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1 Introduction

This work is motivated by our desire to establish eye contact for video conferencing on desktops. Our
plan of attack is to track the head pose so we could intelligently warp a face image to generate a virtual
view that preserves eye contact. To be successful, the tracking must (a) be able to track all six degrees of
freedom accurately, which eliminates the use of some real-time tracking methods based simplistic schemes
such as color histogram or ellipsoidal £tting; and (b) operates in real time, which places considerable con-
straints on the type of processing that can be performed. Our approach to reconciling these two seemingly
incompatible requirements is to incorporate a detailed individualized three-dimensional head model with
stereoscopic analysis.

The use of a detailed three-dimensional head model provides the tracker with rich geometric knowledge
about the subject, thus (a) we are able to track the head pose with very few feature points, and (b) we can
label each tracked feature with a semantic meaning. Such semantic information allows us to deal gracefully
with occlusions and facial deformations. On the other hand, stereoscopic analysis provides the important
epipolar constraint. By applying this constraint to the stereo image pair, we can easily reject most outliers
(false matches from monocular tracking), thus avoiding using robust estimation techniques which tend to
be more time-consuming. Furthermore, as to be demonstrated in the experimental section, using an extra
camera dramatically improves the tracking accuracy and simpli£es the tracking algorithm. We recognize
that there is a tradeoff between the equipment requirement and the tracking accuracy. With today’s wide
availability of inexpensive video cameras and increasingly better support of streaming video in the OS
level, we believe that using a stereovision system (two or even more cameras) is well justi£ed.

2 Related Works

There is a wide variety of work related to 3D head tracking. Virtually all work on face tracking takes
advantage of the constrained scenario: instead of using a generic tracking framework which views the
observed face as an arbitrarily object, a model-based approach is favored, which incorporates knowledge
about facial deformations, motions and appearance [6]. Based on the tracking techniques, we classify
previous works into the following categories:

Optical ¤ow: Black and Yacoob [3] have developed a regularized optical-¤ow method in which the
head motion is tracked by interpretation of optical ¤ow in terms of a planar two-dimensional patch. Basu
et al. [2] generalized this approach by interpreting the optical ¤ow £eld using a 3D model to avoid the
singularities of a 2D model. Better results have been obtained for large angular and translational motions.
However, their tracking results were still not very accurate; as reported in their paper, angular errors could
be as high as 20 degrees. Recently, DeCarlo and Metaxas [6] used optical ¤ow as a hard constraint on a
deformable detailed model. Their approach has produced excellent results. But the heavy processing in
each frame makes a real-time implementation dif£cult. Other ¤ow based methods include [4, 8].

Features and Templates: Azarbeyajani and Pentland [1] presented a recursive estimation method
based on tracking of small facial features like the corners of the eyes or mouth using an extended Kalman-
Filter framework. Horprasert [7] presented a fast method to estimate the head pose from tracking only £ve
salient facial points: four eye corners and the nose top. Other template-based methods include the work of
Darrell et al. [5], Saulnier et al. [11], and Tian et al. [13]. The template-based methods usually have the
limitation that the same points must be visible over the entire image sequence, thus limiting the range of
head motions they can track.

Skin Color: Yang et al. [15] presented a techniques of tracking human faces using an adaptive stochas-
tic model based on human skin color. This approach is in general very fast. The drawback is that it is
usually not very accurate, thus is not suf£cient for our applications.

The work by Newman et al. [10] is related to our work, and falls in the ”Features and Templates”
category. It also uses a stereo vision system, although the con£guration is different (we use a vertical setup
for higher disambiguation power in feature matching). Their tracking technique is also different. They £rst
take three snapshots (frontal, 45◦ to the left, and 45◦ to the right), and reconstruct up to 32 features selected
on the face. Those 3D points, together with the templates extracted from the corresponding snapshots
around each feature, are used for face tracking. In our case, we use a much more detailed face model, and
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features are selected at runtime, making our system more robust to lighting change, occlusion and varying
facial expression.

3 System Overview
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Figure 1: Model-based Stereo 3D Head Tracking System

Figure 1 illustrates the block diagram of our tracking system. Images are captured by a stereo camera
pair. In our experimental setup, we use two digital video cameras mounted vertically, one on the top
and the other on the bottom of the display screen. They are connected to a PC through 1394 links. We
calibrate these cameras using the method in [17]. We choose the vertical setup because it provides higher
disambiguation power in feature matching. Matching ambiguity usually involves facial features such as
eyes and lip contours aligned horizontally. The user’s personalized face model is acquired using a rapid
face modeling tool [9]. Both the calibration and model acquisition require little human interaction, and a
novice user can complete these tasks within 15 minutes. Furthermore, they only need to be done once per
user per £xed setup.

The entire tracking process is automatic, except for the initialization, which requires the user to select
seven landmark features in the £rst pair of frames. The subject is required to remain relative still and
maintain a neutral expression. Using these marked features, the face model is registered with the images.
From then on, our system tracks the optical ¤ow of salient features, rejects outliers based on the epipolar
constraint, and updates the head pose on a frame-by-frame basis. A feedback loop supplies fresh salient
feature points at each frame to make the tracking more stable under various conditions. Furthermore, an
automatic tracking recovery mechanism is also implemented to make the whole system even more robust
over extended period of time.

4 Stereo 3D Head Pose Tracking

We now provide more details of our tracking system.
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4.1 Models

The face model we use is a triangular mesh consisting approximately 300 triangles. Each vertex in the
mesh has semantic information, i.e., eye, chin, etc. We build a personalized face model for each user using
the rapid face modeling tool developed by Liu et al. [9]. Figure 2 shows a sample face model1. Note that
although the face model contains other properties such as textures, we only use the geometric and semantic
information in our tracking system.

Figure 2: A sample face model. The wireframe on the right reveals the arti£cial eyes and month, they are
not being used in our tracking system.

A camera is modeled as a pinhole, and its intrinsic parameters are captured in a 3 × 3 matrix. The
intrinsic matrices for the stereo pair are denoted by A0 and A1, respectively. Without loss of generality, we
use the £rst camera’s (Camera 0) coordinate system as the world coordinate system. The second camera’s
(Camera 1) coordinate system is related to the £rst one by a rigid transformation (R10, t10). Thus, a point
m in 3D space is projected to the image planes of the stereo cameras by

p = φ(A0m) (1)

q = φ(A1(R10m + t10)) (2)

where p and q are the image coordinates in the £rst and second camera, and φ is a 3d-2D projection

function such that φ(
[

u
v
w

]
) =

[
u/w
v/w

]
. We use the method in [17] to determine (A0,A1,R10, t10).

The face model is described in its local coordinate system. The goal of our tracking system is to
determine the rigid motion of the head (head pose) in the world coordinate system. The head pose is
represented by a 3 rotation matrix R and a 3D translation vector t. Since a rotation only has three degrees
of freedom, the head pose requires 6 parameters.

4.2 Stereo Tracking

Our stereo head tracking problem can be formally stated as follows:

Given a pair of stereo images I0,t and I1,t at time t, two sets of matched 2D points S0 = {p=[u, v]T } and
S1 = {q=[a, b]T } from that image pair, their corresponding 3D model points M = {m=[x, y, z]T },
and a pair of stereo images I0,t+1 and I1,t+1 at time t+1,

1Their system does not try to model the ears and the back of a head.
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determine (i) a subset M ′ ⊆ M whose corresponding p’s and q’s have matches, denoted by S′
0 = {p′}

and S′
1 = {q′}, in I0,t+1 and I1,t+1, and (ii) the head pose (R, t) so that the projections of m ∈ M ′

are p′ and q′.

We show a schematic diagram of the tracking procedure in Figure 3.
We £rst conduct independent feature tracking for each camera from time t to t + 1. We use the KLT

tracker [12] which works quite well. However, the matched points may be drifted or even wrong. Therefore,
we apply the epipolar constraint to remove any stray points. The epipolar constraint states that if a point
p = [u, v, 1]T (expressed in homogeneous coordinates) in the £rst image and a point q = [a, b, 1]T in the
second image correspond to the same 3D point m in the physical world, they must satisfy the following
equation:

qT Fp = 0 (3)

where F is the fundamental matrix 2 that encodes the epipolar geometry between the two images. In fact,
Fp de£nes the epipolar line in the second image, thus Equation (3) means that the point q must pass
through the epipolar line Fp, and vice versa.

In practice, due to inaccuracy in camera calibration and feature localization, we cannot expect the
epipolar constraint to be satis£ed exactly. For a triplet (p′,q′,m), if the distance from q′ to the p′s
epipolar line is greater than a certain threshold, this triplet is considered to be an outlier and is discarded.
We use a distance threshold of three pixels in our experiments.

After we have removed all the stray points that violates the epipolar constraint, we update the head pose
(R, t) so that the re-projection error of m to p′ and q′ is minimized. The re-projection error e is de£ned
as

e =
∑

i

(‖p′
i − φ(A0(Rmi + t))‖2+

‖q′
i − φ(A1[R10(Rmi + t) + t10])‖2

)
(4)

We solve (R, t) using the Levenberg-Marquardt algorithm, and the head pose at time t is used as the initial
guess.

4.3 Feature Regeneration

After the head pose is determined, we replenish the matched set S′
0, S

′
1 and M ′ by adding more good

feature points. We select a good feature point based on the following three criteria:

• Texture: The feature point in the images must have rich texture information to facilitate the tracking.
We £rst select 2D points in the image using the criteria in [12], then back-project them back onto the
face model to get their corresponding model points.

• Visibility: The feature point must be visible in both images. We have implemented an intersection
routine that returns the £rst visible triangle given an image point. A feature point is visible if the
intersection routine returns the same triangle for its projections in both images.

• Rigidity: We must be careful not to add feature points in the non-rigid regions of the face, such as
the month region. We de£ne a bounding box around the tip of the nose that covers the forehead,
eyes, nose, and cheek region. Any points outside this bounding box will not be added to the feature
set.

This Regeneration scheme improves our tracking system in two ways. First, it replenishes the features
points lost due to occlusions or non-rigid motion, so the tracker always has a suf£cient number of features
to start with in the next frame. This improves the accuracy and stability. Secondly, it alleviates the problem
of tracker drifting by adding fresh features at every frame.

2The fundamental matrix is related to the camera parameters as F = A1
−T [t10]×R10A0

−1.
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Figure 3: Model-based stereo 3D head tracking
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4.4 Tracker Initialization and Auto-Recovery

The tracker needs to know the head pose at time 0 to start tracking. We let the user interactively select seven
landmark points in each image, from which the initial head pose can be determined. We show an example
of the selected feature points in Figure 4, where the epipolar lines in the second image is also drawn. The
manual selection does not have to be very accurate. We automatically re£ne the selection locally to satisfy
the epipolar constraint.

The initial selection is also used for tracking recovery when the tracker loses tracking. This may happen
when the user moves out of the camera’s £eld of view or rotates her head away from the cameras. When
she turns back to the cameras, we prefer to continue tracking with minimum or no human intervention.
During the tracker recovery process, the initial set of landmark points is used as templates to £nd the best
match in the current image. When a match with a high con£dence value is found, the tracker continues the
normal tracking.

Figure 4: Manually selected feature points; the epipolar lines are overlayed on the 2nd image.

Furthermore, we also activate the auto-recovery process whenever the current head pose is close to
the initial head pose. This further alleviates the tracker drifting problem, the accumulative error is reduced
after tracker recovery. This scheme could be extended to include multiple templates at different head poses.
This is expected to further improve the robustness of our system.

5 Experiment Results

We have implemented our tracking algorithm using C++ under the MS Windows environment and tested
with live real data. Our current implementation runs in real-time (20-30fps) on a PC with a 1.5 GHz
Pentium 4 CPU. We will here present results from three test sequences, all of which were collected with
a resolution of 320 × 240 at 30 frame per second. The £rst two sequences were captured with a pair of
inexpensive web cameras while the last one was captured with a pair of SONY digital video camera (DFW-
L500). The SONY camera produces better images under low lighting conditions. Under bright light, the
image quality from web cameras is comparable to the SONY camera. Thus we shot all of them under
relatively bright lighting. Consequently, there is no noticeable difference of tracking quality among these
sequences.

Figures 5 shows some results of the £rst sequence (A). The 3D face mesh is projected according to
the estimated head pose and is overlayed on the input stereo images. This sequence contains large head
rotations close to 90 degrees. This type of out-of-plane rotation is usually dif£cult for head tracking, but
we can see that our algorithm determines accurately the head pose, thanks to the 3D mesh model.

The second sequence (B), shown in Figure 6, contains predominantly non-rigid motion (dramatic facial
expressions). We also show the original images to better appreciate the non-rigid motion. Because we
classify the face into rigid and non-rigid areas and use features from the rigid areas, our tracker is insensitive
to non-rigid motion.

Figure 7 shows the last sequence (C) in which large occlusions and out-of-plane head motions fre-
quently appear. Our system maintains accurate tracking throughout the entire 30- second sequence.
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Figure 5: Stereo tracking result for Sequence A (320x240 @ 30 FPS). Images from the £rst camera are
shown in the upper row, while those from the second camera are shown in the lower row. From left to right,
the frame numbers are 1, 130, 325, 997, and 1256.

Figure 6: Stereo tracking result for Sequence B (320x240 @ 30 FPS); The £rst row shows the input images
from the upper camera. The second and third rows show the projected face model overlayed on the images
from the upper and lower camera, respectively. From left to right, the frame numbers are 56, 524, 568, 624,
and 716.

Figure 7: Stereo tracking result for Sequence C (320x240 @ 30 FPS) The frame numbers, from left to right
and from top to bottom, are 31, 67, 151, 208, 289, 352, 391, 393, 541, 594, 718, and 737.
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5.1 Validation

For the purpose of comparison, we have also implemented a model-based monocular tracking technique.
Like most prevalent methods, we formulate it as an optimization problem that seeks to minimize the re-
projection errors between the projected 3D features points and the actual tracked features. Using the same
notions as in (4), the monocular cost function is de£ned by

em =
∑

i

‖p′
i − φ(A0(Rmi + t))‖2 (5)

We solve the optimization problem using the Levenberg-Marquardt method.
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Figure 8: A comparison between monocular and stereo tracking in terms of the estimated velocity of head
motion. Results from Sequence A, B, and C are shown from top to bottom.

We run the monocular tracking algorithm over the three sequences. Since we do not know the ground
truth of head motions, it is meaningless to compare the absolute values from the two algorithms. Instead,
we compare the approximate velocity ṽ = ‖ti+1 − ti‖/δt. The head motion is expected to be smooth,
and so is the velocity curve. We plot the velocity curves of the three sequences in Figure 8. The x-axis
is the frame number and the y-axis is the speed (inches/frame). The velocity curve computed using the
monocular algorithm is plotted in red, while that from the stereo in blue. In the red curves, there are several
spikes that well exceed the limit of normal head motion (a maximum cap of 3 inches/frame is put in the
plots; some of the spikes are actually higher than that). We suspect that they indicate that tracking is lost
or the optimization is trapped in a local minimum. On the other hand, the blue curves have signi£cant
less or even no spikes. The only spikes in blue curves are in the £rst sequence (A), which indeed contains
abrupt head motions. We also visually compare the results for Sequence C between the monocular and
stereo tracking method in Figure 9. These images are selected corresponding to the spikes in the red curve
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Figure 9: Visual Comparison of the monocular (upper row) vs. stereo (lower row) tracking method. From
left to right, the frame numbers are 54, 90, 132, and 207.

for sequence C. The top row shows the monocular tracking results and the second row shows the stereo
tracking results. For those in the £rst row, some obviously have lost tracking, while the others have poor
accuracy in head pose estimation.

We should point out that the plots only show the results up to when the monocular tracker reported that
the optimization routine failed to converge for 10 consecutive frames. On the other hand, the stereo tracker
continued until the end of the sequence. The rich information from the stereo cameras enables the stereo
tracker to achieve a much higher level of robustness than the monocular version.

6 Discussions and Conclusions

We have presented a robust method for real-time 3D face tracking using stereovision. The combined
use of a detailed 3D head model with stereoscopic analysis allows accurate full 3D head pose estimation
in the presence of partial occlusions and dramatic facial deformations, as demonstrated with several real
sequences. Furthermore, we have compared our method against a monocular tracking method. Experiment
results have shown signi£cant improvements in both robustness and accuracy.

There are still places we want to improve, however. One of them is the way to deal with facial defor-
mations. In our current work, we use a simple £xed classi£cation of rigid and non-rigid facial regions. A
dynamic classi£cation, according to actual facial expression, would be preferred.

Looking into the future, techniques that automatically locating the face and its various feature points
[16, 14] can be integrated to initialize the tracker, and then the entire system will be fully automatic. With
rapidly reduced cost of video cameras, we expect to £nd its use in a variety of applications from multimedia
user interfaces to video coding.
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