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ABSTRACT

We study the use of overcomplete (also known as oversampled) subband expansions for multiple description coding.
The system proposed uses an overcomplete subband expansion (a subband expansion in which the number of subbands
is larger than the downsampling factor of each subband) followed by independent coding (quantization and coding) of
each of the subbands. The entire coding of each of the subbands is entirely contained within a single description. Using
analysis in the polyphase domain, we study finding frequency responses of optimal filterbanks and the rate allocation
across the subbands to minimize the end-to-end reconstruction error subject to a transmission rate constraint when
a distribution over channel states is known. A general analysis of the problem is given and results are shown for a
3× 2 expansion of a first-order autoregressive process.

Keywords: Multiple Description Coding, Overcomplete Subband Expansions, Oversampled Subband Expansions,
Overcomplete Linear Expansions, Frame Expansions, Joint Source-Channel Coding, Erasure Channel Coding

1. INTRODUCTION

Multiple description (MD) source coding is the problem of encoding a source {x[n]}L−1
n=0 into P separate binary

descriptions at rates R0, . . . , RP−1 bits such that any subset S of the descriptions may be received and together
decoded to an expected distortion DS commensurate with the total bit rate of S. Early papers on multiple description
coding are information theoretic and consider the problem of determining for P = 2 the set of rates and expected
distortions {(R0, R1, D0, D1, D0,1)} that are asymptotically achievable.1–5 More recent papers consider the problem
of designing practical multiple description quantizers, and their use over erasure channels.

The papers on practical MD quantization have so far taken three distinctly different approaches. In the first
approach, pioneered by Vaishampayan, MD scalar, vector, tree-structured vector, or trellis quantizers are designed
to produce the P descriptions using a generalized Lloyd-like clustering algorithm that minimizes the Lagrangian of
the rates and expected distortions R0, R1, D0, D1, D0,1.

6–8 In the second approach, pioneered by Wang, Orchard,
and Reibman, MD quantizers are constructed by separately describing (i.e., quantizing and coding) the N coefficients
of an N ×N block linear transform that has been designed to introduce a controlled amount of correlation between
the transform coefficients.9–13 In the third approach, pioneered by Goyal, Kovačević, and Vetterli, MD quantizers
are constructed by separately describing the N coefficients of an overcomplete N × K tight frame expansion.14,12

The correlating transforms approach and the overcomplete tight frame expansions are both extensions of standard
linear transform approaches to ordinary source coding. In particular the correlating transforms approach provides
redundancy across descriptions via a transform that is suboptimal for ordinary source coding and the overcomplete
linear expansion provides redundancy because of the fact that the N > K projections of a K dimensional vector
onto N vectors can never be independent.

The traditional extensions of linear transform coders in9–14 for multiple description coding were only made on
block based transform coders. However, many ordinary source coders using linear transforms employ subband
expansions rather than block based expansions for better compression efficiency. Examples include EZW15 and
SPIHT16 for image compression and MP3 for audio compression. Therefore, recent work by Yang et al.17,18 has
extended the use of block based correlating transforms to correlating subband expansions. The only constraint is
that the coding of each subband is entirely contained within a single description. The papers by Yang et al. find the
frequency responses of the filterbanks in order to minimize the end-to-end reconstruction error given a redundancy
constraint (i.e. the bitrate above the minimum required to code a source at a certain fidelity). This system has been
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(a) Traditional subband setup
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(b) Polyphase representation

Figure 1. Overcomplete subband expansion encoder.

further studied by Dragotti et al.19 to try to find the achievable region of rates and distortions for such a system. In
this paper, we present an extension of block based frame expansions to overcomplete subband expansions for multiple
description coding. The analysis presented by Yang et al. for optimization of a correlating subband expansion is
analogous to the optimization of the block based case10,13,11 by performing the analysis in the polyphase domain.
Similarly the optimization presented here is an extension from the block based case20 by performing the analysis in
the polyphase domain.

A general analysis for optimizing an overcomplete subband expansion for multiple description coding over an
erasure channel when the input is a Gaussian K-block stationary process is presented. Wide-sense K-block stationary
processes are those in which the first and second moments are invariant to shifts of K. Ordinary wide-sense stationary
(WSS) processes are a subset of block stationary processes. A general analysis of the problem is shown and specific
solutions are shown for a Gaussian first-order autoregressive process with a redundancy of 3/2.

In the optimization, analyzing infinite duration processes is difficult as convergence issues come up when taking
Fourier transforms. Thus, in this discussion, it is assumed that a sequence is formed by taking a finite duration
segment of length L from a real valued zero-mean WSS process, for asymptotically large L. Such an analysis is not
too restrictive since all real-world signals are finite duration. Plus the analysis holds for arbitrarily large segments,
as long as they remain finite. Since the process is WSS, the analysis remains the same regardless of which L samples
are taken, so without loss of generality we assume a source of the form x = {x[n] : n = 0, . . . , L− 1}.

2. SYSTEM SETUP

In MD coding using overcomplete subband expansions, a length L input signal x ∈ R
L is represented by a vector

y = F x ∈ R
NL/K , N > K, N/K ∈ Z. F is a so-called frame operator, whose NL/K rows {ϕ}

NL/K
i=1 span R

L. The
coefficients of y are encoded and transmitted in P descriptions. The decoder receives descriptions of only Pr,s ≤ P
descriptions after potential erasures, and reconstructs the signal x̂ from the received descriptions. The matrix F

is constrained to be a subband expansion and the encodings of each subband of y are constrained to be individual
descriptions. Constraining F to be a subband expansion reduces the degrees of freedom in the transform to NL
from NL2/K.

Such a system is shown in Figure 1. A source of length L, x = {x[n] : n = 0, . . . , L− 1} is first passed through
an overcomplete subband expansion (also known as an oversampled subband expansion) resulting in N subbands,
each of length L/K. Assume L is a multiple of K so that L/K is an integer. Let yi = {yi[n] : n = 0, . . . , L/K − 1},
i = 0, . . . , N−1 be the N subbands and let y = [y0 . . . yN−1]

T be a vector of the subbands with a discrete Fourier
transform vector (DFT) Y = {Y [m] : m = 0, . . . , L/K − 1} whose components are the Fourier coefficients of the
subbands. Each subband yi is independently coded using any reasonable method subject to a total rate constraint



of Bi bits, where the total rate constraint for coding of the source is given by

1

L

N−1∑

i=0

Bi ≤ B. (1)

The coding is typically lossy and thus there is a quantization noise associated with coding of the subbands. The
encoding portion of quantization specifies an interval in which the values lie, rather than the actual value. Let ỹ be
the geometric midpoint of these intervals and let q be a sequence of quantization noises defined as q = y − ỹ. Let
Q = {Q[m] : m = 0, . . . , L/K − 1} be an N dimensional vector of Fourier transforms of the quantization noises on
each subband.

The setup for performing the transform shown in Figure 1(a) is the “traditional” method for performing subband
decompositions. However for purposes of analysis, it is easier to use the equivalent polyphase representation as is
shown in Figure 1(b), where F̄ (z) is an N × K matrix. Details of polyphase representations can be found in.21

The relationship between F̄i(z) in Figure 1(a) and the components of the matrix F̄ (z) in Figure 1(b) is given by

F̄i(z) =
∑K−1

k=0 zk(F̄ (zK))ik . The xi = {xi[n] : n = 0, . . . , L/K − 1}, i = 0, . . . , K − 1 are defined to be the K
polyphase components of the signal given by xi[n] = x[Kn + i], with a vector of polyphase components given by
x = [x0 . . . xK−1] with Fourier transform X = {X[m] : m = 0, . . . , L/K − 1}. Then, if F is defined to be a

sequence of matrices with F = {F [m] : m = 0, . . . , L/K − 1} with (F [m])ik = (F̄ (ej2π m
L/K ))ik , where it is assumed

that any K rows of F [m] form an invertible matrix for all m, then the following relationships can be obtained

Y [m] = F [m]X[m] (2)

X[m] = F +[m]X[m]; (3)

F + is the pseudo-inverse of F given by F + = (F HF )−1F H (only true since F has full rank), where F H is the
complex-conjugate transpose of F .

The decoder receives a subset of these N subbands as is shown in Figure 2 depending on the channel state and
reconstructs an estimate of the source, x̂. The subset of subbands received is dependent on the state of the channel
S. In a P description system, the number of possible channel states is 2P since this is the number of subsets of
descriptions that can be received by the decoder (each description can be received or not). The channel state S is
given by the decimal representation of a P -bit vector bP−1 . . . b1b0, where bi = 1 if the ith description is received and
0 else. For example, for P = 3, S = 5 = (101)2 implies that descriptions 2 and 0 are received and description 1 is
not. We write Ds to be the distortion when the channel is in state s, s = 0, 1, . . . , 2P − 1 and Ri to be the rate of
the ith description, i = 0, 1, . . . , P − 1. Also, we define Is to be the set of indices of the received descriptions in state
s, so that I5 = {0, 2}. The cardinality of this set, Nr,s = |Is|, gives the number of received descriptions in state s.
The distortion is taken to be the mean-square error and can be calculated by conditioning on the channel state s as

D =
1

L

L−1∑

n=0

E[(x[n]− x̂[n])2]

=
2P−1∑

s=0

ps
1

L

L−1∑

n=0

E[(x[n]− x̂[n])2|S = s]

︸ ︷︷ ︸

Ds

, (4)

where ps is the probability of being in state s. Using Parseval’s theorem on the vector of polyphase components of
the source, Ds can be written

Ds =
1

L

L/K−1
∑

m=0

E[‖X[m]− X̂[m]‖2|S = s]
︸ ︷︷ ︸

Es[m]

.

Es is obviously a function of the channel state s, the source distribution of x, the coding method used to code the
subbands, and the decoder. If e is defined to be the reconstruction error as e = x − x̂, with a vector of polyphase
components e = x− x̂ with Fourier transform E, then we can simply write Es[m] = E[EH [m]E[m]|S = s].

Before obtaining a value for Es, we make the following assumptions.



1. x is taken by windowing a length L segment from a K-block wide-sense stationary (WSS) Gaussian process,
w, with a diagonal power spectral density matrix Sww(f). If w is a K-block stationary process with full power
spectral density matrix (not necessarily diagonal), then we can always find a principle component filterbank so
that the output has the desired characteristics. For large L, we define Sxx as the power spectrum matrix for
the vector of polyphase components as the covariance matrix of the Fourier coefficients of x. Thus

Sxx[m] = E[X [m]XH [m]] ≈ Sww

(
m

L/K

)

.

2. Regardless of the coding method used to code the subbands, we assume that the power spectrum of the
quantization noise of the subbands is given by

E[Q[m]QH [m]] =








E[Q2
0[m]] 0 · · · 0
0 E[Q2

1[m]] · · · 0
...

...
. . .

...
0 0 · · · E[Q2

N−1[m]]








, (5)

with
E[Q2

i [m]] ≈ cE[|Yi[m]|2]2−2Ri[m], (6)

where Ri[m] is a sequence with
L/K−1
∑

m=0

Ri[m] = Bi, (7)

E[|Yi[m]|2] is the variance of the mth Fourier coefficient of the ith subband, and c is a constant depending on
how the subbands are coded. E[|Yi[m]|2] is given by

E[|Yi[m]|2] =
(

F [m]E[X[m]XH [m]]F H [m]
)

ii

=

K−1∑

k=0

‖Fik[m]‖2E[|Xk[m]|2]. (8)

Equation (5) is a high-rate approximation. If the input is a K-block stationary process as in the first assumption,
then each subband is a WSS process. Thus, a reasonable method of encoding the subbands is to use scalar
quantization on the coefficients of a real DFT with rate Ri[m] used to code the mth coefficient of the ith
subband. This is because the Fourier coefficients of a segment from a Gaussian WSS process are approximately
independent. If the Fourier coefficients are optimally entropy coded after scalar quantization, c = πe/6. The
assumption of a diagonal matrix is only approximately true since the matrix would only be diagonal if all
N subbands were independent. However, even when they are not, as is the case in overcomplete subband
expansions, this assumption is approximately correct at high rate as was shown by Bennett.22 In fact,
practically, we will constrain the optimization to cover only those transforms for which this is true; at high rate
this will be all subband expansions in which no two rows of F [m] are identical at any m.

3. The decoder is assumed to use linear reconstruction techniques as presented in Section 2.1. Although this is
suboptimal in cases when the number of received subbands is larger than K, such an assumption makes the
analysis of distortion tractable.

2.1. Decoder

The decoder receives quantized versions of some of the subbands as is shown in Figure 2, i.e. it knows the intervals
in which the received subband coefficients lie. We partition Y into received and not received subbands. Let Y r,s

denote the Nr,s dimensional vector of the Fourier transform of the received subbands when the channel is in state s
and let Y nr,s denote the Nnr,s = N −Nr,s dimensional vector of erased subbands in state s, so that

ΠsY =

[
Y r,s

Y nr,s

]

=

[
F r,s

F nr,s

]

X = ΠsFX,
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Figure 2. Overcomplete subband expansion decoder.

where Πs is an N ×N permutation matrix, F r,s is an Nr,s ×K matrix, and F nr,s is an Nnr,s ×K matrix. Since Is

is an Nr,s dimensional set of indices of received components, the jth subband in Y r,s is the Is(j)th subband in Y .

Let v be a vector formed by concatenating all L/K Fourier coefficients of the N subbands as as v = [Y [0] . . .Y [L/K−
1]]T with the subvector corresponding to the received subbands denoted as vr,s in state s. The decoder knows that
the coefficients in the received subbands lie within a certain interval so that

vr,s ∈ C.

Let ṽr,s be the midpoint of the region C. Thus if the decoder is to minimize E[(x[n] − x̂[n])2] at each n, then the
decoder is given by x̂opt[n] = E[x[n]|vr,s ∈ C]. Equivalently since the Fourier transform is a linear orthonormal
transform, the optimal decoder can find the Fourier transform coefficients of the vector of polyphase components as
X̂opt[m] = E[X [m]|vr,s ∈ C]. Furthermore since the Fourier coefficients of a Gaussian WSS process are assumed to
be independent, the optimal decoder is given by

X̂opt[m] = E[X[m]|Y r,s[m] ∈ C[m]]. (9)

In cases in which Nr,s ≥ K, we can write

X̂opt[m] = F +
r,s[m]E[F r,s[m]X[m]|Y r,s[m] ∈ C[m]]

= F +
r,s[m]E[Y r,s[m]|Y r,s[m] ∈ C[m]], (10)

since F +
r,s[m]F r,s[m] = INr,s . However for cases in which Nr,s > K, the geometric midpoint of the region is not a

good estimate for the expected value of the received transform coefficients14,23 resulting in inconsistent estimates.
That is E[Y r,s|Y r,s ∈ C] 6= Ỹ r,s. But in order to make the distortion analysis tractable, we use the geometric
midpoint to calculate the reconstruction as

X̂[m] = F +
r,s[m]Ỹ r,s[m]. (11)

Since the channel states in which Nr,s ≥ K have significantly lower distortions than cases in which Nr,s < K,
hopefully such an assumption will not affect the overall performance averaged over all states. Furthermore, hopefully
a system that minimizes the distortion for such a decoder will also perform reasonably for one that obtains optimal
reconstructions. In cases in which Nr,s < K, (10) does not hold since F +

r,sF r,s 6= INr,s . However the optimal decoder
can be obtained by partitioning the source into a component in the subspace corresponding to the received subbands
and another one in the subspace orthogonal to this one. That is,

X[m] = F +
r,s[m]Y r,s[m] + (F⊥

r,s[m])HY r,s[m], (12)

where F⊥
r,s is a (K−Nr,s)×K dimensional matrix whose rows form an orthonormal basis for the subspace orthogonal

to the span of the rows of F r,s. By definition of F⊥
r,s, it is easy to see that

F⊥
r,s(F

⊥
r,s)

H = INnr,s F⊥
r,sF

H
r,s = 0Nnr,s×Nr,s F⊥

r,sF
+
r,s = 0Nnr,s×Nr,s . (13)



Using (9) and (12), the optimal decoder is given by

X̂[m] = F +
r,s[m]Ỹ r,s[m] + (F⊥

r,s[m])HE[Ỹ
⊥

r,s[m]|Y r,s[m] = Ỹ r,s[m]]. (14)

If the process is Gaussian, then the expected value in the second portion of this expression can be easily calculated
to be

E[Y ⊥
r,s|Y r,s = Ỹ r,s] = F⊥

r,sSxxF H
r,s(F r,sSxxF H

r,s)
−1Ỹ r,s.

3. SYSTEM OPTIMIZATION

To minimize the overall distortion subject to a rate constraint, we need to derive expressions for Es[m] in each state.
Again, there are two cases to consider: Nr,s ≥ K and Nr,s < K since the assumption of how the decoder operates is
different in each of these cases.

When Nr,s ≥ K the decoder has information to localize the input source to a finite volume cell. Since X[m] =
F +

r,s[m]Y r,s[m],

E[m] = F +
r,s[m]Qr,s[m]. (15)

Thus

Es[m] = E[EH [m]E[m]] (16)

= tr
(

F +
r,s[m]E[Qr,s[m]QH

r,s[m]](F +
r,s[m])H

)

. (17)

Since Q[m]QH [m] is assumed to be diagonal for all m,

Es[m] = c

Nr,s−1
∑

i=0

(

(F +
r,s[m])HF +

r,s[m]
)

ii
E[|YIs(i)[m]|2]2−2RIs(i)[m]. (18)

When Nr,s < K, then there is not enough information to localize the source to a finite volume cell. Using (12)
and (14), the error spectra can be written

E[m] = F +
r,s[m]Qr,s[m] + (F⊥

r,s[m])H
(

Y ⊥
r,s[m]−E[Y ⊥

r,s[m]|Y r,s[m] = Ỹ r,s[m]]
)

. (19)

Thus

Es[m] = E[EH [m]E[m]] (20)

= tr
(

F +
r,s[m]E[Qr,s[m]QH

r,s[m]](F +
r,s[m])H

)

+ E[‖Y ⊥
r,s[m]−E[Y ⊥

r,s[m]|Y r,s[m] = Ỹ r,s]‖
2], (21)

which has been obtained using (19) and simplified using (13). The first portion of the distortion is due to the
quantization in the received subbands and the second component is due to the out of subspace components. Again
if the process is Gaussian, the second portion can be calculated using

E[‖Y ⊥
r,s[m]−E[Y ⊥

r,s[m]|Y r,s[m]]‖2] = tr
[

F⊥
r,s[m]Sxx[m](F⊥

r,s[m])H −

F⊥
r,s[m]SxxF H

r,s[m]
(

F r,s[m]Sxx[m]F H
r,s[m]

)−1

F r,s[m]Sxx[m](F⊥
r,s[m])H

]

.

Again, since E[Q[m]QH [m]] is assumed to be diagonal,

Es[m] =



c

Nr,s−1
∑

i=0

(

(F +
r,s[m])HF +

r,s[m]
)

ii
E[|YIs(i)[m]|2]2−2RIs(i)[m]



 +

tr
[

F⊥
r,s[m]Sxx[m](F⊥

r,s[m])H −

F⊥
r,s[m]SxxF H

r,s[m]
(

F r,s[m]Sxx[m]F H
r,s[m]

)−1

F r,s[m]Sxx[m](F⊥
r,s[m])H

]

. (22)



Using (18) and (22) in (4) gives the distortion that is to be minimized over the subband expansion polyphase
matrix, F [m], and the rate allocation, Ri[m], for each of the Fourier coefficients in the subbands i = 0, . . . , N − 1,
m = 0, . . . , L/K − 1. From (18) and (22), the distortion can be rearranged and written

D =
1

L

L/K−1
∑

m=0

Eb[m]

︸ ︷︷ ︸

Db

+
1

L

L/K−1
∑

m=0

Enb[m]

︸ ︷︷ ︸

Dnb

(23)

where Db is the portion that can be minimized by both the transform and rate allocation and Dnb is the portion
that can only be minimized by choice of transform. In particular Eb[m] is

Eb[m] =

N−1∑

i=0

αi[m]Syiyi [m]2−2Ri[m], (24)

where
αi[m] = c

∑

s∈S(i)

ps

(

(F +
r,s[m])HF +

r,s[m]
)

I−1
s (i)I−1

s (i)
, (25)

where S(i) is the set of states in which subband i is received and I−1
s (i) gives the position of the ith subband of Y

in Y r,s when the channel is in state s. The term Enb[m] can be written

Enb[m] =
∑

s∈S

tr
[

F⊥
r,s[m]Sxx[m](F⊥

r,s[m])H −

F⊥
r,s[m]Sxx[m]F H

r,s[m]
(

F r,s[m]Sxx[m]F H
r,s[m]

)−1

F r,s[m]Sxx[m](F⊥
r,s[m])H

]

,

where S is the set of states in which Nr,s < K.

3.1. Optimal Rate Allocation

First consider the problem of optimal rate allocation. The problem of optimal bit allocation is to minimize

Db =
1

L

L/K−1
∑

m=0

N−1∑

i=0

αi[m]Syiyi [m]2−2Ri[m],

subject to the rate constraint. Using (1) and (7), the overall rate constraint is

1

L

N−1∑

i=0

L/K−1
∑

m=0

Ri[m] ≤ B.

The constrained problem is turned into an unconstrained problem using a Lagrangian formulation and minimizing,

J =

L/K−1
∑

m=0

N−1∑

i=0

[

αi[m]Syiyi [m]2−2Ri[m] + λRi[m]
]

, (26)

where λ is chosen to meet the rate constraint. Differentiating with respect to Rj [l] and setting the derivatives
∂J/∂Rj [l] = 0 for j = 0, . . . , N − 1, l = 0, . . . , L/K − 1 and solving for the rate to meet the rate constraint gives

Ri[m] =
BK

N
+

1

2
log2






αi[m]Syiyi [m]
(
∏L/K−1

l=0

∏N−1
j=0 αj [l]Syjyj [l]

)K/LN




 . (27)

This gives an optimal Db,opt of

Db,opt =
N

K





L/K−1
∏

l=0

N−1∏

j=0

αj [l]Syjyj [l]





K/LN

2−2BK/N (28)

This solution is only valid provided all Ri[m] ≥ 0, which will be the case at high rates. The rate constraint for coding
of the individual subbands can easily be obtained by using (7).



3.2. Optimal Filterbank

Transform optimization involves finding the filterbanks to minimize Db,opt + Dnb. Although an actual filterbank
will most likely have constraints of filter length and causality that will impose constraints on the allowed frequency
responses of the filter, we will assume no such constraints in this optimization. Furthermore, there might be additional
constraints for using fast decoding algorithms such as constraining the filterbank to be a concatenation of two
orthonormally related filterbanks.23,24 These are also not considered in this optimization.

The constraints imposed on the filterbanks are those that do not hinder its performance. Namely, we assume
that the polyphase matrix of frequency responses, F [m], is assumed to have

∑K−1
k=0 (F [m])2ik = 1, and (F [m])ik real,

for i = 0, . . . , N − 1, m = 0, . . . , L/K − 1. The assumption of the matrix having unit norm at all m is not restrictive
since arbitrary scaling will only change the stepsizes in relation to the variance. The bit allocation, Ri[m], would
not change. Although not rigorously proven, the assumption of having real coefficients in the matrix also seems
intuitively correct since all terms in the distortion are only a function of the magnitude of the values in the matrix F

and its pseudo-inverse in various channel states. Furthermore, we will restrict the optimization over transforms for
which (5) is approximately true by limiting the minimum angular separation between the rows of F at each m.24

The actual minimization of Db,opt+Dnb is difficult and there seems to be no closed form solution for it. Therefore,
we propose using a descent algorithm by varying a single parameter at a time in round robin fashion. All other
parameters remain fixed and the parameter is varied over a certain range to find the value that gives the minimum
distortion. In this case, the NL parameters are the values for (F [m])ij , i = 0, . . . , N − 1, j = 0, . . . , K − 1,
m = 0, . . . , L/K− 1. Although one could iterate directly over all these parameters, this is computationally intensive
since the value for Fij [m] affects the overall distortion at all m, since it affects Eb,opt at all m. This is because
Eb,opt[m] is a constant given by

Eb,opt[m] = N2−2BK/N

L/K−1
∏

l=0

N−1∏

j=0

(
αj [l]Syjyj [l]

)K/LN
, m = 0, . . . , L/K − 1.

For optimization purposes, it would be easier to optimize the transform at each m independently. For this purpose,
we propose a two step iteration.

To jointly optimize the rate allocation and the transform, we define the rate allocation across frequencies as

R̄[m] =

L/K−1
∑

i=0

Ri[m]. (29)

Then, the following two iteration steps are used.

1. Given F [m], find the optimal rate allocation, Ri[m] using (27). From Ri[m] calculate R̄[m] using (29).

2. Given a rate allocation across frequencies, R̄[m], find the optimal rate allocation across the subbands and
optimal transform.

The first step is straightforward. For the second step, to find the optimal transform and new rate allocation across
the subbands, we minimize Db,opt + Dnb subject to (29). Note that the way R̄ is calculated, it always meets the
overall rate constraint so long as (29) is met. To minimize the overall distortion subject to the rate constraint, a
Lagrangian is formed at each m as

J =

N−1∑

i=0

αi[m]Syiyi [m]2−2Ri[m] + λRi[m],

where λ is chosen to meet (29) at each m. Again, setting partial derivatives equal to 0 and solving for the rate gives

Ri[m] =
R̄[m]

N
+

1

2
log2

αi[m]Syiyi [m]
∏N−1

j=0

[
αj [m]Syjyj [m]

]1/N
.



Using this rate allocation gives a distortion of

Db,opt =
1

L

L/K−1
∑

k=0

N





N−1∏

j=0

αj [m]Syjyj [m]





1/N

2−2R̄[m]/N . (30)

Thus the optimal Eb[m] is given by

Eb,opt[m] = N





N−1∏

j=0

αj [m]Syjyj [m]





1/N

2−2R̄[m]/N . (31)

Now, since the value of αi[m] and Syiyi [m] only depend on the value of the transform at that m, given R̄[m], the value
of Eb,opt[m] only depends on the value of the transform at m. Thus, to minimize D, we can independently minimize
the value of Eb,opt[m] + Enb[m] for all m over the choice of transforms. The problem of minimizing Eb,opt[m] + Enb[m]
at each m can be done by using a decent algorithm at each m. However, now the convergence is much quicker as
there are only NK parameters to find at each m independently of other m.

4. CODING OF FIRST ORDER AUTOREGRESSIVE PROCESS

Suppose the input sequence, x, is taken from a WSS process, w with autocorrelation function , Rww and power
spectral density Sww. Then w is definitely a block-WSS process with a period of K. The vector of polyphase
components, w gives a vector sequence with an autocorrelation matrix Rww, where

(Rww)ik[n] = E[wi[n0 + n]w∗k[n0]]

= Rww[Kn + i− k]. (32)

And, the power spectral density matrix is given by Sww, where

(Sww)ik(f) =

∞∑

n=−∞

Rww[Kn + i− k]e−j2πfn

=
ej2πf(i−k)/K

K

K−1∑

m=0

Sww

(
f + m

K

)

ej2πm(k−i)/K . (33)

In order to find the optimal overcomplete subband expansion for such a process, first, we have to find a principle
component filter bank and then find the optimal overcomplete subband expansion for the output of the PCFB.

In this section, we consider the optimization of a first order autoregressive Gaussian process with K = 2 and
N = 3. A first order autoregressive process with correlation coefficient r and variance σ2 has an autocorrelation
function given by

Rww[n] = σ2r|n|.

and a power spectral density

Sww(f) =
σ2(1− r2)

|1− re−j2πf |2
.

Using (32), with K = 2 gives
Rw0w0 [n] = Rw1w1 [n] = Rww[2n] = σ2r|2n|

Rw0w1 [n] = Rw1w0 [−n] = Rww[2n− 1] = σ2r|2n−1|.

Using (33), we get

Sw0w0(f) = Sw1w1(f) =
1

2

[

Sww

(
f

2

)

+ Sww

(
f + 1

2

)]

=
σ2(1− r4)

|1− r2e−j2πf |2
,

Sw0w1(f) = S∗w1w0
(f) =

e−jπf

2

[

Sww

(
f

2

)

+ ejπSww

(
f + 1

2

)]

=
σ2r(1− r2)(1 + e−j2πf )

|1− r2e−j2πf |2
.
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Figure 3. Principle component filter bank (left) and power spectral density of polyphase components after principle
component filter bank (right).

Since Sww is not diagonal we have to find a principle component filter bank Ū (z) such that the output is
a block-WSS random process with diagonal power spectral density. The eigenvalues of the power spectral den-
sity matrix are found to be λ(f) = Sw0w0(f) ± |Sw0w1(f)|, with eigenvectors v(f) = ±S∗w0w1

(f)/|Sw0w1(f)|, with
Sw0w1(f)/|Sw0w1(f)| = ejπf for f ∈ [−1/2, 1/2) and −ejπf for f ∈ [1/2, 3/2) with a period of 2. The filters in the
PCFB for a first-order autoregressive process turn out to be brickwall lowpass and highpass filters as is shown in
Figure 4.1. A 3× 2 subband expansion combines the lowpass and highpass components into 3 subbands.

If a finite segment of the autoregressive process is put through the principle component filter bank, the output of
the principle component filter bank will be a sequence x whose polyphase components will have Fourier transforms
X with

E[X[m]X[m]H ] = Sxx[m] ≈

[
λ0

(
m
L

)
0

0 λ1

(
m
L

)

]

. (34)

If the optimal filter bank for coding of x over the lossy channel is found to be F , then the optimal filter bank for the
finite segment of the autoregressive process will be given by F U .

4.1. Results

We consider the coding of a length L = 800 segment from a first-order autoregressive process with r = 0.8 and
σ2 = 1, with K = 2, N = 3, P = 3, and B = 6 bits. The channel is assumed to lose subbands independently
with a loss probability of ε. With this channel model the distribution over channel states is given by, p0 = ε3,
p1 = p2 = p4 = ε2(1− ε), p3 = p5 = p6 = ε(1− ε)2, and p7 = (1− ε)3. The plots of Sx0x0 and Sx1x1 after the principle
component filter bank are shown in Figure 4.1.

The polyphase components of the optimal filter bank, F , are shown for ε = 0.05 and ε = 0.95 in Figure 4. At
low loss rates, F [m] is approximately a real harmonic frame at all m. A row permutation of a 3 × 2 real harmonic
frame is given by

H3×2 =





cos(π/3) sin(π/3)
cos(0) sin(0)

cos(π/3) sin(−π/3)



 . (35)

At high loss rates, F [m] is repeating the subband with the higher variance. However at high frequencies, from
Figure 4.1, it can be seen that Sxx becomes white at high m and thus even at high loss rates, F [m] is a real
harmonic frame at high frequencies.

The filter banks combining the principle component filter bank with the optimal overcomplete filter bank as FU

and then obtaining the filterbanks for the traditional setup of Figure 1(a) are shown in Figure 5 for ε = 0.1, 0.3, 0.7, 0.9.
At low loss rates, the combined filter bank consists of filters that are brickwall lowpass and highpass filters followed by
a real harmonic frame. As the loss rate increases the filter bank becomes one in which the lowpass filter is repeated.

Empirical tests show the performance of the system to be within 4% of the theoretical performance. We compare
the empirical performance of the optimal filter bank with that of a principle component filter bank followed by a real
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Figure 4. Polyphase components of optimal filter banks for ε = 0.05 (left) and ε = 0.95(right).
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harmonic frame, i.e. F [m] = H3×2 for all m. Such an overcomplete expansion is easy to implement since it is not
a function of m and thus it can be implemented by simply taking coefficients from all the subbands at a particular
spatial location and applying the overcomplete expansion. The results as a function of number of descriptions received
is shown in Figure 6. The overall empirical distortion as a function of loss rate is also shown in Figure 6 along with
the relative decrease in distortion by using an optimized frame.

5. CONCLUSION

The use of overcomplete (oversampled) subband expansions for multiple description coding was studied. Ideas from
optimization of block based frame expansions were applied to optimize the rate allocation across the subbands and
the subband expansion in the polyphase domain. Results for optimal overcomplete subband expansions for a first-
order autoregressive Gaussian process were also provided. The performance of an optimized subband expansion
was compared to an unoptimized one and empirical results were obtained to verify the performance. However, for
practical use the subband expansions must have simpler implementations by constraining them to be a concatena-
tion of orthonormally related critically sampled filter banks with finite-impulse response (FIR) forward and inverse
implementations. This is left as future work.
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