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Challenges and opportunities for state tracking in
statistical spoken dialog systems: results from two

public deployments
Jason D. Williams, Member, IEEE

Abstract—Whereas traditional dialog systems operate on the
top ASR hypothesis, statistical dialog systems claim to be more
robust to ASR errors by maintaining a distribution over multiple
hidden dialog states. Recently, these techniques have been de-
ployed publicly for the first time, making empirical measurements
possible. In this paper, we analyze two of these deployments. We
find that performance was quite mixed: in some cases statistical
techniques improved accuracy with respect to the top speech
recognition hypothesis; in other cases, accuracy was degraded.
Investigating degradations, we find the three main causes are
(non-obviously) inaccurate parameter estimates, poor confidence
scores, and correlations in speech recognition errors. Overall the
results suggest fundamental weaknesses in the formulation as a
generative model, and we suggest alternatives as future work.

Index Terms—Spoken dialog systems, human-computer inter-
action.

I. INTRODUCTION

FOR more than a decade, researchers have worked to apply
statistical techniques to spoken dialog systems [1], [2],

[3], [4], [5]. By learning from data and experience, these
techniques seek to outperform manually designed systems.
Two broad problems have been studied. The first problem
is accurately tracking the state of the dialog. This problem
is difficult in large part because the speech recognition and
language understanding processes are error-prone, making the
true state of the dialog only partially observable. Here one of
the main aims of statistical techniques is to improve robustness
to recognition errors. The second problem is choosing system
actions. Dialog is a temporal process, so actions must be cho-
sen to satisfy long-term goals. This is particularly challenging
given the uncertainty in the state of the dialog, and here the
main aims are creating dialog plans that are optimal with
respect to some criteria.

This paper is concerned with the first problem, accurately
tracking the state of the dialog. A popular approach is to
maintain a distribution over many possible hypotheses for
the true state of the dialog, by globally synthesizing all of
the observable history with statistical models estimated from
training dialogs. These methods were initially developed on
toy problems [4], [3], [5], then tested in simulation [6], [7] and
controlled laboratory studies [8], [9], [10], [11]. Recently, in
the Spoken Dialog Challenge [12], the first public deployments
have been done, providing the first opportunity to empirically
assess real-world performance.
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TABLE I: Two dialog systems studied in this paper. Utterance
counts for each slot show the number of non-empty utterances
received in response to system requests for that slot.

DS1 DS2

Active Summer 2010 Winter 2011-2
Calls 779 1037

Utterances 9636 13484
Mean utts/call 12.4 13.0

route utterances 1495 2955
from utterances 1197 1656

to utterances 1148 1592
day utterances 175 128
time utterances 155 237

TOTAL 4170 6568

This paper considers two versions of one of the first
statistical dialog systems deployed to the public. The first
version (DS1) was deployed in 2010 [13], and the second
version (DS2) was deployed in 2011-2012. This paper presents
a detailed analysis of these deployments, with a particular
emphasis on the causes of state tracking errors in statistical
spoken dialog systems. The contribution of this paper is not a
new technique or algorithm, but rather a thorough evaluation
of state-of-the-art technology in real-world use, with the aim
of informing future research efforts.

Existing work studied DS1 in some detail [14]. Issues that
were found in DS1 were addressed in the creation of DS2.
This paper subsumes this past work [14], presenting a joint
analysis of both systems. New insights in this paper include:
empirical data showing the relationship between accuracy and
the quality of model parameters; identification of correlations
in speech recognition errors as a major cause of failures;
and evidence for fundamental flaws in several components of
current models. Taken together, these findings suggest that
discriminative (rather than generative) approaches may be
promising for belief tracking.

In this paper, Section II reviews algorithms for statistical
spoken dialog systems. Section III then describes the two
dialog systems under study. Section IV reports on overall
accuracy, then analyzes the underlying reasons for accuracy
gains and losses. Section V tackles how well errors can be
identified, and Section VI concludes by summarizing lessons
learned and suggesting new avenues for research.
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Do you want times for the 

next few buses?

At 11:45 PM today, 

there is a 61 C 

from Fifth Ave and 

Market St Downtown, 

arriving Second St And 

Grant Ave in Duquesne 

at 12:34 AM.

Say just the day you 

want.

Say just the time you 

want.

Optional: There are more 

buses than the 61C that 

run from Downtown to 

Dusquesne.  I'll tell you 

about all of them.

I'm sorry, I can't find 

any buses at all that 

run from Kennywood 

to McKeesport. I 

checked route 61C 

and I also checked all 

the other bus routes 

I know about too.

Where are you 

leaving from?

(query DB)

Tell me just the East 

Pittsburgh 

neighborhood you're 

leaving from.

I heard Avalon, but

I don't have any 

stops in that 

neighborhood.

Where are you 

going to?

(query DB)

Tell me just the East 

Pittsburgh 

neighborhood you're 

going to.

I heard Bellevue, 

but I don't have any 

routes that run from 

downtown to 

Bellevue.

Say a bus route, or say I'm 

not sure.
I thought you said 13A 

but I don't have 

schedules for that route.

Repeat, next, previous

(query DB)

Start Nodes correspond to 

different language models

route 

belief state

from

belief state

to

belief state

day

belief state

time

belief state

Boxes correspond to 

different belief states

Fig. 1: Hand-crafted design followed by DS1 and DS2. The system asks for the bus route, then the origin bus stop from, then
the destination bus stop to. If the user does not want the next few buses, the system also asks for the day and time. Prompts
shown are paraphrases; actual system prompts include example responses and are tailored to dialog context. Different language
models are used for each slot, and separate belief states are maintained over each of these 5 slots

II. STATE TRACKING IN STATISTICAL DIALOG SYSTEMS

Statistical dialog systems maintain a distribution over a set
of hidden dialog states. A dialog state includes information not
directly observable to the dialog system, typically the user’s
overall goal in the dialog, or the user’s true action (e.g., the
user’s true dialog act). For example, at turn t in a bus timetable
system, the user’s overall goal might be to go from downtown
Pittsburgh to Carnegie Mellon University on the next bus, and
the user’s action might be to say “leaving from downtown”.

For each dialog state s, a posterior probability of correctness
called a belief is maintained b(s). The set of hidden dialog
states and their beliefs is collectively called the belief state,
and updating the belief state is called belief tracking.

At the start of the dialog, the belief state is initialized to
a prior distribution b0(s). The system then takes an action a,
and the user takes an action in response. The automatic speech
recognizer and spoken language understanding – collectively
called “ASR” in this paper – then produces a ranked list

of N hypotheses for the user’s action, u = (u1, . . . , uN ),
called an N-best list. For each N-best list, Pasr(u) assigns a
local, history-independent probability of correctness to each
item, often called a confidence score. The belief state is then
updated:

b′(s) = k ·
∑
u

Pasr(u)Pact(u|s, a)b(s) (1)

where Pact(u|s, a) is the probability of the user taking action u
given the dialog is in hidden state s and the system performed
action a. k is a normalizing constant. A full derivation of Eq
1 is given in Appendix A.

In words, first each item in the ASR N-Best list is assigned a
local probability of correctness Pasr(u). This confidence score
indicates the local probability that the user took action u
independent of the current dialog state. Then, the new belief in
state s is given by multiplying factors for the ASR confidence
score, the probability of the user taking the action, and the
previous belief in the state.
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TABLE II: Example labels.

User speech ASR result Label Notes

forbes and murray forbes and murray correct Lexically identical
hazelwood at emahlea hazelwood and emahlea correct Refers to same intersection

ingram bus station ingram station correct Refers to same station
braddock pennyslvania braddock correct Refers to same location

braddock north braddock braddock incorrect Incomplete
uh beechwood boulevard and murray avenue beechwood boulevard incorrect Incomplete

forbes downtown downtown incorrect Incomplete
hawkins village on south braddock avenue hawkins village in rankin incorrect Contains wrong information

braddock pennyslvania braddock avenue incorrect Street vs. neighborhood
arlington and brownsville arlington and freeland incorrect Different intersection

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

O
ra

cl
e

 A
cc

u
ra

cy

System / slot

100-best

10-best

1-best

route from to day time

Fig. 2: ASR accuracy for 1-best, 10-best, and 100-best ASR
N-best lists.

In practice specialized techniques must be used to compute
Eq 1 in real-time. The systems in this paper use incremental
partition recombination [7]; alternative algorithms include the
Hidden Information State [10], [15], Bayesian Update of
Dialog States [11], distributions over frames [16], probabilistic
ontology trees [17], and particle filters [18]. The details are
not important for this paper – the key idea is that Eq 1
synthesizes a prior distribution over dialog states together with
all of the ASR N-best lists and local confidence scores to form
a cumulative, whole-dialog posterior probability distribution
over all possible dialog states, b(s).

(or a blank line to force the subfigure onto a new line)
The claimed benefit is that – provided the models are

estimated well – the dialog state with the highest belief
s∗ = argmaxs b(s) should be correct more often than a dialog
state constructed heuristically from the 1-best ASR results.
This is the main claim we evaluate in this paper.

III. DIALOG SYSTEMS UNDER STUDY

The two systems under study in this paper – DS1 and DS2 –
provide bus timetable information for Pittsburgh, USA. They
were fielded to the public as a part of the Spoken Dialog
Challenge [19], [12]. The systems themselves were fielded
by AT&T [13], and the analysis in this paper is based on
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Fig. 3: Summary of accuracy. The tops and bottoms of each
bar show accuracy for s∗ and u1. Unshaded bars indicate that
the accuracy of s∗ is higher than u1 (ie, s∗ corresponds to the
top of the bar, and u1 to the bottom). Shaded bars indicate that
the accuracy of s∗ is lower than u1 (ie, s∗ corresponds to the
bottom of the bar, and u1 to the top). Asterisk (*) indicates
the difference is statistically significant with p ≤ 0.05 using
McNamara’s Test.

audio and logs from these systems, publicly available from the
Dialog Research Center at Carnegie Mellon University [20].

As with most commercial dialog systems, they followed
a highly directed flow, collecting one slot at a time. There
are five slots: route, from, to, day, and time. These systems
could only recognize values for the slot being queried, plus a
handful of global commands (“repeat”, “go back”, “start over”,
“goodbye”, etc.) – mixed initiative and over-completion were
not supported.

The common design of the systems is shown in Figure 1.
Each system opened by asking the user to say a bus route,
or to say “I’m not sure.” The systems could recognize any of
the ∼100 routes in Pittsburgh, but could only provide times
for a covered subset of routes. If an uncovered route was
recognized, the system explained that it only had information
for certain routes. Otherwise, the system next asked for the
from and to slots. If a bus route was specified, the language
models for from and to include only the locations along that
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Fig. 4: Frequency of occurrence of each mechanism on each
slot

route, including streets, intersections, and landmarks, reducing
the complexity of the location recognition task. If repeated
non-understandings or mis-understandings were detected, the
system backed off to asking for neighborhoods instead.

After gathering the bus route and locations, the system then
asked if the caller wants times for the “next few buses”. If
not, the system asked for the day then time in two separate
questions. Finally bus times were read out. Users could say
“start over” at any time.

Belief tracking was done with the AT&T Statistical Dialog
Toolkit [21], and an independent belief state was maintained
for each slot. After requesting the value of a slot, the system
received an ASR N-best list, assigned each item a confidence
score Pasr(u), and updated the belief in (only) that slot using
Eq 1. The top dialog hypothesis s∗ = argmaxs b(s) and
its belief b(s∗) were used to determine which action to take
next, following a hand-crafted policy. This is in contrast to
conventional dialog systems, in which the top ASR result and
its confidence score govern dialog flow. If the belief was high,
the slot was implicitly confirmed (“Ok, route 61C. To change,
say go back. Where are you leaving from?”); if the belief was
medium, the slot was explicitly confirmed (“I heard 61C. Is
that right?”); if the belief was low, the question was asked
again (“Sorry, say a bus route, or say I’m not sure.”). The
thresholds defining high, medium, and low were set by hand
and were identical for all slots.1

Confidence scores Pasr(u) were assigned using a two-stage
model [22]. In the first stage, a maximum entropy classifier
assigned a probability to three classes, where the classes
indicate (1) that the top ASR result u1 is correct; (2) that one
of the items in u2 . . . uN is correct; and (3) that none of the

1It is possible that performance gains could be achieved by tuning the
thresholds, and in commercial systems ASR confidence score thresholds are
often tuned to maximize performance. However the thresholds were not tuned
for two reasons. First, practically, the systems were operational for relatively
short timescales, making it difficult to complete the transcription feedback
loop. Second, in principle, with statistical methods the belief corresponds to a
proper probability, and this ought to allow thresholds to be specified without
tuning.

items on the ASR N-best list is correct. In the second stage,
a Beta distribution is used to allocate the probability of class
(2) across items u2 . . . uN . The maximum entropy classifier
and Beta distribution were trained on data (details in Section
IV-A). Note that the structure of the confidence score model
Pasr(u) made it possible for item n = 2 to be assigned a higher
confidence score than n = 1, although this wasn’t necessarily
desired.

The two systems were identical, except for the following:
• DS1 could provide timetables for 8 routes; DS2 could

provide timetables for ∼40 routes. To suggest the scope
of functionality, DS1 opened with “East Pittsburgh bus
times”; DS2 opened with “Pittsburgh bus times”.

• The names and times of some bus routes in Pittsburgh
changed between DS1 and DS2

• DS2 used a different acoustic model than DS1
• The systems used different voices for synthesized speech

and recorded prompts
• DS2 used different priors b0 than DS1
• DS2 used different training data to estimate Pasr(u)

The last two changes were made in an attempt to improve
shortcomings discovered in DS1 [14], and will be discussed
more below.

DS1 received 779 calls in the period July 16 – August 16
2010, containing a total of 9,636 user utterances, of which
4,170 contained non-empty responses to requests for one of the
five slots. The remainder were responses to yes/no questions,
timetable navigation commands like “next bus”, silence, etc.
DS2 received 1,037 calls from 28 December 2011 – 6 February
2012, containing a total of 13,484 utterances, of which 6,605
contained non-empty responses to requests for one of the five
slots. Table I provides details. There are relatively fewer date
and time utterances because most callers asked for the next
few buses, in which case the caller was not asked for the date
and time.

IV. ANALYSIS OF ACCURACY

As explained above, in the system in this paper, slots
are queried separately, and an independent belief state is
maintained for each. Consequently, within each slot user
actions u and hidden states s are drawn from the same set
of slot values. Thus, to measure the performance within each
slot, we will compare the accuracy of the top belief state
s∗ = argmaxs b(s) to the accuracy of the top ASR result u1

(our baseline). Since we are interested in task performance,
throughout the paper we’ll use semantic accuracy, not word
accuracy.

We began by selecting utterances containing non-empty
responses to each of the five slots (counts in Table I). A
professional transcriber (not the author) listened to each utter-
ance. Following a labeling guide, they marked each hypothesis
on the ASR N-best list as correct if it was semantically
consistent with the user’s speech, or incorrect otherwise. These
labels were then checked by a second professional transcriber.
Example labels and excerpts from the labeling guide are shown
in Table II.

Basic ASR accuracy results are shown in Figure 2. 1-best
ASR accuracy for route, from, and to was lower in DS2 than
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(d) Confidence aggregation

Fig. 5: Effects of each mechanism on each slot. Each bar shows (x − y)/z, where x is the number of utterances where the
mechanism occurred and the belief 1-best is correct, y is the number of utterances where the mechanism occurred and the ASR
1-best is correct, and z is the total number of utterances in that slot/system (regardless of whether the mechanism occurred).
Asterisk (*) indicates the difference is statistically significant with p ≤ 0.05 using McNamara’s Test.

DS1, which is unsurprising since DS2 covered more routes
and locations than DS1. day and time used identical language
models in DS1 and DS2; 1-best ASR accuracy was slightly
higher for these slots in DS2, which may reflect differences in
the acoustic models between DS1 and DS2. Oracle accuracy
was 5-15% larger, with most of the gain in the first 10 items
on the ASR N-best list.

We next determined the accuracy of the top belief state s∗.
In these systems, each item in the belief state maps directly
to one or more ASR hypotheses. In addition, typically the
user’s goal remains fixed throughout the call, at least until the
caller says “start over”. Given this, the correctness of the top
belief state was set to the correctness of the most recent ASR
hypothesis it mapped to. However, if the user said “start over”,
the set of relevant ASR items was cleared.

For example, at turn t, the top item in the belief state s∗

might map to the third item in the ASR N-best list (u3) in turn
t − 1, and to the second item in the ASR N-best list (u2) in
turn t. If u2 in turn t were labeled as incorrect, the top belief
state in turn t would be considered incorrect.

Results are in Figure 3, which shows the absolute difference

in accuracy between the ASR 1-best u1 and the belief state
1-best s∗. While belief tracking yielded an improvement in
accuracy in some cases, it caused a degradation in others.

We next sought to understand the causes of this varied
performance. Formally, differences between the top ASR result
u1 and the top belief state s∗ are simply the result of evaluating
Eq 1. However, intuitively there are four mechanisms which
cause differences, and each difference can be explained by
the action of one or more mechanisms. These mechanisms
are summarized here; Appendix B provides graphical illustra-
tions.2

• ASR re-ranking: Recall that our confidence score Pasr(u)
had the ability to assign a higher confidence score to u2

than u1; when this ASR re-ranking happens, this may
cause s∗ to differ from u1 (Figure 11a).

• Prior re-ranking: Statistical techniques use a prior prob-

2This taxonomy was developed for belief tracking over a single slot using
the type of model employed in this paper. For systems that track joint beliefs
over multiple slots, or which use different models for belief tracking, the
taxonomy may be different. For example, the distinction between N-best
synthesis and confidence aggregation may not be important in other belief
tracking models.
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ability for each possible dialog state – in our system, each
slot value – b0(s). If an item recognized lower-down on
the N-best list has a high prior, it can obtain the most
belief, causing s∗ to differ from u1 (Figure 11b).

• N-best synthesis: If an item appears in two N-best lists,
but is not in the top ASR N-best position in the latter
recognition, it may still obtain the highest belief, causing
s∗ to differ from u1 (Figure 11c).

• Confidence aggregation: If the top belief state s∗ has
high belief, then subsequent low-confidence recognitions
which do not contain s∗ will not dislodge s∗ from the
top position, causing s∗ to differ from u1 (Figure 11d).

These definitions were encoded, and mechanism occur-
rences were detected automatically. Figure 4 shows occurrence
frequencies. In general, N-best synthesis was most common,
and confidence aggregation was least common. Prior re-
ranking did not occur at all in day and time because those
slots used a flat prior.

We next examined co-occurrences between mechanisms.
Confidence aggregation always occurs on its own, since –
unlike the other 3 mechanisms – it is only possible when the
slot value of the top belief state is not observed on the current
N-best list. The remaining 3 mechanisms occur in isolation
about two-thirds of the time.

Figure 5 shows the improvement/degradation of each mech-
anism on each slot/system. Although there are some trends,
there is no overall pattern. The next four sections examine
each mechanism in detail.

A. ASR re-ranking

Recall that the models that assigned (local) confidence
scores Pasr were not specifically designed to re-rank the ASR
N-best list, but as an artifact of their two-stage design, it was
possible for them to assign a higher confidence score to the
n = 2 item than the n = 1 item. We call this re-ordering ASR
re-ranking. Looking at ASR accuracy, we found that ASR re-
ranking consistently degraded ASR accuracy, with particularly
large degradations for time (−3.9% in DS1 and −3.4% in
DS2) and route (−1.9% in DS1 and −2.3% in DS2). The
ASR accuracy of day in DS1 was improved slightly, +0.6%.

DS1 and DS2 used different confidence models Pasr. When
DS1 was launched, there was no same-system data available,
so a large corpus of data from a different dialog system was
used to train the models [23]. This mismatch was one possible
cause of the degradation for DS1, so Pasr for DS2 was trained
on data from DS1. However, as mentioned above, ASR re-
ranking also reduced ASR accuracy in DS2. This suggests that
mis-matched training data is not the primary cause. Rather, it
seems a more sophisticated model for Pasr is required – i.e.,
one which is explicitly aware of the order of items on the
N-best list.

B. Prior re-ranking

Non-uniform priors were used in only route, from, and
to. Figure 5b shows that prior re-ranking improved accuracy
for route, substantially for DS1 and marginally for DS2. It
also improved accuracy for from and to in DS2, but degraded

40%

45%

50%

55%

60%

65%

70%

DS1 DS2 DS1 DS2 DS1 DS2

A
c
c
u
ra
c
y

System / slot

ASR 1-best Belief 1-best Belief 1-best, with flat prior (batch)

route from to

Fig. 6: Accuracy of ASR 1-best, belief 1-best, and belief 1-best
re-scored with a flat (uniform) prior.

accuracy for these slots in DS1. The explanations for these
results lay in key differences between DS1 and DS2.

The first key difference between DS1 and DS2 is how priors
were estimated. In DS1, an attempt was made to estimate
priors using a heuristic that avoided collecting usage data. The
heuristic assigned a prior proportional to the number of bus
stops the slot value referred to. For example, for locations,
“downtown” referred to many bus stops, but “the airport”
referred to just one. In DS2, priors were estimated from actual
usage observed in DS1.

For locations in DS1, this heuristic was a failure. The
problem is that the heuristic did not reflect the fact that certain
stops are more popular than others: for example, the airport
corresponded to a single bus stop, but it was very popular;
on the other hand, some neighborhoods had many bus stops
but were almost never requested, perhaps because ridership in
those neighborhoods was low. The net effect was that prior re-
ranking for locations in DS1 degraded performance. In DS2,
with priors estimated from (transcribed) usage data rather than
a heuristic, priors yielded an improvement in accuracy for
locations.

The second key difference between the systems is that
the number of routes covered was much larger in DS2 than
DS1. As mentioned above, the system could recognize any
route, but could only provide times for covered routes – for
others the system would report that it was unable to provide
any information. Covered routes had high priors; others had
very low priors. Most callers knew the set of covered routes,
reinforced by the system opening “East Pittsburgh bus times”
for DS1 and “Pittsburgh bus times” for DS2.

In DS1, the result was that most recognitions of non-covered
routes were errors; the strong prior moved covered routes to
the top of the belief state, yielding a large improvement for
belief tracking for route in DS1. In DS2, a larger set of routes
were now covered, so erroneous recognitions were no longer
obvious; as a result, prior re-ranking still helped for route in
DS2, but to a lesser extent.

To validate this explanation, belief tracking was re-run in
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belief tracking.

batch using a flat (uniform) prior. This removes the effect of
the prior, so the difference between the flat prior and the ASR
1-best includes only the effects of the other 3 mechanisms.
Results are in Figure 6. For from and to the flat prior result
is very close to the ASR 1-best baseline. For route in DS1
and DS2, the flat prior result is worse than the ASR 1-best
baseline: ASR re-ranking errors were highest for route, and
without the prior to correct these errors, they reduce accuracy.

The overall trend appears to be that the effectiveness of
prior re-ranking depends on how well the prior matches real
use. To verify this, we plotted the discrete Kullback-Leibler
(KL) divergence between the frequency of observation and
the model for each of these 3 slots across the 2 systems.
Figure 7 shows results. Within each slot, as the KL divergence
increases, accuracy of belief tracking decreases.

C. N-best synthesis

Performance for N-best synthesis was quite varied. For
route, from, to, and time, there was generally a negative (or
marginal) effect. For day, there was a large improvement for
DS1, and a moderate degradation for DS2.

Past work on DS1 suggested there were properties of N-
best lists that govern the effect of N-best synthesis [14];
however, we did not see those trends in DS2. So, to understand
the causes, each instance of a degradation caused by N-best
synthesis was examined by hand. It was quickly evident that
the primary cause of degradations was correlated ASR errors:
i.e., the same recognition error occurring repeatedly. The key
problem is that the update in Eq 1 – in particular Pasr –
assumes that confusions are distributed uniformly: correlations
cause repeated errors to be wrongly assigned too much belief
mass. As an example, Figure 8 shows observed confusions –
anywhere on the ASR N-best list – to the user saying the
(exact) words “twenty eight x”. A small number of items
account for most of the confusions. Table III shows an excerpt
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Fig. 8: Semantically incorrect items appearing in any location
on the ASR N-best list when the user said twenty eight x. For
space on the x axis, every second item is shown. The skew of
the curve shows that confusions are highly correlated.

TABLE III: Example of how correlated ASR errors cause N-
best synthesis to fail. The user says “sixty one a” twice. Items
in bold are repeatedly mis-recognized. The correct item is
underlined. Although the ASR 1-best is correct in the second
turn, the belief state 1-best is incorrect due to repeated mis-
recognitions of “sixty one”.

Turn 1 Turn 2
System: which route? System: which route?

User: sixty one a User: sixty one a

ASR Belief state ASR Belief state

sixty one g one sixty one a sixty one
g one sixty one sixty one sixty one a
one the one; one the y one g one
g g y one the one; one

sixty sixty one y one; the y one
p p the one sixty one c

eleven eleven sixty one d sixty one d
six six one d g

fifty one fifty one the one d sixty
the one sixteen sixty one c p
sixteen g one eleven

from a real call that illustrates how these correlated ASR errors
cause failures for N-best synthesis. Repeated confusions of
“sixty one” for the user’s request of “sixty one a” cause “sixty
one” to erroneously obtain the highest belief.

Table IV shows that correlated ASR errors are to blame
in 86% of erroneous instances of N-best synthesis. If these
were eliminated, the overall effect of N-best synthesis would
be positive.

Looking at day in DS2, we found a secondary cause for
degradations. Here, most of the degradations were caused by
the user saying “no” in response to the system confirming
an item which is semantically correct, even though the user
subsequently asked for the same item again. The user behavior
model Pact – which was based on hand-crafted heuristics
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TABLE IV: Causes of degradations in N-best synthesis.

Description Instances Percent

Degradations caused by error correlations 107 86%
Degradations not caused by error correlations 18 14%

Degradations (total) 125 100%
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Fig. 9: Histogram of number of times each slot was requested
by the system. The y axis shows the percent of each mini-call,
where a mini-call is the same as a call except that “start over”
begins a new mini-call.

– assigned a zero probability to this seemingly irrational
behavior. As a result the correct item was ranked very low
in the belief state.

Listening to these calls revealed that the confirmation
wording for day was creating confusion. For example, for a
call on Friday, one user said “today” but the system asked
“Did you say Friday?”. Similarly, another user said “tonight”
and the system asked “Did you say today?” – the two are
semantically identical to the system. In addition to improving
this confirmation strategy, it is clear that the user action model
(like the priors) can be difficult to predict and should be
estimated from real usage data.

D. Confidence aggregation

Figure 5d shows that confidence aggregation had an overall
positive effect, with day in DS1 being the most pronounced.
The one exception was time in DS2, where there was a
negative effect.

Confidence aggregation has more opportunity to occur when
questions are more often asked repeatedly. Figure 9 shows
histograms of how many times each slot was requested. In
most cases, slots were most often requested once; however,
day in DS1 and time in DS2 were usually requested more
times.

Based on past investigation, we were aware that day in DS1
had a bug that set priors to be an order of magnitude too low
[14]. As a result, more requests were required to obtain belief
values above the (manually-set) threshold required to progress.
This bug in day in DS1 was fixed in DS2. Unfortunately we
found that, in the course of updating DS2, the same problem

was inadvertently introduced to time in DS2. These bugs
explain why these questions were more often asked repeatedly,
and the disproportionately high counts of day utterances in
DS1 and time utterances in DS2 in Table I.

But why was belief tracking accuracy for day in DS1
improved, whereas time in DS2 was degraded? The underlying
cause was ASR re-ranking errors earlier in the dialogs. For
day in DS1, ASR re-ranking yielded a small (anomalous)
improvement to ASR accuracy; for time in DS2, ASR re-
ranking yielded a large degradation to ASR accuracy (cf
Section IV-A). Confidence aggregation amplifies these effects
by carrying them forward in the dialog.

Overall this again illustrates the importance (and difficulty!)
of setting model parameters correctly, and the fragility of
current belief tracking methods to incorrectly specified pa-
rameters.

V. ANALYSIS OF DISCRIMINATION

The analysis in the preceding sections assessed the accuracy
of the belief state. In practice, a system must decide whether to
accept or reject a hypothesis, so it is also important to evaluate
the ability of the belief state to discriminate between correct
and incorrect hypotheses. We studied this by plotting receiver
operating characteristic (ROC) curves for each slot, in Figure
10. The ASR 1-best u1 is shown using the computed Pasr(u1),
and the top belief hypothesis s∗ is shown using its belief b(s∗).

Where the belief state has markedly higher accuracy – route
and day in DS1 – the belief state shows better ROC results,
especially at higher false-accept rates. However, gains in ROC
performance appear to be due entirely to gains in accuracy:
in slots where accuracy is similar between belief tracking
and ASR accuracy, the belief state shows similar or worse
performance. time in DS2 was particularly affected, by the
negative effect of ASR re-ranking, further compounded by
confidence aggregation.

Overall, the trend appears to be that if belief tracking does
not improve over ASR 1-best, then it seems that belief tracking
does not enable better accept/reject decisions to be made.
This suggests an important area for improvement for current
techniques, and the next section suggests one avenue for future
work.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper has presented an in-depth analysis of 2 versions
of one of the first statistical dialog systems in public use. The
structure of the system – which maintains 5 independent belief
states across slots with quite different properties – together
with the fact that 2 versions were deployed provides a unique
opportunity for analysis.

Overall, the findings have underscored the importance (and
difficulty!) of correctly estimating each model component.
Mismatches in all 3 component models – i.e., the models
of ASR errors Pasr, user behavior Pact, and goal priors b0 –
caused degradations compared to the top speech recognition
hypothesis. It is important to estimate models from data, and
check the component models prior to deployment.
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Fig. 10: ROC curves for each slot. to is very similar to from and is omitted for space. X-axis shows false accepts, Y-axis
shows true accepts. The solid black line is the belief 1-best; the dotted line is the ASR 1-best. Better ROC curves tend to the
upper left. The difference in each pair of curves’ maximum values on the Y-axis corresponds to bar heights in Figure 3.

The systems in this paper were on-line only briefly, so there
was limited opportunity to learn from interaction data. In the
future, with sufficient data, it would be useful to add features
to increase model accuracy. For example, the prior might
benefit from adding actual bus ridership counts, the user’s
location, the user’s past requests, the time of day, day of week,
presence of special events like sports events, etc. It would
also be worthwhile comparing the effects of parameters in the
dialog model with parameters in the language model – the
systems here used unweighted, rule-based language models.
In addition, ideally all parameters (including priors) would
be inferred and updated automatically from use on-line, and
methods for doing this have been proposed [24], [25].

More broadly, the analysis here suggests fundamental weak-
nesses may be present in the formulation of the model, not
merely in parameter estimates. For example, error correlations
are not currently being modeled, and they are harming per-
formance. The lackluster discrimination in the belief state is
more troubling, suggesting that the form of the update as a
generative model (Eq 1) may be problematic.

In future work, we plan to explore discriminative models
for dialog state tracking [26]. Unlike the generative model
analyzed in this paper (and common in the literature), dis-
criminative methods are optimized specifically for discrim-
ination. As such we expect they would show better ROC
performance than generative models did (Figure 10). Also,
discriminative methods have been suggested as being more
robust to correlated ASR errors (cf [27], p 102). By including
features describing past recognitions, a discriminative method
may be able to learn error recurrence patterns in the data,
unlike generative models which currently assume recognitions
are independent. Of course, discriminative methods rely on
collecting in-domain dialog data, but as this study has shown,
in-domain data appears to be required to obtain good perfor-
mance from generative models.

Looking ahead, the recent rise of personal assistants on
mobile phones may provide an exciting new application. With
an open vocabulary, multi-domain concept space, and wide-
ranging noise conditions, speech recognition is challenging,
creating a clear need for added robustness. Since these systems
are used on a massive scale, with many repeat users, there is
the potential to learn good, personalized models. This is a rich
area for future work, including the challenges of scaling to a
large, multi-domain (or possibly open-domain) concept space.

In sum, statistical dialog systems have seen substantial
progress in the past decade, moving from toy problems to
simulation and on to lab studies. The first public deployments
have provided an opportunity to test whether these methods
achieve their aim of improving robustness to ASR errors in
practice. This paper has found that performance gains are
only sometimes realized. If models are not properly estimated,
there are no performance benefits. Moreover, proper estimation
is deceptively difficult. On the other hand, when models are
properly estimated – in this study, route and day in DS1 and
from and to in DS2 – increased robustness to ASR errors is
achieved.

APPENDIX A
DERIVATION OF UPDATE EQUATION

The belief update computes a distribution over hidden
variables given the system’s action, the observed ASR result,
and the previous distribution over hidden variables. In this
paper, two hidden variables are relevant: the user’s true action
u and the user’s goal s. Other formulations include other
components such as the dialog history [5], but these are not
necessary for this paper.

Formally, we seek to estimate

b′(s′, u′) = P (s′, u′|a, o′, b).
where a is an observed system action, o′ is an observed ASR
output, s′ is a hidden user goal, u′ is a hidden user action,
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b is the current distribution over hidden states, and b′ is the
updated distribution over hidden states.

Expanding using basic probability theory yields

b′(s′, u′) =

P (s′, u′|a, o′, b)
P (o′|s′, u′, a, b)p(s′, u′|a, b)

P (o′|a, b)
P (o′|s′, u′, a, b)

∑
s

∑
u P (s′, u′|s, u, a, b)P (s, u|a, b)
P (o′|a, b)

P (o′|s′, u′, a, b)
∑

s

∑
u P (s′, u′|s, u, a)b(s, u)

P (o′|a, b)
.

o′, a, and b are fixed for any s′, and can be written as a
constant k

k =
1

P (o′|a, b)
.

Substituting,

b′(s′, u′) =

k · P (o′|s′, u′, a, b)
∑
s

∑
u

P (s′, u′|s, u, a)b(s, u).

The ASR result depends only on the user’s action
P (o′|s′, u′, a, b) = P (o′|u′):

b′(s′, u′) = k · P (o′|u′)
∑
s

∑
u

P (s′, u′|s, u, a)b(s, u).

Decomposing P (s′, u′|s, u, a) yields

b′(s′, u′) =

k · P (o′|u′)
∑
s

∑
u

P (s′|s, u, a)P (u′|s′, s, u, a)b(s, u).

We assume that the user’s new goal s′ depends only on their
previous goal s and the system action a, and that the user’s
action u′ depends only on their (new) goal s′ and the system’s
action a:

b′(s′, u′) = k · P (o′|u′)
∑
s

∑
u

P (s′|s, a)P (u′|s′, a)b(s, u)

= k · P (o′|u′)
∑
s

P (s′|s, a)P (u′|s′, a)
∑
u

b(s, u)

= k · P (o′|u′)P (u′|s′, a)
∑
s

P (s′|s, a)b(s)

In the dialog systems in this paper, actions are chosen based
on the (marginal) distribution over user goals s′; marginalizing
the user’s action u′ yields∑
u′

b′(s′, u′) =
∑
u′

k · P (o′|u′)P (u′|s′, a)
∑
s

P (s′|s, a)b(s)

b′(s′) = k ·
∑
u′

P (o′|u′)P (u′|s′, a)
∑
s

P (s′|s, a)b(s)

Also, in this dialog system, it is assumed that the user’s goal s′

is fixed – i.e., P (s′|s, a) = δ(s′, s), where δ is the Kronecker
delta function:

b′(s′) = k ·
∑
u′

P (o′|u′)P (u′|s′, a)
∑
s

δ(s′, s)b(s)

b′(s′) = k ·
∑
u′

P (o′|u′)P (u′|s′, a)b(s′)

Finally, note that P (o′|u′) is a generative model of ASR
results, which is difficult to estimate. So in practice P (o′|u′)
is usually re-written

P (o′|u′) =
P (u′|o′)P (u′)

P (o′)
.

It is then assumed that P (u′) is uniform. While this is not
strictly true, it is reasonable given that the update already
includes P (u′|s′, a), which is more specific than P (u′). Thus
P (u′) and P (o′) are both constant, so we can write:

P (o′|u′) ≈ ηP (u′|o′),

where η is a constant. Substituting into the update:

b′(s′) = k ·
∑
u′

P (u′|o′)P (u′|s′, a)b(s′)

where k is still a normalization constant, although its definition
has changed. Dropping the (now unnecessary) prime from
variables and labeling the two probability models yields the
update in Eq 1

b′(s) = k ·
∑
u

Pasr(u)Pact(u|s, a)b(s).

APPENDIX B
MECHANISM DETAIL

Figure 11 provides graphical illustrations of each of the
four mechanisms that can cause the top ASR hypothesis
u1 to be different from the top belief state hypothesis s∗.
These examples were taken from logs of calls with real users,
although some surface forms have been simplified for space.

At the top of each panel is the system action taken. The
user’s true response is shown in italics in the left-most column.
The second column shows the top 7 entries from the ASR
N-best list, displayed in the order produced by the speech
recognition engine. The third column shows the confidence
score – the local probability of correctness assigned to each
ASR N-best entry by Pasr. The last column shows the resulting
belief state b(s∗), sorted by the magnitude of the belief.
Correct entries are shown in bold.

ASR re-ranking and prior re-ranking occur within one turn,
and confidence aggregation and N-best synthesis occur across
two turns. These examples all show cases where the belief state
is correct and the ASR is incorrect; however, the opposite also
occurs of course.
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ASR 
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action

"seven AM"

System : "What time are you leaving?"

(a) Illustration of ASR re-ranking: The correct ASR hypothesis
(“seven AM”) is in the n = 2 position, but it is assigned a higher
confidence score than the misrecognized n = 1 entry “seven PM”.
time uses a flat prior, so the higher confidence score results in “seven
AM” attaining the highest belief.

ASR 
Result

Conf
Score

Belief 
State

84C

54C

--

--

--

--

--

54C

84C

--

--

--

--

--

1

2

3

4

5

6

7

User 
action

"54C"

System : "Say a bus route, or say I'm not sure."

(b) Illustration of Prior re-ranking: The correct ASR hypothesis
(“54C”) is in the n = 2 position, and it is assigned less confidence
by Pasr than the mis-recognized n = 1 entry, “84C”. However, the
prior b0 on 54C is much higher than on 84C, so 54C obtains the
highest belief.

Fig. 11: Examples of the ASR re-ranking and prior re-ranking mechanisms. See below for Figures 11c and 11d.
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Result
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Belief 
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1

2

3

4

5

6

7

User 
action

"highland 
ave"

System : "Where are you leaving from?" System : "Sorry, where are you leaving from?"

(c) Illustration of N-best synthesis: In the first turn, the correct item “highland ave” is on the ASR N-best list but not in the top position.
It appears in the belief state but not in the top position. In the second turn, the correct item “highland ave” is again on the ASR N-best list
but again not in the top position. However, because it appeared in the previous belief state, it obtains the highest belief after the second
update. Even though “highland ave” was mis-recognized twice in a row, the commonality across the two N-best lists causes it to have
the highest belief after the second update.
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"tomorrow"

System : "Say the day you want, like today." System : "Sorry, say the day you want, like Tuesday."

(d) Illustration of Confidence aggregation: In the first turn, “tomorrow” is recognized with medium confidence. In the second turn,
“tomorrow” does not appear on the N-best list; however the recognition result has very low confidence, so this misrecognition is unable
to dislodge “tomorrow” from the top belief position. At the end of the second update, the belief state’s top hypothesis of “tomorrow” is
correct even though it didn’t appear on the second N-best list.

Fig. 11: Examples of the N-best synthesis and confidence aggregation mechanisms. See above for Figures 11a and 11b.
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