
1

P2P Research and Reality: Some Preliminary Thoughts
Zheng Zhang

Microsoft Research Asia
zzhang@microsoft.com

Abstract
In this paper, we start by recounting some of the myth and truth of P2P systems. Getting a good understanding of those issues
are good starting points. Even more important will be performing researches that understand the fundamental properties, and
that actually build the environment and forester the creativition of new applications.

1. Introduction

Relatively speaking, P2P research has a short history.
However, the amount of world-wide efforts that has
been devoted to this topic is impressive. As a result, the
underpinning theories are getting mature. What is also
encouraging is that researchers from China have also
made considerable strikes.

Nevertheless, running systems and applications that
utilize the latest theoretical results are relatively lacking.
Without building real systems and conduct solid ex-
periments to obtain further insights, it will be hard to
push to the next stage.

In this paper, we give a very brief overview of P2P sys-
tems (Section 2), and then suggest some research topics
and approaches (Section 3). The paper is hastily put
together, the references are not complete, and many
points might be wrong. Nevertheless, we hope this will
be enough to get the discussion going.

2. A simplified view of P2P systems

One definition of a P2P system is that it is decentralized
and symmetric, from a functional perspective of each
participating entity. An ideal P2P system, however,
should be decentralized and asymmetric – one in which
more powerful and able peers are providing more, but
the system as a whole does not necessarily rely on these
nodes to function correctly.

There are many ways to slice and dice different P2P
overlays. Let us try a thought-experiment to show that,
after all, things are not that different.

Figure 1: The simplest P2P DHT – a ring

Figure 1 illustrates the simplest DHT (distributed hash
table, or structured P2P) where nodes line up in a 1-
dimension logical space, with every node remembering
a constant set of neighbors to each side in what’s known
as the leafset. Generalizing it to d-dimension torus, one
gets CAN[13] with O(N1/d) routing performance. Add-

ing O(logN) directional fingers whose targeting nodes
are spaced with exponentially increasing logical gaps in
between yields proposals such as Chord[18], Pastry[16]
and Tapestry[24], with O(logN) routing performance.
Adding denser fingers gains higher performance, all the
way to O(1) steps with O(N) fingers, but typically with
additional maintenance overhead.

There are several important things to pay attention to.
First, the most rudimentary data structure in the so-
called structured P2P is the leafset, not the fingers. Fin-
gers are there purely as routing optimizations, with the
sweet-spot being O(logN) fingers. While leafset mainte-
nance has to employ failure detection mechanisms (i.e.
periodical heartbeats), there exists different approaches
to update fingers. For instance, the 1-hop DHT[1],
XRing[21] and SmarBoa[8] all use multicast to update
fingers. Second, the quality – instead of quantity, of the
state (e.g. leafset and finger table) matters more. Stale
entries will result in routing timeout which may cost 10x
more than a routing hit. Third, depending on the appli-
cation scenarios and contexts, we should pragmatically
choose different DHTs. For an environment where
churn is low or when scale is limited, 1-hop DHT makes
perfect sense. There has not been a one-size-fit-all pro-
posal, and doubtful if there is one with low complexity.
Finally, a perfect 1-hop presents an interesting design
point, in that it is equivalent to an eventually reliable
global membership service, and can be a building block
for large and scalable distributed system.

If we now remove the leafset and let the fingers be bi-
directional, we arrive at what is known as unstructured
P2P. The distribution of fingers in unstructured P2P can
be different, and so are the construction, tuning and
maintenance of the fingers. Arguably, any Gnutella-like
protocol may be significantly simpler, compared with
any of the well-known structured P2P proposals. The
absence of leafset dictates that the only semantic that
can be reasonably supported is query flooding. For the
most up-to-date research results, please refer to [7].

From the above discussion, it is clear that we always
deal with a graph. Whether there is a leafset to guaran-
tee the integrity of the space is the key differentiation
point. Hence, one can build a structured P2P but use it
as an unstructured P2P [3], or augment an unstructured

x
p q

zone(x)=(ID(p), ID(x)]

R0(x)

2r+1

2

P2P with a leafset to provide DHT functionality. The
latter is something we have been working on.

3. Potential research topics

3.1 Understanding the fundamentals

Before we build applications, it is fruitful to get a sense
of what guarantees that the underlying infrastructure
provides and whether they meshes well with the re-
quirements of the applications, if at all. The “pick two”
paper [2] is compelling precisely because it pointed out
quantitatively (even with a back-of-envelop approach)
what many have suspected, that it is impossible to build
a large-scale and highly-available P2P storage system
when peers constantly come and go (e.g. Oceanstore[9],
Pond[15], CFS[4], PAST[17] and Ivy[11]), which is a
hopeful candidate that will amount to nothing short of a
breakthrough if successfully built.

To give some other examples, considering tuning prox-
imity of overlay neighbors. The goal is to “align overlay
topology with that of underlay (IP)” so as to obtain bet-
ter performance with lower tax on network resource. It
is also well-known, however, that this comes with a
hefty price when resilience of the network is considered,
especially for unstructured P2P overlays. Aggressive
tuning will tend to make the system more fragile, in that
the connectivity can be broken if nodes (effectively)
connecting islands of nodes leave or are under attack. If
the system relies on some nodes more than others, this
indeed violates the P2P spirit to start with. The amount
of work proposing various tuning techniques far out-
weighs those that do take that into account; and we still
lack the knowledge of just when pushing for perform-
ance will become dangerous.

Problems in structured P2P can be even more. Given a
key k in the logical space, two queries that lookup k will
return different nodes that owns k and this can happen
because: 1) node dynamism – the space that k resides
has undergone ownership change and 2) there are net-
work jitters such that different nodes can simultaneously
claim ownership of k. From a system research perspec-
tive, it is an interesting question as what properties that
even the simplest get/put APIs hold: for instance what is
the bound and guarantee of liveness and safety?

It is possible to adopt some practical measures to build
applications without digging deep into the system prop-
erties. For instance, it is a popular proposal to keep the
invariant such that a number of consecutive copies are
kept following the root of k, as exemplified by
DHash[18]. Yet, as [2] points out, enforcing this invari-
ant for the ambitious design point (dynamic, large-scale,
highly-available and wide-area) can be prohibitively
expensive. Therefore, a more practical approach may be

the one advocated by Tapestry[24], in which the upper-
layer application manages the availability of the objects
all by itself, and uses the P2P as a repository of soft-
state data storing pointers. The pointers need to be con-
tinuously refreshed.

From the above discussion, it then becomes clear that it
is not interesting – and indeed can be quite misleading,
to talk about overlay maintenance overhead in an iso-
lated fashion: if one adopts the leafset replication ap-
proach, the traffic dedicated to maintaining the invari-
ance must be taken into account; if, instead, we adopt
the approach of soft-state pointers, then the republishing
traffics are to be included. These traffics are indeed not
part of the overhead maintaining the overlay topology,
but exist if the infrastructure is to serve any state for the
application. It is not very meaningful to talk about the
overlay maintenance overhead alone[10]. If it turns out
that traffic to maintain application state greatly domi-
nates that of maintaining the topology, then the practi-
cality of the structured P2P is questionable.

Optimizing the routing performance (by picking up
neighbors carefully) and reducing the base of O(logN)
routing are well-understood. It will make minor contri-
bution to propose yet another (or several more) O(logN)
DHT. The larger challenge is to figure out the best per-
formance given that heterogeneity is well explored. Yet
this pales in comparison to the need of understanding
what “overhead” truly is, its magnitude and impacts.

3.2 Pulling through new applications

3.2.1 Switching the context

Today’s P2P researches have mostly rooted in wide-
area context, and this is due to several factors: the spec-
tacular rise and fall of Napster (which gave birth to sev-
eral more content sharing systems), and the distributed
system research community’s quest to find a much
tougher environment and hence more challenging re-
search topics.

This is not the only context that P2P technologies
should be applied to. Switching the context means that
we can and should let go some of the more popular sce-
narios and drive towards the core of the technology
offerings. For instance, the fundamental attributes that
P2P have brought to the table – self-organizing, self-
managing and self-healing etc., are extremely useful to
reducing the management overhead of large IT infra-
structures’ TCO (total cost of ownership). As the
ROC[12] (Recovery Oriented Computing) initiative
points out, it is time to focus away from performance
and onto manageability and reliability. In a world where
commodity components will prevail to be the building
blocks of large systems, failure will be norm rather than

3

exception [6]. Thus, challenges and opportunities are
abundant even in the machine-room scenario: how to
easily plug-in a new box and let it be integrated as part
of the system, and with what speed? How to detect a
failed component and make sure that no data are lost?
As data will surely outlive the hardware, how to gradu-
ally drop in new generations of hardware and let the
older ones phase out, all without a glitch to the users?
These are hard and interesting problems which have
immediate and practical implications. We have de-
signed and implemented several self-organizing distrib-
uted storage that can scale from one box to 100K
[22][23], and our experience has taught us at least one
thing: that it is not at all trivial to build such a system.

We can also switch the context to the wireless and sen-
sor network setting, where the challenges are quite dif-
ferent: range and reach matters, proximity matters, and
probably most important to all – power consumption
matters. Again, self-organizing is key. While it is not
immediately clear how current P2P research results can
bear fruits, we are aware of several works that apply the
O(logN) DHT and routing to these settings. These ap-
proaches are somewhat misled because that if one is
willing to let go the sexy O(logN) label, it becomes ob-
vious that mesh and hence a 2-d CAN would have
worked out the best.

3.2.2 Sharing content responsibly

The number one P2P application is content-sharing.
While many works have devoted to improving the per-
formance and search, the larger question is whether the
sharing is amenable to the call of being responsible in a
human community. If we are to question what are being
shared, a large fraction of content will be pornographic
materials, pirate copies of entertainment clips and soft-
ware. This is problematic.

It will be easy to duck one’s head under the sand and
pretend that these are not the problems that the research
community ought to solve; it would be even somewhat
“heroic” to come up with novel techniques that would
get around the counter-measures: the record industry
has mounted some trivial but effective attacks by simply
polluting the system with corrupted copies. Granted, the
P2P content sharing has its place as a high-tech mirror
of old-times underground circulation of anti-censorship
materials1. Yet, sharing content in a responsible way has
far-reaching implications: if software and other intellec-
tual properties are not protected, so won’t be the future
of the budding Chinese software industry.

1 In the 70’s of last century in China, this is the primary form
of passing poetry and other literature bits – by hand and un-
derground.

It can be very difficult technically, but doing content-
sharing and yet allowing some degree of DRM (digital
right management) seems ripe to be tackled. Probably
the first that is required is to define the appropriate sce-
nario. The P2P content sharing can continue to serve as
the distribution venue, should we then add enforcement
in the content itself, or in the P2P system to give the
possibility of tracking the flow? The ideal case should
be a win-win situation: those who contributed to the
content (artists and the record industry, software ven-
dors) get their due, and the users find it easy to obtain
the trial copies and, if they indeed enjoy them, pay as
they go. Notice that this does not necessarily break the
functionality of anti-censorship support: authors can
anonymize their contents, but it ought to be possible to
track those who injected pirated copies.

3.2.3 Harness the computing power

seti@home is a telling story of how many idle resources
there are and how much power lies therein: it is the big-
gest computer on the planet.

Thus, P2P computing continues to be an interesting
research area. It will be great to find the next
seti@home application. However, for system research-
ers, the more interesting problem is to find applications
that are not embarrassingly parallel to start with. For
example, there are many large scale simulations that
require a process to communicate to a set of other proc-
esses. It is then a mundane requirement that these
neighbors are connected among them with low-latency
and high-throughput links. This requires techniques of
positioning and finding peers, and which has so far not
been used much (DHT of course uses this heavily, but
again DHT itself lacks applications). There are several
other non-technical factors: the source of the computa-
tion should have the incentive to publish the initial set
of data free to every participants, and the results of
computation is of some interest and value to the general
public – think of real-time weather prediction in a tight
schedule or, in the other extreme, into a very long future
(e.g. 5 years ahead); think of rendering of the evolution
history, or simulating a human brain.

3.2.4 Finding other applications

In his keynote speech at SOSP’99, Butler Lampson
stated that “the biggest mistake of the system research
in the past 10 years is not having invented the Web.” So,
what can we do right this time?

We should enable a testbed which is open for everyone
to try. If we are not that creative to foresee the new
breed of applications, let us at least contribute by setting
up the stage. In summer of this year, MSR-Asia and
NSFC will co-found a wide-area, windows-based test-

4

bed called ImagineONE.net. With Butler’s reminder in
mind, the codename can not be more appropriate. This
testbed is not to be built in one day, and there are many
hard problems to solve. They range all the way from
resource-isolation issue on a single machine among
simultaneous experiments, to appropriating distributed
resources per single experiment, and to building other
necessary tools. Researchers in China have already ac-
cumulated many great experiences doing Grid comput-
ing, it is hopeful that some of the technologies can be
leveraged.

There are many interesting P2P applications in the web
scenario, such as searching[14], spam fighting [25],
even troubleshooting [19]. It will also be useful to see if
P2P can be used as sensors in the network to detect
worms and viruses. Collaborative and interactive learn-
ing, P2P gaming etc. are also interesting scenarios.

3.3 Learning through building

It is encouraging to see that researchers in China have
quickly caught up. However, most results are math-
ematic deductions or simulations. Also, topics such as
O(logN) DHT that are getting increasingly lukewarm
acceptance in international research community are still
pursued with great rigor. What is perhaps more trou-
bling of all is that there is a lack of concerted effort to
actually build and deploy P2P applications. With or
without an open platform such as ImagineONE.net, it is
important to realize that we only learn through building,
especially at this stage when theories are getting mature,
and that we don’t get to the next stage of insights unless
we engage more hands-on practice.

When we do build the system, it is critical to perform
concrete experiments to mine the lessons and insights,
and make traces and logs available for the community at
large. Platforms such as MAZE from Beijing University
are ripe for this kind of activities.

4. Conclusion

For system research, theory and practice go hand-in-
hand. Furthermore, practice to build application de-
pends on the practice to build infrastructure, and there is
a reverse dependencies between the two. P2P systems
are fun to study and build, and it is time to examine and
take actual steps to cover these grounds.

References

[1] Gupta, A., Liskov, B., and Rodrigues, R. “One Hop Lookups
for Peer-to-Peer Overlays”, HotOS IX, 2003, Hawaii, USA.

[2] C. Black, R. Rodrigues, “High Availability, Scalable Storage,
Dynamic Peer Networks: Pick Two”, HOTOS’03.

[3] M. Castro, M. Costa and A. Rowstron, "Should we build
Gnutella on a structured overlay?" HotNets-II, Cambridge, MA,
USA, November 2003.

[4] F. Dabek, M.F. Kaashoek, D. Karger, et al, “Wide-area coop-
erative storage with CFS”, SOSP’01.

[5] S. Frolund, A. Merchant, Y. Saito, et al, “FAB: enterprise
storage systems on a shoestring”, HOTOS’03.

[6] S. Ghemawat, H. Gobioff, S.T. Leung, “The Google File Sys-
tem”, SOSP’03.

[7] Krishna P. Gummadi et al. “The Impact of DHT Routing Ge-
ometry on Resilience and Proximity,” Sigcomm’03.

[8] J. Hu, M. Li et al. “Smartboa: Constructing p2p Overlay Net-
work in the Heterogeneous Internet using Irregular Routing
Tables,” IPTPS’04

[9] J. Kubiatowicz, D. Bindel, Y. Chen, et al, “OceanStore: An
Architecture for Global-Scale Persistent Storage”, ASPLOS’00.

[10] R. Mahajan, M. Castro and A. Rowstron, "Controlling the
Cost of Reliability in Peer-to-peer Overlays", IPTPS'03

[11] A. Muthitacharoen, R. Morris, T. M. Gil, et al, “Ivy: A
Read/Write Peer-to-peer File System”, OSDI’02.

[12] D. Patterson, A. Brown, P. Broadwell, et al, “Recovery Ori-
ented Computing (ROC): Motivation, Definition, Techniques,
and Case Studies”, UCB Technical Report No. UCB/CSD-02-
1125.

[13] S. Ratnasamy, P. Francis, M. Handley, et al, “A Scalable Con-
tent-Addressable Network“, SIGCOMM’01.

[14] Reynolds, P. and Vahdat, A.. “Efficient Peer-to-Peer Key-
word Searching”. Middleware, 2003.

[15] S. Rhea, P. Eaton, D. Geels, et al, “Pond: the OceanStore
Prototype”. FAST '03

[16] A. Rowstron, P. Druschel, "Pastry: Scalable, Distributed Ob-
ject Location and Routing for Large-scale Peer-to-peer Sys-
tems", IFIP/ACM Middleware’01.

[17] A. Rowstron and P. Druschel, "Storage management and cach-
ing in PAST, a large-scale, persistent peer-to-peer storage util-
ity", SOSP’01.

[18] I. Stoica, R. Morris, D. Karger, et al, “Chord: A Scalable Peer-
to-peer Lookup Service for Internet Applications”, SIG-
COMM’01.

[19] Wang J. H. et al. “Friends Troubleshooting Network: Towards
Privacy-Preserving, Automatic Troubleshooting”. In IPTPS’04

[20] Q. Xin, E. L. Miller, T. Schwarz, et al, “Reliability Mecha-
nisms for Very Large Storage Systems”, Mass Storage Sys-
tem’03.

[21] Z. Zhang, Q. Lian, Y. Chen, “XRing a Robust and High-
Performance P2P DHT”, Technical Report.

[22] Z. Zhang, S.D. Lin, Q. Lian, et al, “RepStore: A Self-
Managing and Self-Tuning Storage Backend with Smart-
Bricks”, ICAC’04.

[23] Z. Zhang et al. “BitVault: a Highly Reliable Distributed Data
Retention Platform”, paper under submission.

[24] B.Y. Zhao, J. Kubiatowicz, A.D. Josep, “Tapestry: An Infra-
structure for Fault-tolerant Wide-area Location and Routing”,
UCB Technical Report No. UCB/CSD-01-1141.

[25] Zhou, Feng et al. “Approximate Object Location and Spam
Filtering on Peer-to-Peer Systems”. Middleware 2003.

