware to track these changes
— this enables us continue to use the Fairisle equipment
for switch and network experiments while integrating
it with commercially available equipment.

The firmware underwent several redesigns to add
functionality; the relevant features of “Xi2”, “Xi3” and
“Xi5” designs (i.e. those that have seen service) are dis-
cussed.

3.1 Initial Design: “Xi2”

Initially the Xilinx chip did little more than to read
cells into and out of the SRAM. Buffer slots were allo-
cated by software and passed to the hardware via two
shared 8 entry circular buffers, one each for reception
and transmission. On reception the hardware would
copy the cell to the first reception buffer and interrupt
the processor. The interrupt routine would check the
received VCI, perform the VCI translation, add the
relevant routeing information, and append to a queue.
The service process of these queues, invoked on a suc-
cessful transmission, would remove entries and pass to
the transmission hardware via the circular buffer.

At an early stage, VCI mapping was added to the
hardware, as it was observed that the synchronisation
cost of the external memory cycles required to read and
write the header was having an adverse effect on the
processor performance. The VCI mapping and route-
ing information are stored in the SRAM buffer memory
and the mapping function can be invoked on a per cell
basis by use of a control bit in the transmit descriptor;
transmission without mapping is used for control cells
which originate from the local processor.

The first traffic on the network was that generated
by various packet based sources (e.g. switches boot-
ing and managing themselves!) and it was observed
that, even at comparatively low mean utilisations, the



occurrence of NACK events from the fabric was suffi-
ciently frequent that the cost of handling such events
in software (which often involved reloading the trans-
mit queue) was unacceptable. This cost was decreased
by the addition of a 1 bit retry count to the transmit
descriptor.

After these modifications the Xilinx design was
known as “Xi2”. This design is discussed in detail
in [16].

3.2 Later Changes: “Xi3”

Performance evaluation of the cell forwarding software
on the port controller revealed that much of the time
was spent manipulating the short circular buffers and
the free queue; furthermore the off-processor opera-
tions required to perform these were expensive. While
it was desirable to continue to have the processor ac-
tive in implementing the cell forwarding queues (this is
one of the research areas the equipment is designed to
investigate), the free queue management and the inter-
face between software and hardware were redesigned.

The cell buffers fall into four classes: waiting collec-
tion by the reception FIQ, on the free queue, on the
transmit queue, and being used by software. The cell
buffers in the first three classes are linked together by
cell buffer numbers in their link field. These form a
single list with pointers in the Xilinx chip marking the
boundaries as shown in figure 4.

The queue must be set up by the processor before
starting the Xilinx. The queue is automatically main-
tained because the processor adds buffers for transmis-
sion to the tail. Once these are sent they form part
of the free queue before being used for reception. The
length of the transmission section is limited to a max-
imum of eight in a trade off between the desires to
pipeline the transmission function and provide software
with a reasonably timely indication when congestion
is experienced — without this limit and indication the
most cunning queueing software invented would degen-
erate at times of congestion* to fifo behaviour. The
same requirement for a short feedback loop exists in
the design of a host interface (and associated device
driver) which aims to implement per channel priority
and rate control.

Buffers not in the queue are assumed in use by
software, and must be entirely managed by software.
This is straightforward while the processor is not a net
source or sink of cells (e.g. signalling cells); if it is, both
dummy transmissions and receptions are implemented
to enable software to correct any imbalance.

The link field in each buffer contains not only the
next buffer in the list, but also the number of retries
(between zero and seven inclusive). Sensible use of

41.e. at the worst possible time.
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Figure 4: Xi3 queue structure.

retry counts actually reduces the demand on the pro-
cessor during contention in the fabric, so that at these
critical times, cycles are available for more complex
queueing algorithms.

The interrupt interface was also modified so that in
a single operation it is possible for the software to read
the interrupt condition, the buffer number at the head
of the list, and if a cell arrival has occurred cause the
pointer to the head of the list to reload as a side ef-
fect. Such interfaces carefully constructed to match
the commonly required operations of the software con-
siderably speeded the interaction. With this design,
known as “Xi3” [16] almost the full line rate could be
handled (see section 5).

3.3 Instrumentation: Xi5
The most recent iteration of the Port Controller
Hardware, done in the context of a British Telecom
funded follow-on project, includes a larger Xilinx de-
vice (3090). The design for this chip, known as
“Xi5” [16], is from the point of view of cell management
the same as the “Xi3” design; the additional space has
been used to implement telemetry support for more
detailed measurements and experimental purposes.
The requirements of the theoreticians and modellers
were for traces of cell arrivals and departures from



switches; for each cell handled it was desired to record
the channel identifier of each cell and these two times.
This presents some problems, as each 100Mbit/sec link
is generating about 10Mbit/sec of trace, and not sat-
isfied with one port’s observations, we are required to
do it for whole switches.

The solution adopted is based on the observation
that when performing such experiments, the impor-
tant aspect of some streams is simply their temporal
behaviour, rather than contents (e.g. consider an open
loop variable rate coded video stream). Hence the Xil-
inx component now contains a free running counter
(which ticks at the rate of the switch fabric framing
signal) and may be configured per VCI to stamp the
value of this counter into the data portion of the cell
when a cell arrives and leaves the system. The posi-
tion of the stamp is determined by some bits in the
VCI, so different switches can be configured to place
the information at different points in the cell.

3.4 FIQ software

The ARM fast interrupt (FIQ) is reserved for use by
the cell forwarding hardware. When handling a FIQ,
the ARM processor remaps part of its register set to
provide private registers for the FIQ handler — this en-
ables state to be maintained between FIQ invocations
without having to save and restore state to memory,
greatly reducing the interrupt entry and exit overhead.

The structure of the list data structure shared be-
tween the processor and hardware is shown in figure 4.
An interrupt is generated when a cell arrives, if there
are less than eight buffers on the transmit section of
the queue, or if a NACK occurs. On entering the FIQ
handler, the interrupt status is obtained and the used
to dispatch to the correct handler routine; this process
takes a maximum of 7 instructions of which one is an
non-cached data read.

On reception, the incoming VCI is read from the re-
ceived buffer, and, after range checking, used to index
into the VCI table. Having obtained the queue pointer
for this VCI from the table, the buffer number is ap-
pended to the queue. Worst case for this path is 24
instructions of which one is a non-cached data read.
Note that this cost is independent of the number of
queues implemented.

On transmission (or more correctly, injection into the
fabric), the default configuration serves three queues
in strict priority — one of these queues is used for all
forwarded cells. In this configuration, the instruction
count, for transmission of forwarded cells is 16, with
an additional 5 instructions for each extra queue that
must be checked.

More complex strategies with multiple queues and
fair service disciplines are also available for specific ex-
periments. These are the subject of a research pro-

gramme which is still underway.

4 Software

The MultiService Network Architecture (MSNA) [10]
defines an addressing scheme and connection establish-
ment procedures; as such it defines our proprietary sig-
nalling system. The only matters of note compared
to other such signalling systems are that all messages
are designed to fit in a single cell, and it understands
“legacy ATM networks” which have different cell sizes.

4.1 Port Controller

The use of Wanda as the software platform on the
switch has already been mentioned. As well as the
low level FIQ handler for cell forwarding, each port
controller contains three major services:

e a gateway process responsible for implementing
the MSNA signalling functions,

e the MSNA “rarpd” service, a process to supply
systems desirous of booting, with their own ad-
dress and that of the bootserver,

e “minetd”; a kernel implemented service which pro-
vides echo and traceroute-like functions.

In fact, the boot ROM on each port controller contains
a complete copy of Wanda together with signalling
code, and a boot client. The boot client performs an
MSNA “rarp” and establishes a connection across the
ATM network to its bootserver. Different versions of
both Wanda and the Xilinx configuration can then be
booted into the system.

In service use, one port acts as a switch master pro-
cessor, providing certain per switch services, e.g.:

e Ethernet gateway,

e aggregated console output; the console output
from each attached port controller is forwarded to
an appropriate X11 program for display,

e local boot service; the master processor can be
configured act as a bootserver, and reboot another
port from it’s own memory — such booting takes a
fraction of the time taken to boot from the UNIX
based bootserver.

Besides being used for forwarding cells, the cell buffer
memory and Xilinx are used by Wanda to provide an
ATM network interface to user level tasks, enabling
these various services to use the network for communi-
cation. Performance of this interface is comparatively
slow, but is sufficient for these services.

To enable the simple interchange of line cards be-
tween 4, 8, and 16 port switches the first order of busi-
ness on booting after a basic self test, is to establish



the “shape” of the switch fabric. Investigative cells are
transmitted into the fabric, with the cell headers and
contents carefully constructed so that in any configu-
ration at least one of the cells will be received by the
transmitting port — the received cell can then be used
to establish the size and location of the port on the
fabric. The fact that 16 ports may all be doing this
simultaneously (e.g. at power on) adds entertainment.

4.1.1 SIGNALLING AND MANAGEMENT

Port controllers are capable of either performing in-
dependent signalling or acting in concert as a switch.
Early in the project when there were a small number
of port controllers being used by different people, using
ports independently was the norm. In this mode the
individual port controllers implement signalling even to
other ports on the same switch, but can be individually
rebooted and configured.

More recently, as complete switches have been avail-
able, it has been possible to move to using manage-
ment, code which controls all the ports on the switch
as a coherent entity. This is in line with the initial
expectations discussed in [9].

The signalling system also allows applications to per-
form third-party call setup on behalf of dumb ATM en-
tities which cannot signal on their own behalf, for ex-
ample the ATM Camera. The ability to perform third
party setup is critical to the simple design of such sys-
tems.

For a set of switches under the same administration
in the local area we believe that knowledge of the com-
plete topology at each switch is a reasonable assump-
tion; to achieve this we implemented automatic mech-
anisms for topology determination based on those used
in the Autonet [15] [14]. However, the current exper-
imental work programme would be hindered by auto-
matic reconfiguration and so the system has not been
deployed (or fully tested).

4.2 Unix

Hosts are currently connected to network using a mix-
ture of ORL Yes and Fore interfaces with locally de-
veloped software. The hosts have access to both a sub-
net interface for IP over ATM and raw ATM channels.
A key feature of our implementation is that only the
data paths are implemented within the kernel; all the
signalling, socket control, and management is imple-
mented in a generic and portable user space daemon.
Details of this work have been previously presented
in [2].

5 Performance

The performance measurements presented in this sec-
tion were aimed at verifying that our switch design
(which included, at some considerable complexity, the

ability to easily reprogram and experiment with its ma-
jor components) provides a realistic platform on which
to perform further ATM switch and network experi-
ments.

The first results represent the raw throughput of the
port controller for ATM traffic. In the first iterations of
the switch, throughput was found to be a problem and
the firmware was redesigned to lower the number of
non-cached memory reads and the processor upgraded
to one with a write buffer to reduce the impact of writes
(the ARM cache is write through so this was relevant
for all memory writes). Full line rates are now achiev-
able with sufficient processor power left to enable the
implementation of more complex queueing algorithms.

The second two experiments demonstrate the perfor-
mance of the port controller when acting as a gateway
from Fairisle to both Ethernet and the Cambridge Fast
Ring (CFR). Both are found to be limited by the ap-
propriate network interface, rather than the forwarding
process to Fairisle.

5.1 Port controller throughput

Initial throughput measurements for the Fairisle port
controller (version 2) were reported in [16], from which
the FPC2 data is taken. The data rates are presented
in terms of the data portion of the cells only — the
100Mbit/sec transmission line rate is equivalent to a
maximum data rate of 87.3 Mbit/sec.

Figure 5 shows the performance for various burst
sizes — no traffic shaping or policing has been applied to
these streams. The first plot indicates the sustainable
data rate at which the processor spent all its time in
the FIQ routine, the second the absolute maximum
rate achievable.
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Figure 5: FPC2 throughput performance

As expected, for small bursts the overhead of enter-
ing and leaving the interrupt routine reduces the rate
at which the CPU first becomes always busy. For larger



blocks the interrupt overhead becomes amortised and
the full rate is obtained. For small blocks at the maxi-
mum rate, the artifacts are caused by beating between
the arriving cells, the cell-synchronous switching fabric
and the arbitration of accesses to the cell buffer mem-
ory.

The measurements show that the early port con-
trollers (using the ARM 3 processor) were capable of
a sustained throughput of 73.4Mbit/sec. One of these
port controllers, which was equipped with an a-silicon
ARM 600 processor (8 entry write buffer), was ob-
served to be limited in throughput at 82.5Mbit/sec by
a firmware restriction in “Xi3”, the CPU having cycles
to spare.
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Figure 6: FPC3 processor usage

The version three port controllers (ARM 610 pro-
cessor) are capable of forwarding at the full line rate
(87.3Mbit/sec). The information presented in figure 6
demonstrates for various loadings and burst sizes the
percentage of time the CPU is idle; the idle time is de-
fined to be that which is available for Wanda threads,
once interrupt dispatching and other kernel activities
have been taken into consideration.

Depending on the burst size, the CPU starts to be
entirely consumed by the FIQ routines in the range 40
to 50Mbit/sec. Hence, although the port controller is
capable of handling the entire line rate, above the 40
to 50Mbit/sec rate, the interrupt dispatching overhead
prevents any time from being made available to Wanda
processes. The significant difference between 2-cell and
the other burst sizes are artifacts caused by the inabil-
ity of the source (a DECStations 5000/25) to achieve
the required cell-scheduling granularity.

5.2 Routeing to other networks
Using the standard I/O bus for the ARM chip set it
is possible to interface to other networks; in particular

we have used Ethernet and the CFR.

5.2.1 ETHERNET

Forwarding between the Ethernet and Fairisle is per-
formed by a user level Wanda process dealing in pack-
ets. All data movements between the user level buffers
and the Ethernet or ATM interface is performed in
software. In the case of packets to and from the ATM
interface, the segmentation and reassembly functions
are also performed by software.

The sustainable throughput achievable is approx-
imately 6.7Mbit/sec; previous experiments indicate
that the limiting factor is the bandwidth available for
the copy between memory and the Ethernet card which
only provides a 16bit wide interface.

The increased availability of low cost ATM interfaces
for workstations now means that we have moved to
using these platforms for interconnecting IP hosts on
Ethernet to those on the ATM network.

5.2.2 CAMBRIDGE FAST RING

As part of the Super-JANET demonstration phase, a
Pandora system situated at University College London
was connected to the CFR based Pandora infrastruc-
ture at Cambridge via a pair of Fairisle switches and
an intermediate 34Mbit /sec PDH circuit carrying ATM
cells. The experimental setup is shown in figure 7.

Again the performance was limited by the I/O
throughput of the network interface, at about
3Mbit/sec®. However this was sufficient to run the
Pandora video applications between the sites.

While the CFR is also an ATM network with identi-
cal concepts of virtual channels and signalling to those
of Fairisle, the CFR predates B-ISDN standardisation
and uses a 38 byte cell (32 payload, 4 header, 2 CRC).
In this case forwarding is performed by mapping the
payloads of 3 CFR cells to that of 2 “standard” cells
in the obvious manner. To be implemented effectively
this requires some form of “push” indication — irrespec-
tive of adaptation layer. For this we used the AALS
user-user indication for all adaptation layers.

Hence, the bit was found to be useful in implement-
ing a buffering strategy, but at a point in the net-
work which has (and should have) no comprehension of
adaptation layers. The bit was simply used as a generic
indication of the “recovery unit”; in this sense, it can be
used both as an aid to implementing timely buffering
strategies, and more importantly to implement more
effective discard algorithms in switches [13].

The CFR has since been decommissioned.

5The 3Mbit/sec limit is due to the CFR media access chip
possessing only a single cell receive fifo.
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6 Conclusions

6.1 The Hardware Software Divide in the Port
Controller

The port controller design in Fairisle was aimed at pro-
ducing an experimental platform rather than a prod-
uct. This has led to a very flexible implementation in
which functionality, once understood, can be placed in
hardware (or more accurately, Xilinx firmware). VCI
lookup, free queue management, retry strategy and
telemetry have all migrated from the processor to hard-
ware. We expect this trend to continue and in partic-
ular believe that low level queue management in hard-
ware will follow.

The question then arises as to the need for the pro-
cessor. We see the processor engaged in longer time
scale activities, possibly altering the parameters of the
low level queue management as conditions within the
switch change. Thus, the processor need not be any
faster than it is now for the line speeds we are dealing
with, and as functionality migrates out we can see it
being able to cope with higher transmission rates.

As mentioned above, maintaining a tight feedback
loop between the contention point and queueing point
within the port controller is important. This is a key
part of the motivation for migrating functionality into

the hardware. This may have direct parallels in host
interface design — the response time of the host soft-
ware may require that certain protocol functions be
implemented in the host interface (e.g. any link based
flow control).

The flexible implementation of the port controller
has also allowed us to use the port controllers as traffic
sources and monitoring devices whose in band func-
tionality is completely configurable.

6.2 Input Buffering

We were originally attracted to input buffering because
of its inherent simplicity. We were well aware of its per-
formance limitations, but were not overly concerned
since we were considering the local area where utilisa-
tion is not a key factor. Oft cited head of line blocking
was also not a concern since we were building port con-
trollers that did not have to perform fifo queueing and
a fabric that could run faster than the line rate.

This decision was clearly partly born of necessity;
it allowed us, with our rather modest resources, to
build a switch. There is no custom silicon in the de-
sign and although there are Xilinx devices, none is
over 10,000 gates. However, our own experience and
the example of AN2 has led us to believe that input
buffered switches can achieve output buffered perfor-
mance; this is achieved without the excessive hardware
requirements of output buffered switches but rather by
the application of more effective arbitration and/or the
fabric speedups possible due to simplicity.

6.3 The Bit
A number of years ago a campaign was mounted to gain
the acceptance of a new adaptation layer by CCITT,
now known as AAL5. Part of this campaign was to ac-
quire a bit (or more accurately code points) in the ATM
cell header for communication of the frame boundaries.
Within Fairisle we have taken the approach of defin-
ing the semantics of the bit such that it is consistent
with the current AAL5 usage and makes sense in the
AAL1/2 and AAL3/4 cases. This has proved useful in
dealing with congestion conditions and our experience
has shown that it is straightforward to implement in
switches.

6.4 Future Work
The British Telecom sponsored extension to the Fairisle
Project will be using the flexibility of the implementa-
tion to run a number of experiments with artificial and
real traffic. We will be able to measure quantities such
as cell loss and cell variation extremely accurately on
a switch by switch basis.

One frustrating aspect has been the inability to ap-
ply significant load to the network with real data that
has quality of service requirements — running the net-



work as 20% load doesn’t stress anything. Some as-
pects of this are now becoming simpler as high perfor-
mance network interfaces become commercially avail-
able; however, real experiments are still frustrated by
the lack of quality of service in the operating systems
within the end-systems.

The flexible manner in which processing functions
are distributed will also allow us to experiment with
new signalling architectures, in particular those based
on ODP. We are particular interested in the relation-
ship between signalling, security and third party setup.
This is also the forward looking direction being taken
by the ITU-T for release 2 and release 3 B-ISDN sig-
nalling. We are contributing to this effort in the hope
that we never have to implement Q.2931 / SSCOP...
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