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Abstract 

Most memory corruption attacks and Internet worms follow a familiar pattern known as the control-data attack. 

Hence, many defensive techniques are designed to protect program control flow integrity. Although earlier work did 

suggest the existence of attacks that do not alter control flow, such attacks are generally believed to be rare against 

real-world software. The key contribution of this paper is to show that non-control-data attacks are realistic. We 

demonstrate that many real-world applications, including FTP, SSH, Telnet, and HTTP servers, are vulnerable to 

such attacks. In each case, the generated attack results in a security compromise equivalent to that due to the control-

data attack exploiting the same security bug. Non-control-data attacks corrupt a variety of application data including 

user identity data, configuration data, user input data, and decision-making data. The success of these attacks and the 

variety of applications and target data suggest that potential attack patterns are diverse. Attackers are currently 

focused on control-data attacks, but it is clear that when control flow protection techniques shut them down, they 

have incentives to study and employ non-control-data attacks. This paper emphasizes the importance of future 

research efforts to address this realistic threat. 

 

1 Introduction 

Cyber attacks against all Internet-connected computer 

systems, including those in critical infrastructure, have 

become relentless. Malicious attackers often break into 

computer systems by exploiting security 

vulnerabilities due to low-level memory corruption 

errors, e.g., buffer overflow, format string 

vulnerability, integer overflow, and double free. These 

vulnerabilities not only are exploited by individual 

intruders, but also make systems susceptible to 

Internet worms and distributed denial of service 

(DDoS) attacks. Recipe-like attack-construction 

documents [2][46] widely available on the Internet 

have made this type of attack widely understood.  

Most memory corruption attacks follow a similar 

pattern known as the control-data attack: they alter the 

target program’s control data (data that are loaded to 

processor program counter at some point in program 

execution, e.g., return addresses and function pointers) 

in order to execute injected malicious code or out-of-

context library code (in particular, return-to-library 

attacks). The attacks usually make system calls (e.g., 

starting a shell) with the privilege of the victim 

process. A quick survey of the CERT/US-CERT 

security advisories [11][47] and the Microsoft Security 

Bulletin [26] shows that control-data attacks are 

considered the most critical security threats.  

Because control-data attacks are currently dominant, 

many defensive techniques have been proposed against 

such attacks. It is reasonable to ask whether the current 

dominance of control-data attacks is due to an 

attacker’s inability to mount non-control-data attacks
1
 

against real-world software. We suspect that attackers 

may in general be capable of mounting non-control-

data attacks but simply lack the incentive to do so, 

because control-data attacks are generally easier to 

construct and require little application-specific 

knowledge on the attacker’s side. If this is indeed true, 

when the deployment of control flow protection 

techniques makes control-data attacks impossible, 

attackers may have the incentive to bypass these 

defenses using non-control-data attacks.  

The emphasis of this paper is the viability of non-

control-data attacks against real-world applications. 

The possibility of these attacks has been suggested in 

previous work [9][42][48][52]. However, the 

applicability of these attacks has not been extensively 

studied, so it is not clear how realistic they are against 

real-world applications.  

                                                      
1 Other terms are used to refer to attacks that do not alter 

control flow. For example, Pincus and Baker call them pure 

data exploits [29]. We call them non-control-data attacks 

mainly to contrast with control-data attacks. 
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The contribution of this paper is to experimentally 

demonstrate that non-control-data attacks are realistic 

and can generally target real-world applications. The 

target applications are selected from the leading 

categories of vulnerable programs reported by CERT 

from 2000 to 2004 [11], including various server 

implementations for the HTTP, FTP, SSH, and Telnet 

protocols. The demonstrated attacks exploit buffer 

overflow, heap corruption, format string, and integer 

overflow vulnerabilities. All the non-control-data 

attacks that we constructed result in security 

compromises that are as severe as those due to 

traditional control-data attacks — gaining the privilege 

of the victim process. Furthermore, the diversity of 

application data being attacked, including 

configuration data, user identity data, user input data, 

and decision-making data, shows that attack patterns 

can be very diverse. 

The results of our experiments show that attackers can 

indeed compromise many real-world applications 

without breaking their control flow integrity. We 

discuss the implications of this finding for a broad 

range of security defensive techniques. Our analysis 

shows that finding a generic and secure solution to 

defeating memory corruption attacks is still an open 

problem when non-control-data attacks are considered. 

Many available defensive techniques are not designed 

for such attacks: some address specific types of 

memory vulnerabilities, such as StackGuard [14], 

Libsafe [7] and FormatGuard [8]; some have practical 

constraints in the secure deployments, such as pointer 

protection [9] and address-space randomization [4][6]; 

and others rely on control flow integrity for security, 

such as system call based intrusion detection 

techniques [17][18][19][21][22][23][34][47], control 

data protection techniques  [10][35][42], and non-

executable-memory-based protections [1][41].  

In addition to demonstrating the general applicability 

of non-control-data attacks, this paper can also be 

viewed as a step toward a more systematic approach to 

the empirical evaluation of defensive techniques. With 

more and more promising defensive techniques being 

proposed, researchers have started to realize the 

necessity of empirical evaluation. In a survey paper 

[29], Pincus and Baker explicitly call for a thorough 

study of whether current defensive techniques “give 

sufficient protection in practice that exploitation of 

low-level defects will cease to be a significant 

elevation of privilege threat.”  

The rest of the paper is organized as follows: Section 2 

discusses the motivation for examining the 

applicability of non-control-data attacks. Section 3 and 

4 present our experimental work on constructing 

attacks by tampering with many types of security-

critical data other than control data. In Section 5, the 

results of the experiments are used to re-examine the 

effectiveness of a number of security defensive 

methods. The constraints and counter-measures of non-

control-data attacks are discussed in Section 6. We 

present related work in Section 7 and conclude with 

Section 8.  

 

2 Motivation  

While control-data attacks are well studied and widely 

used, the current understanding of non-control-data 

attacks is limited. Although their existence has been 

known (e.g., Young and McHugh [52] gave an example 

of such attacks in a paper published even before the 

spread of the notorious Morris Worm
2
), the extent to 

which they are applicable to real-world applications has 

not been assessed. Because non-control-data attacks 

must rely on specific semantics of the target 

applications (e.g., data layout, code structure), their 

applicability is difficult to estimate without a thorough 

study of real vulnerabilities and the corresponding 

application source code. Control-data attacks, on the 

other hand, are easily applicable to most real-world 

applications once the memory vulnerabilities are 

discovered.  

This paper is also motivated by results from a number 

of research papers investigating the impact of random 

hardware transient errors on system security. Boneh et 

al. [5] show that  hardware faults can subvert an RSA 

implementation. Our earlier papers [15][50] indicate 

that even random memory bit-flips in applications can 

lead to serious security compromises in network servers 

and firewall functionalities, These bit-flip-caused errors 

include corrupting Boolean values, omitting variable 

initializations, incorrect computation of address offsets 

and corrupting security rule data. Govindavajhala and 

Appel conduct a physical random fault injection 

experiment to subvert the Java language type system 

[20]. All these security compromises are very specific 

to application semantics, and not due to control flow 

altering. It should be noted, however, that the security 

compromises caused by hardware faults only suggest 

potential security threats, since attackers usually do not 

have the power to inject physical hardware faults to the 

target systems. Nevertheless, the most compelling 

message from these papers is that real-world software 

applications are very likely to contain security-critical 

non-control data, given that even random hardware 

errors can hit them with a non-negligible probability. 

                                                      
2 One of the attack vectors of the Morris Worm overruns a 

stack buffer in fingerd to corrupt a return address. This worm 

made control-data attacks widely known to the public. 



 

We realize that several types of memory corruption 

vulnerabilities, in particular, format string 

vulnerability, heap overflow, signed integer overflow, 

and double free vulnerabilities, are essentially memory 

fault injectors: they allow attackers to overwrite 

arbitrary memory locations within the address space of 

a vulnerable application. Compared to hardware 

transient errors, software vulnerabilities are more 

deterministic in that they always occur in the 

programs, They are also more amenable to attacks in 

that target memory locations can be precisely specified 

by the attacker. Based on these observations, we make 

the following claim:  

Applicability Claim of Non-Control-Data 

Attacks: Many real-world software applications 

are susceptible to non-control-data attacks, and 

the severity of the resulting security 

compromises is equivalent to that of control-data 

attacks.  

Since this is a claim about real-world software, we 

selected a number of representative applications and 

constructed non-control-data attacks in order to answer 

three major questions: (1) Which data within the target 

applications are critical to security other than control 

data? (2) Do the vulnerabilities exist at appropriate 

stages of the application’s execution that can lead to 

eventual security compromises? (3) Is the severity of 

the security compromises equivalent to that of 

traditional control-data attacks? 

 

3 Security-Critical Non-Control Data  

In preparation for the proposed experiment, we studied 

several network server applications, and experimented 

with many types of non-control data. The study 

showed that the following types of data are critical to 

software security:  

• Configuration data 

• User input  

• User identity data 

• Decision-making data 

These classes are not meant to be mutually exclusive 

or collectively complete, but rather, the classification 

organizes reasoning about possibilities of non-control-

data attacks. In this section, we explain each of these 

data types and why each is critical to security. For 

each data type, we describe the attack scheme(s) in 

Section 4 using real-world applications.  

As indicated earlier, identifying security-critical non-

control data and constructing corresponding attacks 

require sophisticated knowledge about program 

semantics. We currently rely on manual analysis of 

source code to obtain such knowledge. 

Configuration Data. Site-specific configuration files 

are widely used by many applications. For example, 

many settings of the Apache web server can be 

configured by the system administrator using 

httpd.conf. The administrator can specify locations of 

data and executable files, access control policies for the 

files and directories, and other security and 

performance related parameters [3]. Similar files are 

used by FTP, SSH, and other network server 

applications. Usually, the server application processes 

the configuration files to initialize internal data 

structures at the very beginning of program execution. 

At runtime, these data structures are used to control the 

behaviors of the application, and they rarely change 

once the server enters the service loop. Corrupting 

configuration data structures allows the attacker to 

change and even control the behaviors of the target 

application. In our study, we have focused on the file 

path configuration information. The file path directives 

define where certain data and executable files are 

located so that the server can find them at runtime. 

They also serve as access control policies. In the case of 

a web server, the CGI-BIN path directive is not only 

used to locate the CGI programs, but it also prevents a 

malicious client from invoking arbitrary programs, i.e., 

only a pre-selected list of trusted programs in the 

specified directory can be executed. If the configuration 

data can be overwritten through memory corruption 

vulnerabilities, an attacker can bypass the access 

control policy defined by the administrator.  

User Identity Data. Server applications usually require 

remote user authentication before granting access. 

These privileged applications usually cache user-

identity information such as user ID, group ID, and 

access rights in memory while executing the 

authentication protocol. The cached information is 

subsequently used by the server for remote access 

decisions. If the cached information can be overwritten 

in the window between the time the information is first 

stored in memory and the time it is used for access 

control, the attacker can potentially change the identity 

and perform otherwise unauthorized operations within 

the target system.  

User Input String.  Changing user input is another way 

to launch a successful non-control-data attack. Input 

validation is a critical step in many applications to 

guarantee intended security policies. If user input can 

be altered after the validation step, an attacker would be 

able to break into a system. We use the following steps 

in the attack: (1) first, use a legitimate input to pass the 



 

input validation checking in the application; (2) then, 

alter the buffered input data to become malicious; (3) 

finally, force the application to use the altered data. 

The attack described here is actually a type of 

TOCTTOU (Time Of Check To Time Of Use) attack: 

using legitimate data to pass the security checkpoint 

and then forcing the application to use corrupted data 

that it considers legitimate. In the existing literature, 

TOCTTOU is mainly described in the context of file 

race condition attacks. The attack studied here shows 

that the notion is applicable to memory data corruption 

as well.  

Decision-Making Data. Network server applications 

usually use multiple steps for user authentication. 

Decision-making routines rely on several Boolean 

variables (conjunction, disjunction, or combination of 

both) to reach the final verdict. No matter how many 

steps are involved in the authentication, eventually at a 

single point in the program control flow, there has to 

be a conditional branch instruction saying either yes or 

no to the remote client. Although such a critical 

conditional branch instruction may appear in different 

places in the binary code, it nonetheless makes the 

critical decision based on a single register or memory 

data value. An attacker can corrupt the values of these 

final decision-making data (usually just a Boolean 

variable) to influence the eventual critical decision.  

Other Non-Control Data for Future Investigation. 

We have discussed four different types of data that, if 

corrupted, can compromise security. Many other types 

of data are also critical to program security. We 

identify some of them for future investigation. File 

descriptors are integers to index the kernel table of 

opened files. They can point to regular disk files, 

standard input/output, and network sockets. If the 

attacker can change the file descriptors, the security of 

file system related operations can be compromised. 

Changing a file descriptor to that of a regular disk file 

could redirect terminal output to the file and result in 

severe security damage. Another possible target is the 

RPC (Remote Procedure Call) routine number. Each 

RPC service is registered with an integer as its index 

in the RPC callout link list. The caller invokes a 

service routine by providing its index. Malicious 

changes of RPC routine numbers could change the 

program semantics without running any external code. 

 

4 Validating the Applicability Claim 

In this section we validate the Applicability Claim, 

stated in Section 2. It would be straightforward to 

manually construct vulnerable code snippets to 

demonstrate non-control-data attacks. This, however, 

does not validate the claim because what we need to 

show is the applicability of such attacks on a variety of 

real-world software applications. Toward this end, we 

need first to understand which applications are frequent 

targets of attacks and what types of vulnerabilities are 

exploited. A quick survey was performed on all 126 

CERT security advisories between the years 2000 and 

2004. There are 87 memory corruption vulnerabilities, 

including buffer overflow, format string vulnerabilities, 

multiple free, and integer overflow. We found that 73 

of them are in applications providing remote services. 

Among them, there are 13 HTTP server vulnerabilities 

(18%), 7 database service vulnerabilities (10%), 6 

remote login service vulnerabilities (8%), 4 mail service 

vulnerabilities (5%), and 3 FTP service vulnerabilities 

(4%). They collectively account for nearly half of all 

the server vulnerabilities.  

Our criteria in selecting vulnerable applications for 

experimentation are as follows: (1) Different types of 

vulnerabilities should be covered. (2) Different types of 

server applications should be studied in order to show 

the general applicability of non-control-data attacks, (3) 

There should be sufficient details about the 

vulnerabilities so that we can construct attacks based on 

them. There are a number of practical constraints and 

difficulties in this enterprise. A significant number of 

vulnerability reports do not claim with certainty that the 

vulnerabilities are actually exploitable. Among the ones 

that do, many do not provide sufficient details for us to 

reproduce them. A number of the vulnerabilities that do 

meet our criteria are in proprietary applications. 

Therefore, we used open-source server applications for 

which both source code and detailed information about 

the vulnerabilities are available.  

The rest of this section presents experimental results. 

The demonstrated non-control-data attacks can be 

categorized along two dimensions: the type of security-

critical data presented in Section 3 and the type of 

memory errors, such as buffer overflow and format 

string vulnerability. Although a significant portion of 

this section is intended to illustrate various individual 

non-control-data attacks in substantial detail, the goal is 

to validate the applicability claim stated earlier.  

4.1 Format String Attack against User 

Identity Data 

WU-FTPD is one of the most widely used FTP servers. 

The Site Exec Command Format String Vulnerability 

[12] is one that can result in malicious code execution 

with root privilege. All the attack programs we obtained 

from the Internet overwrite return addresses or function 

pointers to execute a remote root shell.  

Our goal is to construct an attack against user identity 

data that can lead to root privilege compromise without 



 

injecting any external code. Our first attempt was to 

find data items that, if corrupted, could allow the 

attacker to log in to the system as root user without 

providing a correct password. We did not succeed in 

this because the SITE EXEC format string 

vulnerability occurs in a procedure that can only be 

invoked after a successful user login. That means an 

attacker could not change data that would directly 

compromise the existing authentication steps in FTPD. 

Our next attempt was to explore the possibility of 

overwriting the information source that is used for 

authentication. In UNIX-based systems, user names 

and user IDs are saved in a file called /etc/passwd, 

which is only writable to a privileged root user. A 

natural thought is to corrupt information in this file in 

order to get into the system. By overwriting an entry in 

this file, an attacker can later legitimately log in to the 

victim machine as a privileged user. We observed that 

after a successful user login, the effective UID (EUID) 

of the FTPD process has properly dropped to the 

user’s UID, so the process runs as an unprivileged 

user. Therefore, /etc/passwd can be overwritten only if 

we can escalate the privilege of the server process to 

root privilege. This is possible because the real UID of 

the process is still 0 (root UID) even after its EUID is 

set to be the user’s UID. The success of the attack 

depends on whether we can corrupt a certain data 

structure so that the EUID can be reverted to 0. FTPD 

uses the seteuid() system call to change its EUID when 

necessary. There are 18 seteuid(0) invocations in the 

WU-FTPD source code, one of which appears in 

function getdatasock() shown in Table 1. The function 

is invoked when a user issues data transfer commands, 

such as get (download file) and put (upload file). It 

temporarily escalates its privilege to root using 

seteuid(0) in order to perform the setsockopt() 

operation. It then calls seteuid(pw->pw_uid)  to drop 

its privilege. The data structure pw->pw_uid is a 

cached copy of the user ID saved on the heap. Our 

attack exploits the format string vulnerability to 

change pw->pw_uid to 0, effectively disabling the 

server’s ability to drop privilege after it is escalated. 

Once this is done, the remote attacker can download 

and upload arbitrary files from/to the server as a 

privileged user. The attack compromises the root 

privilege of FTPD without diverting its control flow to 

execute any malicious code.  

Table 1: Source Code of getdatasock() 

FILE * getdatasock( … ) { 

  ... 

  seteuid(0); 

  setsockopt( ... );     

  ... 

  seteuid(pw->pw_uid); 

  ... 

} 

The attack has been successfully tested on WU-FTPD-

2.6.0. First we establish a connection to the control port 

of FTPD and correctly log in as a regular user, Alice. 

FTPD sets its effective user ID to that of Alice (e.g., 

109). The client then sends a specially constructed 

SITE EXEC command to exploit the format string 

vulnerability that overwrites the pw->pw_uid memory 

word to 0. The client then establishes the data 

connection and issues a get command, which invokes 

the function getdatasock(). Due to the corruption of pw-

>pw_uid, the execution of the function sets the EUID 

of the process to 0, permanently. The client can 

therefore download /etc/passwd from the server, add 

any entry desired, and then upload the file to the 

attacked server. An entry such as 

“alice:x:0:0::/home/root:/bin/bash” indicates that Alice 

can log in to the server as a root user anytime via FTP, 

SSH, or other available service. Figure 1 gives the state 

transition and flowchart of the attack. 

FTPD runs as root

Effective UID=0

pw->pw_uid is initialed to Alice’s UID, 

e.g., pw->pw_uid=109. 
The effective UID is set to 109.

ftp target-machine  //connect to the target machine

USER alice //log in as Alice
PASS alice-correct-password

SITE EXEC \x22\x33\x07\x08%.f…%d%n
//This command attempts to overwrite pw->pw_uid to 0 

pw->pw_uid is now 0,

but effective UID is still 109 

FTPD handles the GET command,

which invokes getdatasock. Due to 
the corruption of pw->pw_uid, the 
effective UID is escalated to 0, which 
allows full access to /etc/passwd

PUT passwd //upload the modified /etc/passwd

BYE

Server states Client commands

CD /etc 

GET passwd //get the file /etc/passwd

modify alice’s entry, giving her root UID
alice:x:0:0::/home/root:/bin/bash

Alice has become a user with root 

privilege. 
 

Figure 1: User Identity Data Attack against  

WU-FTPD 

 

4.2 Heap Corruption Attacks against 

Configuration Data  

Memory corruption vulnerabilities on an HTTP daemon 

and a Telnet daemon allow configuration data attacks to 

succeed in getting root shells, if these daemons run as 

root. Note that some HTTP daemons can run as an 

unprivileged user, e.g., a special user nobody, in which 

case the root compromise is unlikely to happen whether 

the attack is a control-data attack or a non-control data 

attack. Our applicability claim still stands, because the 

claim is that non-control-data attacks can get the same 

privilege level as control-data attacks, which is the 

privilege level of the victim server. 

Attacking Null HTTPD. Null HTTPD is a multi-

threaded web server on Linux. Two heap overflow 



 

vulnerabilities have been reported [38]. Available 

exploit programs overwrite a Global Offset Table
3
 

(GOT) entry of a function when the corrupted heap 

buffer is freed. The program control jumps to the 

attacker’s malicious code when a subsequent 

invocation of the function is made.  

It can be seen that corrupting the CGI-BIN 

configuration string can result in root compromise 

without executing any external code. CGI (Common 

Gateway Interface) is a standard for running 

executables on the server for data processing. As 

explain in Section 3, the CGI-BIN directive restricts a 

user from executing programs outside the CGI-BIN 

directory and is thus critical to the security of the 

HTTP server. A client’s URL requesting the execution 

of a CGI program is always relative to the CGI-BIN 

configuration. Assuming the CGI-BIN path of the 

server www.foo.com is /usr/local/httpd/cgi-bin, when a 

request of URL http://www.foo.com/cgi-bin/bar is 

processed, the HTTP server prefixes the CGI-BIN to 

bar and executes the file /usr/local/httpd/cgi-bin/bar 

on the server’s file system. Figure 2 shows our attack 

process, which overwrites the CGI-BIN configuration 

so that the shell program /bin/sh can be started as a 

CGI program.  

Read CGI-BIN configuration

The configuration is /usr/local/httpd/cgi-bin

CGI-BIN configuration is now /bi, 

without the string terminator ‘\0’

Send the first POST command to the server,

to overwrite 2 bytes of CGI-BIN

Server translates the file name as 
/bin/sh, and run it using the string 

specified by the client as the standard 

input .

/tmp/root-private-file, writable only to 

the root, is removed 

Server states Client commands

Send the second POST command to the server,

to overwrite other 2 bytes of CGI-BIN

CGI-BIN configuration is now /bin, 

with the string terminator ‘\0’

Send the third POST command to run a shell 
command on the server: 

POST /cgi-bin/sh http/1.0↵

Content-Length: 70↵

↵

echo Content-type: text/plain ↵
echo ↵

echo ↵

rm /tmp/root-private-file ↵
↵

This will be the 
standard input 

string to /bin/sh

on the server.

 
Figure 2: Configuration Data Attack against NULL 

HTTPD 

The heap overflow vulnerability is triggered when a 

special POST command is received by the server. Due 

to the nature of heap corruption vulnerability, an 

attacker usually can only precisely control the first two 

bytes
4
 in the corrupted word at a time to avoid a 

                                                      
3  The Global Offset Table (GOT) is a table of function 

pointers for calling dynamically linked library functions.  
4 If the value to be written is a valid address, four bytes can 

be overwritten by a single heap corruption attack. 

segmentation fault. We issue two POST commands to 

precisely overwrite four characters in the CGI-BIN 

configuration so that it is changed from 

“/usr/local/httpd/cgi-bin\0” to “/bin\0”. After the 

corruption, we can start /bin/sh as a CGI program and 

send any shell command as the standard input to 

/bin/sh. For example, by issuing a rm /tmp/root-private-

file command, we observe that the file /tmp/root-

private-file, writable only to root, was removed. This 

indicates that we are indeed able to run any shell 

command as root, i.e., the attack causes the root 

compromise.  

Attacking NetKit Telnetd. A heap overflow 

vulnerability exists in many Telnet daemons derived 

from the BSD Telnet daemon, including a default 

RedHat Linux daemon NetKit Telnetd [13][39]. The 

vulnerability is triggered when the function telrcv() 

processes client requests of ‘AYT’ (i.e., Are-You-There) 

configuration. The attack, downloaded from Bugtraq, 

overwrites a GOT entry to run typical malicious code 

starting a root shell.  

When the daemon accepts a connection from a Telnet 

client, it starts a child process to perform user 

authentication. The file name of the executable for the 

authentication is specified by a configuration string 

loginprg, whose value can be specified as a command 

line argument. A typical value is /bin/login. Suppose 

the remote user is from attacker.com. Function 

start_login(host), shown in Table 2, starts the command 

/bin/login –h attacker.com –p by making an execv call 

to authenticate the user. The integrity of loginprg is 

critical to security.  

Table 2: Attacking loginprg and host Variables in 

Telnet Daemon  

void start_login(char * host,…) { 

addarg(&argv, loginprg); 

addarg(&arg, ”-h”); 

addarg(&argv, host);  

addarg(&arg, ”-p”); 

execv(loginprg, argv); 

} 

Without the corruption, the execv call is: 

   /bin/login –h attacker.com –p 

 

Due to the corruption, the execv call is: 

   /bin/sh –h –p -p 

We observe that the vulnerable function telrcv() 

can be invoked after the initializations of loginprg and 

host variables but before the invocation of 



 

start_login(host). Therefore, the exploitation of the 

heap overflow vulnerability allows overwriting the 

loginprg value to /bin/sh and the host value to –p, so 

that the command /bin/sh –h –p –p will be executed by 

function start_login(), giving a root shell to the 

attacker. Note that if host was not overwritten or if it 

was overwritten to an empty string, the sh command 

would generate a “file does not exist” error. 

4.3 Stack Buffer Overflow Attack against 

User Input Data  

Another HTTP server, GHTTPD, has a stack buffer 

overflow vulnerability in its logging function [36]. 

Unlike the heap corruption, integer overflow, or 

format string vulnerabilities, a stack overflow does not 

allow corruption of arbitrary memory locations but 

only of the memory locations following the unchecked 

buffer on the stack. The most popular way to exploit 

the stack buffer overflow vulnerability is to use the 

stack-smashing method, which overwrites a return 

address [2]. The attack overwrites the function return 

address saved on stack and changes it to the address of 

the injected malicious code, which is also saved in the 

unchecked buffer. When the function returns, it begins 

to execute the injected code. Stack buffer overflow 

attacks have been extensively studied, and many 

runtime protection solutions have been proposed. Most 

of the techniques try to detect corruption of return 

addresses. We construct an attack that neither injects 

code nor alters the return address. The attack alters 

only the backup value of a register in the function 

frame of the vulnerable function to compromise the 

security validation checks and eventually cause the 

root compromise.  

The stack buffer overflow vulnerability is in function 

log(), where a long user input string can overrun a 

200-byte stack buffer. A natural way to conduct a non-

control-data attack is to see if any local stack variable 

can be overwritten. We were not able to find any local 

variable that can be used to compromise its security. 

Instead, we found that three registers from the caller 

were saved on the stack at the entry of function log() 

and restored before it returns. Register ESI holds the 

value of the variable ptr of the caller function 

serveconnection(). Variable ptr is a pointer to the text 

string of the URL requested by the remote client. 

Function serveconnection() checks if the substring 

“/..” (i.e., the parent directory) is embedded in the 

requested URL. Without the check, a client could 

execute www.foo.com/cgi-bin/../bar, an executable 

outside the restricted CGI-BIN directory. We observe 

that the function log() is called after serveconnection() 

checks the absence of “/..” in the URL, but before the 

CGI request is parsed and handled. This makes a 

TOCTTOU (Time Of Check To Time Of Use) attack 

possible. We first present a legitimate URL without 

“/..” to bypass the absence check, then we change the 

value of register ESI (value of ptr) to point to a URL 

containing “/..” before the CGI request is processed.  

Table 3: Source Code of servconnection() and 

log() 

int serveconnection(int sockfd) { 

char *ptr;  // pointer to the URL. 

            // ESI is allocated  

            // to this variable.  

... 

1: if (strstr(ptr,”/..”)) 

  reject the request; 

2: log(...); 

3: if (strstr(ptr,”cgi-bin”)) 

4:     Handle CGI request 

... 

} 

 

Assembly of log(...)  

push %ebp 

mov %esp, %ebp 

push %edi 

push %esi 

push %ebx 

... stack buffer overflow code  

pop %ebx 

pop %esi 

pop %edi 

pop %ebp 

ret 

The attack scheme is given in Figure 3. The default 

configuration of GHTTPD is /usr/local/ghttpd/cgi-bin, 

so the path /cgi-bin/../../../../bin/sh is effectively the 

absolute path /bin/sh on the server. We use the GET 

command of the HTTP protocol to trigger the buffer 

overflow condition and force the server to run /bin/sh as 

a CGI program: we send the command “GET 

AA…AA\xdc\xd7\xff\xbf↵↵/cgi-bin/../../../../bin/sh”
5

 to 

the server. The server converts the first part of the 

command, “AAA…AAA\xdc\xd7\xff\xbf”, into a null-

terminated string pointed to by ptr in function 

serveconnection(). This string passes the “/..” absence 

check in Line 1 of serveconnection(). When the string is 

passed to the log() function in Line 2, it overruns the 

buffer and changes the saved copy of register ESI (i.e., 

ptr) on the stack frame of log() to 0xbfffd7dc (i.e., the 

bytes following “A” characters in the request), which is 

the address of the second part of the GET command 

“/cgi-bin/../../../../bin/sh”. When log() returns, the value 

of ptr points to this unchecked string, which is a CGI 

request containing “/..”. Succeeding in the check of 

                                                      
5 “AA…AA” represents a long string of “A” characters.  



 

Line 3, the request eventually starts the execution of 

/bin/sh at Line 4 under the root privilege.  

Read CGI-BIN configuration

The configuration is /usr/local/ghttpd/cgi-bin

The URL string pointed by ptr is  
AAAAAAAA\xdc\xd7\xff\xbf.

It is a legitimate URL because no 

substring “/..” is present.

Send the GET command to the server,

GET AAAAAAAA\xdc\xd7\xff\xbf↵ ↵ /cgi-bin/../../../../bin/sh

The four bytes \xdc\xd7\xff\xbf are 

overwritten to ESI, making ptr pointing to 

0xbfffd7dc, where the string 

/cgi-bin/../../../../bin/sh is located.

/bin/sh is started as a CGI program

Server states Client commands

Interact with the root shell running on the server

 
Figure 3: User Input Data Attack against GHTTPD 

 

4.4 Integer Overflow Attack against 

Decision-Making Data  

We also study decision-making data used by security-

related operations in server applications. These data 

are usually Boolean variables used to see whether 

certain criteria are met by a remote client. If so, access 

will be granted. An attacker can exploit security 

vulnerabilities in a program to overwrite such Boolean 

variables and get access to the target system. We study 

the attack in the context of a secure shell (SSH) server 

implementation.  

An integer overflow vulnerability [37] exists in 

multiple SSH server implementations, including one 

from SSH Communications Inc. and one from 

OpenSSH.org. The vulnerability is triggered when an 

extraordinarily large encrypted SSH packet is sent to 

the server. The server copies a 32-bit integer packet 

size value to a 16-bit integer. The 16-bit integer can be 

set to zero when the packet is large enough. Due to 

this condition, an arbitrary memory location can be 

overwritten by the attacker. Available exploitation 

online changes a function return address to run 

malicious shell code [37]. Detailed descriptions and 

analyses of this vulnerability can be found in [31] and 

[32]. 

Our goal is to corrupt non-control data in order to log 

in to the system as root without providing a correct 

password. Our close examination of the source code of 

the SSH server implementation from SSH 

Communications Inc shows that the integer overflow 

vulnerability is in function detect_attack(), which 

detects the CRC32 compensation attack against the 

SSH1 protocol. This function is invoked whenever an 

encrypted packet arrives, including the encrypted user 

password packet. The SSH server relies on function 

do_authentication() (shown in Table 4) to authenticate 

remote users. It uses a while loop (line 2) to 

authenticate a user based on various authentication 

mechanisms, including Kerberos and password. The 

authentication succeeds if it passes any one of the 

mechanisms. A stack variable authenticated is defined 

as a Boolean flag to indicate whether the user has 

passed one of the mechanisms. The initial value of 

authenticated is 0 (i.e., false). Line 3 reads input packet 

using packet_read(), which internally invokes the 

vulnerable function detect_attack().  Our attack is to 

corrupt the authenticated flag and force the program to 

break out of the while loop and go to line 9, where a 

shell is started for the authenticated user. 

Table 4: Source Code of do_authentication() 

void do_authentication(char *user, ...) { 

1:  int authenticated = 0; 

... 

2:  while (!authenticated) { 

   /* Get a packet from the client */ 

3:    type = packet_read();  

      // calls detect_attack() internally 

4:    switch (type) { 

   ... 

5:    case SSH_CMSG_AUTH_PASSWORD: 

6:     if (auth_password(user, password)) 

7:          authenticated =1; 

      case ... 

   } 

8:    if (authenticated) break; 

 } 

 /* Perform session preparation. */ 

9:  do_authenticated(pw); 

} 

Our attack tries to log in as root without providing a 

correct password. When the server is ready to accept 

the root password, the SSH client sends a very large 

packet to the receiving function packet_read() (Line 3). 

The packet is specially formulated to trigger the integer 

overflow vulnerability when packet_read() calls 

detect_attack() for detection. As a result, the 

authenticated flag is changed to non-zero. Although the 

server does fail in function auth_password() (Line 6), it 

breaks out of the while loop and proceeds to create a 

shell for the client (Line 9). The client program 

successfully gets into the system without providing any 

password. Figure 4 shows the status of both the client 

and the server during the attack.  

Currently our attack program has not calculated the 

correct checksum of the malicious packet that we sent 

to the server, so the packet would be rejected by the 

checksum validation code in the SSH server. For a 



 

proof-of-concept attack, we deliberately make the 

server accept the malicious packet without validating 

its checksum. To make the attack complete, we will 

need to understand the DES cryptographic algorithms 

to recalculate the checksum. Note that an attack 

including the checksum calculation algorithm is 

publicly available [32]. Other than this peculiarity, we 

have confirmed that the vulnerability allows precise 

corruption of the authenticated flag and that this 

corruption is sufficient to grant the root privilege to 

the attacker.   

Call do_authenticated() to start a root 
shell

Start do_authentication()

authenticated is 0

Ask for root password

Start the modified SSH client by

ssh –v –l root TARGET_SSH_SERVER

authenticated flag is now non-zero.
Although SSH server fails in password 
authentication, the attacker still gets in 

because authenticated is non-zero.

Server states Client commands

Send a malicious packet as the password.

This packet overwrites the authenticated 
flag to non-zero.

 
Figure 4: Attacking Stack Variable authenticated in 

SSH Server 

 

5 Implications for Defensive Techniques 

The success in constructing non-control-data attacks 

for various network server applications suggest a re-

examination of many current defensive techniques, 

which can be broadly categorized into two classes:  

techniques to avoid having memory-safety bugs in 

software and techniques to defeat exploitations of 

these bugs. We discuss these techniques below and the 

impact of our result on them. 

5.1 System-Call-Based Intrusion Detection 

Techniques 

Many host-based Instruction Detection Systems 

(IDSs) monitor the behavior of an application process 

at the system call level. These systems build abstract 

models of a program based on system call traces. At 

runtime, the IDS monitors the system calls issued by 

the program. Any deviation from the pre-built abstract 

model is considered abnormal or incorrect behavior of 

a program. One of the earliest attempts was by Forrest 

et al. [18][23] in which short sequences of system calls 

(N-grams) obtained from training data are used to 

define a process’s correct behavior. The monitoring is 

a matter of sequence matching against the pre-built N-

gram database. Wagner and Dean [48] build abstract 

system call models from the control flow graph based 

on static source code analysis. A basic Non-

Deterministic Finite Automaton (NDFA) and a more 

powerful Non-Deterministic Pushdown Automaton 

(NPDA) that incorporates stack state are built. Sekar et 

al. [34] improve Forrest’s training method by building a 

Finite State Automaton (FSA) constructed from training 

system traces by associating system calls with program 

counter information. Feng et al. [19] further improve 

the training method in the VtPath model. At every 

system call, VtPath extracts the virtual stack list, which 

is the list of return addresses of functions in the call 

stack. Then a virtual path is extracted from two 

consecutive virtual stack lists and stored as a string in a 

hash table. VtPath detects some attacks that are missed 

by the FSA model. In a follow-up paper, Feng et al. 

[17] propose a static version of VtPath, called VPStatic, 

and compare it to DYCK by Griffin et al. [21], which 

constructs PDA models directly from binary code. Gao 

et al. [22] propose the execution graph model that uses 

training system call traces to approximate the control 

flow graph that is usually only available through static 

code analysis. The execution graph is built by 

considering both program counter and call stack 

information.  

All these intrusion detection methods monitor process 

behavior at the system-call level, that is, they are only 

triggered upon system calls. As shown in this paper, 

non-control-data attacks require no invocation of 

system calls, therefore the attacks will most likely 

evade detection by system-call based monitoring 

mechanisms. Data flow information needs to be 

incorporated in these IDS models in order to detect 

non-control-data attacks.  

Some IDS techniques [25] abstract a program’s normal 

behavior using statistical distributions of system call 

parameters. The distribution is obtained from training 

data. At runtime, the IDS detects program anomalies by 

observing deviations from the training model. These 

methods detect intrusions based on the anomalies of 

data rather than the anomalies in control flow. 

Therefore, we believe that. with proper training, they 

can detect some of the attacks presented in this paper, 

in particular, the HTTPD CGI-BIN attack when /bin/sh 

is run by the execve(), since that is most likely not in 

the training model. The method, however, is not able to 

detect the decision-making data attack described in 

Section 4.4, where no system call parameter is 

modified. Nor can it detect the user-identity data attack 

discussed in Section 4.1 without considering control 

flow information in the training model. It might be 

difficult for a statistical algorithm to precisely extract a 

fine-grained policy to detect the attacks with a 



 

reasonably low false positive rate. Despite such 

technical difficulties, considering system call 

parameter anomalies is one possible way to extend 

current IDSs to detect some non-control-data attacks. 

5.2 Control Data Protection Techniques 

Corrupting control data to alter the control flow is a 

critical step in traditional attacks. Compiler techniques 

and processor-architecture-level techniques have been 

proposed in very recent papers to protect control data. 

DIRA is a compiler to automatically insert code only 

to check the integrity of control data [35]. An 

explicitly stated justification for this technique is that 

control-data attacks are currently considered the most 

dominant attacks. Suh, Lee, and Devadas develop the 

Secure Program Execution technique to defeat 

memory corruption attacks [42]. The idea is to tag the 

data directly or indirectly derived from I/O as spurious 

data, a concept more commonly referred to as tainted 

data in other literature [16][30][44]. Security attacks 

are detected when tainted data is used as an instruction 

or jump target addresses. Another recent work on 

control data protection is Minos [10], which extends 

each memory word with an integrity bit. Integrity 

indicates whether the data originating from a trusted 

source. It is essentially the negation of taintedness. 

Very similar to Secure Program Execution, Minos 

detects attacks when the integrity bit of a control data 

is 0.  

We agree that control data are highly critical in 

security-related applications. Not protecting them 

allows attacks to succeed easily. However, the general 

applicability of non-control-data attacks suggests the 

necessity of improvements of these techniques for 

better security coverage.       

5.3 Non-Executable-Memory-Based 

Protections 

A number of defensive techniques are based on non-

executable-memory pages, which block an attacker’s 

attempt to inject malicious code onto a writable 

memory page and later divert program control to 

execute the injected code. StackPatch is a Linux patch 

to disallow executing code on the stack [41]. 

Microsoft has also implemented non-executable-

memory page supports in Windows XP Service Pack 2 

[1]. In addition, the latest versions of Linux and 

OpenBSD are enhanced with similar protections.  

These defensive techniques cannot defeat non-control-

data attacks because there is no attempt to run any 

injected code during these attacks. Note that non-

executable-memory-based protections can also be 

defeated by the return-to-library attacks, which divert 

program control to library code instead of the injected 

code [33]. 

5.4 Memory Safety Enforcement 

CCured [27] is a program transformation tool that 

attempts to statically verify that a C program is type-

safe, and thus free from memory errors. When static 

analysis is insufficient to prove type-safety, it 

instruments vulnerable portions of code with checks to 

avoid errors such as NULL pointer dereferences, out-

of-bounds memory accesses, and unsafe type casts. Its 

main mechanism for enforcing memory safety is a type-

inference algorithm that distinguishes pointers by how 

safely they are used. Based on this classification of 

pointers, code transformations are applied to include 

appropriate runtime checks for each type of pointer. 

Although CCured’s analysis techniques and runtime 

system are sophisticated and guarantee memory safety, 

instrumented programs often incur significant 

performance overheads and require nontrivial source 

code changes to ensure compatibility with external 

libraries. 

CRED [53] is a buffer overflow detector that uses the 

notion of referent objects to add bounds checking to C 

without restricting safe pointer. Any addresses resulting 

from arithmetic on a pointer must lie within the same 

memory object as that of the pointer. To enforce this, 

CRED stores the base address and size of all memory 

objects in the object table. Immediately before an in-

bounds pointer is used in an arithmetic operation, its 

referent object’s bounds data is retrieved from the 

object table. This data is used to ensure the pointer 

arithmetic’s result lies within the bounds of the referent 

object. When an out-of-bounds address is used in 

pointer arithmetic, its associated referent object’s 

bounds data is used to determine if the resulting address 

is in bounds. To reduce performance overhead, CRED 

limits its bounds checking to string buffers, which 

implies that CRED does not provide protection against 

attacks involving non-string buffers. In addition, 

programs that perform heavy string-processing (e.g., 

web/email servers) can still incur overheads as high as 

200%. 

Cyclone [24] is a memory-safe dialect of C that aims to 

maintain much of C’s flexible, low-level nature. It 

ensures safety in C by imposing a number of 

restrictions. Like CCured, Cyclone adds several pointer 

types that indicate how a pointer is used and inserts 

appropriate runtime checks based on a pointer’s type. 

Porting C programs to Cyclone, however, can be 

difficult due to its additional restrictions and semantics. 



 

For example, Cyclone only infers pointer kinds for 

strings and arrays. As such, it is often the 

programmer’s responsibility to determine the 

appropriate type for a pointer. This task can be very 

time-consuming for large programs that make 

extensive use of pointers. In addition, Cyclone 

programs often perform significantly worse than their 

C counterparts and commonly-used software 

development tools such as compilers and debuggers 

must be modified for use with Cyclone source code. 

Although the techniques enforcing memory-safety 

continue to show great promise, the software 

engineering community has not established techniques 

that allow an easy migration path from current large 

code bases. Moreover, the high overheads that they 

incur make them unsuitable for many kinds of 

software, particularly highly trafficked servers. Due to 

these reasons, memory-safety bugs are likely to still 

exist for an extended period of time. Hence, research 

efforts should still be invested in defensive techniques 

that assume the existence of memory-safety bugs. 

5.5 Other Defensive Techniques 

We now discuss other runtime defensive techniques 

that do not assume the control-data attack pattern.  

Specialized Techniques Not Affected by Non-

Control-Data Attacks. The effectiveness of some 

specialized dynamic detection techniques is not 

affected by non-control-data attacks. StackGuard [14] 

and Libsafe [7] can still defeat many stack buffer 

overflow attacks unless security sensitive data are in 

the same frame as the overflowing buffer, as in the 

GHTTPD example. FormatGuard [8] is still effective 

to defeat format string attacks because it does not 

allow overwriting of arbitrary memory addresses. 

However, these techniques are not generic enough to 

defeat attacks exploiting other types of vulnerabilities. 

Generic Techniques Requiring Improvement. 

Among the various techniques that address a broader 

range of memory vulnerabilities, the underlying 

principles of the pointer protection technique 

PointGuard [9], address-space randomization 

techniques [4][6][51], and TaintCheck [28] are sound, 

but improvements are needed to better deploy these 

principles, as follows: 

PointGuard is a compiler technique that embeds 

pointer encryption/decryption code to protect pointer 

integrity in order to defeat most memory corruption 

attacks. In principle, if all pointers, including pointers 

in application code and in libraries (e.g., LibC), are 

encrypted, most memory corruption attacks can be 

defeated. However, without the instrumented library 

code, the current PointGuard cannot defeat many non-

control-data attacks. For example, the previously 

presented heap overflow and format string attacks only 

corrupt heap free-chunk pointers and the argument 

pointers of printf-like functions, which are pointers in 

LibC. Although there are technical challenges in the 

instrumentation of PointGuard at the library level (e.g., 

the lack of accurate type information), we argue that 

such an improvement is essential. 

The principle of address-space randomization 

techniques is to rearrange memory layout so that the 

actual addresses of program data are different in each 

execution of the program. Ideally, the addresses should 

be completely unpredictable. Nevertheless, Shacham et 

al. [43] have recently shown that most current 

randomization implementations on 32-bit architectures 

suffer from the low entropy problem: even with very 

aggressive re-randomization measures, these techniques 

cannot provide more than 16-20 bits of entropy, which 

is not sufficient to defeat determined intruders. 

Deploying address-space randomization techniques on 

64-bit machines is considered more secure.  

TaintCheck [28] uses a software emulator to track the 

taintedness of application data. Depending on its 

configuration and policies, TaintCheck can perform 

checks on a variety of program behaviors, e.g., use of 

tainted data as jump targets, use of tainted data as 

format strings, and use of tainted data as system call 

arguments. Preventing the use of tainted data as system 

call arguments can be used to detect some, but not all of 

the attacks described in this paper. However, as the 

authors of TaintCheck have pointed out, this can lead to 

false positives, as some applications require 

legitimately embedding tainted data in the system call 

arguments. Further, the reported runtime slowdown is 

between 5-37 times. Further research is required to 

address the issues of security coverage, false positive 

rate, and performance overhead.  

5.6 Defeating Memory Corruption Attacks: 

A Challenging Problem in Practice 

The above analysis shows that finding a generic and 

practical technique to defeat memory corruption attacks 

is still an challenging open problem. The specialized 

techniques can only defeat attacks exploiting a subset of 

memory vulnerabilities. As for generic defensive 

techniques, many of them provide security by enforcing 

control flow integrity, and thus the security coverage is 

incomplete due to the general applicability of non-

control-data attacks. A few other generic solutions, 

although not fundamentally relying on control flow 



 

integrity, need improvements to overcome the 

practical constraints on their deployment.  

6 Empirical Discussions of Mitigating 

Factors  

Despite the general applicability of non-control-data 

attacks, which is the main thesis of this paper, we 

experienced more difficulty in constructing these 

attacks than in constructing control-data attacks. In 

particular, the requirement of application-specific 

semantic knowledge and problems presented by the 

lifetime of security-critical data are major mitigating 

factors that impose difficulties on attackers.  

6.1 Requirement of Application-Specific 

Semantic Knowledge 

An obvious constraint for constructing non-control-

data attacks is the attacker’s reliance on application-

specific knowledge. In a control-data attack, as long as 

a function pointer or a return address can be 

overwritten, a generic piece of shell code will be 

started to do all kinds of security damage easily. 

However, a non-control-data attack must preserve 

control flow integrity, so an attacker needs to have in-

depth knowledge of how the target application 

behaves. For example, to attack HTTP servers, we 

need insights into the CGI mechanism; to attack the 

WU-FTP server, we should know how the effective 

UID is elevated and dropped. At the current stage, we 

have not formulated an automatic method to obtain 

such knowledge. The method we used in attack 

construction is a combination of vulnerability report 

review, debugger-aided source code review. and 

certain diagnostic tools such as strace (system call 

tracer) and ltrace (library call tracer). This is a time-

consuming process. As a result, we have not 

succeeded in the attempt to attack Sendmail through an 

integer overflow vulnerability [40], as we are not as 

familiar with Sendmail semantics as we are with 

HTTP, SSH, FTP, and Telnet. 

However, we argue that this is not a fundamental 

constraint on attackers for two reasons: 1) Knowledge 

of widely used applications is not hard to obtain, so a 

determined attacker is likely to eventually succeed no 

matter how long it takes, if there is a strong incentive; 

2) Although we spent a great deal of effort to construct 

these attacks, future attackers may not need to expend 

the same amount of effort. For example, if a new 

vulnerability is found in another HTTP server, an 

attacker could easily think of attacking the CGI-BIN 

configuration. This can be thought of as similar to the 

history of the stack-smashing attack; it was a mystery 

when the Morris Worm spread, but it is now 

straightforward to understand.  

6.2 Lifetime of Security-Critical Data 

Lifetime of security-critical data is another constraint 

on seeking non-control-data attacks. The lifetime of a 

value is defined as the interval between the time the 

value is stored in a variable and the time of its last 

reference before the being de-allocated or reassigned. 

Only when a vulnerability is exploitable during the 

lifetime of some security-critical data can an attack 

succeed.  

Our experience shows that although there are many 

potential data critical to security, a majority of them are 

eliminated by the constraint of data lifetime – the 

vulnerability occurs either before the data value is 

initialized or after the semantically diverging operation 

is performed. Therefore, reducing the lifetime should be 

considered as a secure programming practice. Two of 

the discussed attacks would not succeed if the programs 

were slightly changed as shown in Table 5. The original 

WU-FTPD function getdatasock() uses the global data 

pw->pw_uid in the seteuid call, allowing any 

vulnerability occurring before getdatasock() to escalate 

the process privilege. If the function was written as 

(A2), where a short-living local variable is used, only a 

vulnerability occurring within the lifetime of tmp 

(denoted as a bidirectional arrow) could affect the 

seteuid call. Similarly, in the original SSHD 

do_authentication() (code B1), the lifetime of the 

authenticated value covers the vulnerable 

packet_read() call. By inserting the statement 

“authenticated=0” after Line L1 in code B2, 

authenticated flag is always refreshed in every iteration, 

and thus its lifetime becomes shorter. The attack could 

not succeed since the vulnerability in L1 was out of the 

lifetime of authenticated flag. 

The lifetimes of security-critical configuration data, as 

those in the NULL HTTPD attack and the Telnetd 

attack, are more difficult to reduce. A possible 

protection solution is to encrypt them in a way similar 

to the encryption technique used by PointGuard or to 

set the memory of configuration data read-only. 



 

Table 5: Reducing Data Lifetime for Security 

(A1) Original WU-FTPD getdatasock() 

{ seteuid(0); 

  setsockopt( ... );     

  seteuid(pw->pw_uid); 

} 

 

(A2) Modified WU-FTPD getdatasock() 

{ tmp = geteuid(); 

  seteuid(0); 

  setsockopt( ... );      

  seteuid(tmp);  

} 

 

(B1)Original SSHD do_authentication() 

{ int authenticated = 0; 

  while (!authenticated) { 

L1:type = packet_read(); //vulnerable 

   switch (type) { 

 case SSH_CMSG_AUTH_PASSWORD: 

     if (auth_password(user, passwd)) 

          authenticated = 1; 

    case ... 

   } 

   if (authenticated) break; 

  } 

  do_authenticated(pw);   

} 

 

(B2)Modified SSHD do_authentication() 

{ int authenticated = 0; 

  while (!authenticated) { 

L1:type = packet_read(); //vulnerable 

   authenticated = 0; 

   switch (type) { 

 case SSH_CMSG_AUTH_PASSWORD: 

     if (auth_password(user, passwd)) 

          authenticated = 1; 

    case ... 

   } 

   if (authenticated) break; 

  } 

  do_authenticated(pw);   

} 

7 Related Work 

Our research is motivated by a number of papers 

investigating system susceptibilities under hardware 

transient errors. It has been shown that random 

hardware faults can lead to security compromises in 

many real-world applications. Boneh et al. [5] show 

that the Chinese Remainder Theorem based 

implementation of the RSA signature algorithm is 

vulnerable to any hardware/software errors during 

certain phases of the algorithm. The produced 

erroneous cipher text allows the attacker to derive the 

RSA private key. In [50], we observe that even single-

bit flip transient errors in critical sections of server 

programs can cause false authentications. We also show 

in an experiment [15] that bit-flip errors in Linux kernel 

firewall facilities allow malicious packets to survive 

firewall packet filtering. Govindavajhala and Appel 

conduct a real physical fault injection experiment with a 

spotlight bulb heating the PC memory chips [20]. The 

Java language type system can be subverted with high 

probability under this harsh condition. Although the 

results in the context of random errors may not 

demonstrate imminent security threats, they clearly 

indicate the possibility of finding attacks other than 

altering control flow in real-world systems.   

Also related are papers discussing the possibility of 

evading system-call-based host IDS’s by disguising 

traces of system calls. Mimicry attacks [48][49] cannot 

be detected by the IDS because the malicious code can 

issue system call sequences that are considered 

legitimate under the IDS model. The attacks proposed 

by Tan et al. evade IDS detection by changing foreign 

system calls to equivalent system calls used by the 

original program [45]. It should be noted that mimicry 

attacks still alter program control flow, and thus are 

defeated by control-flow-integrity-based protections 

and non-executable-memory-based protections.  

Pincus and Baker conduct a study on memory 

vulnerabilities and attacks [29]. They extract three 

primitive attack techniques and provide a taxonomy of 

current defensive techniques. A conclusion of the study 

is that current defensive techniques are not 

comprehensive; each one only provides partial 

coverage, and no combination of them defeats all 

known attacks. 

8 Conclusions 

We begin with the Applicability Claim: many real-

world software applications are susceptible to attacks 

that do not hijack program control flow, and the 

severity of the resulting security compromises is 

equivalent to that of control-data attacks. The claim is 

empirically validated by experiments constructing non-

control-data attacks against many major network server 

applications. Each attack exploits a different type of 

memory vulnerability to corrupt non-control data and 

obtain the privilege of the victim process. Based on the 

results of the experiments, we argue that control flow 

integrity may not be a sufficiently accurate 

approximation of software security. The general 

applicability of non-control-data attacks represents a 

realistic threat to be considered seriously in defense 

research.  



 

We study a wide range of current defensive techniques 

and discuss how the general applicability of non-

control-data attacks affects the effectiveness of these 

techniques. The analysis shows the necessity of further 

research on defenses against memory corruption based 

attacks. Finding a generic and secure way to defeat 

memory corruption attacks is still an open problem. 

Despite their general applicability, non-control-data 

attacks are less straightforward to construct than are 

control-data attacks, because the former require 

semantic knowledge about target applications. Another 

important constraint is the lifetime of security-critical 

data. We suggest that reducing data lifetime is a secure 

programming practice that increases software 

resilience to attacks.  
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