

Faculty
Summit
2016

Machine learning for CRISPR gene editing

Nicolo Fusi

Microsoft Research

Microsoft Research, New England

Acknowledgements

Broad Institute of MIT and Harvard

John Doench

Meagan Sullender Mudra Hegde Emma W. Vaimberg Katherine Donovan Ian Smith David Root

Microsoft Research

Jennifer Listgarten

Washington University School of Medicine
Zuzana Tothova

Dana Farber Cancer Institute
Craig Wilen
Robert Orchard
Herbert W. Virgin

HEALTH

The New York Times

A Powerful New Way to Edit DNA

By ANDREW POLLACK MARCH 3, 2014

Could the DNA-editing CRISPR revolutionize medicine?

By Carina Storrs, Special to CNN

① Updated 12:22 PM ET, Wed August 12, 2015

ting CRISPR ine?

HEALTH

A Powerful New Way

By ANDREW POLLACK MARCH 3, 2014

 $\textbf{Stephen B Montgomery} @ \text{sbmontgom} \cdot 2 \text{h} \\$

With CRISPRs my lab is picking and choosing what X-men they want to be @wired #crisprfacts @dgmacarthur

smarf dos @smarfdoc · Aug 20 CRISPR can turn you into a baby ALL OVER AGAIN #crisprfacts #late

Matthew Cobb @matthewcobb

CRISPR is both gold AND blue #crisprfacts

Chris Dwan @fdmts

@dgmacarthur @EricTopol CRISPR cannot be overhyped. CRISPR proves P = NP. #crisprfacts

Henry Scowcroft @oh_henry

If you genetically edit the lettuce genome, you can make it CRISPR #crisprfacts

Terry D. Johnson @terrydjohnson

Peter Jackson worked with CRISPR to edit The Lord of the Rings. CRISPR was unavailable for The Hobbit. #crisprfacts

Promising results for translational medicine

Proof of principle in stem cells/model organisms:

- Remove CCR5 receptor used by HIV.1
- Correct a CFTR defect associated with cystic fibrosis.²
- Corrected muscular dystrophy gene to produce cured mice.³

- 1. Mandal et al, Cell Stem Cell 2014
- 2. Schwank et al, Cell Stem Cell 2013
- 3. Long et al, Science 2014

Not quite ready for prime time

Want Have

Not quite ready for prime time

Two problems and two solutions:

- 1. Better "on-target" efficiency needed: Azimuth.
- 2. Elimination/reduction of "off-target" effects: *Elevation*.

Solution paths:

- Smarter/improved lab protocols.
- Machine learning.

A short intro to CRISPR for gene editing

Originates from two-part bacterial defense mechanism

Gene editing using CRISPR

Not quite ready for prime time

Two problems and two solutions:

- 1. Better "on-target" efficiency needed: Azimuth.
- 2. Elimination/reduction of "off-target" effects: *Elevation*.

Solution paths:

- Smarter/improved lab protocols.
- Machine learning.

Machine learning predictive modelling for CRISPR

In silico prediction of guide efficiency

Input features

(e.g. guide sequence, GC content of target gene)

y =effective

Measured guide efficacy

(e.g. "working" vs "not working")

Model

(e.g. Logistic Regression)

Azimuth: our state-of-the art approach

- Investigate and use richer features of the RNA guide.
- Removed information bottlenecks to the supervised signal.
- Investigate richer model classes.

Azimuth: our state-of-the art approach

- Investigate and use richer features of the RNA guide.
- Removed information bottlenecks to the supervised signal.
- Investigate richer model classes

Featurization of a guide

20mer guide

NGG PAM

TGGAGGCTGCTTTACCCGCTGTGGG**GG**CGC

4mer extra context

3mer extra context

$$\vec{x} = [x_1, x_2, ..., x_M] = [0, 1, 1, 0, ... 3.4, 0, 1, 0, 0, 0, 9.8, 0, 0, 0.1]$$

J.A.J.

Just Ask John

Melting temperatures

temperature at which half of the DNA strands are in the random coil or single-stranded (ssDNA) state.

TGGAGGCTGCTTTACCCGCTGTGGGGGCGC

30mer

5mer proximal to PAM

8mer in position 8-15 of 20mer guide

5mer in position 3-7 of 20mer guide

[credit: McGovern Institute for Brain Research at MIT]

Additional features improve performance

Azimuth: our state-of-the art approach

- Investigate and use richer features of the RNA guide.
- Removed information bottlenecks to the supervised signal.
- Investigate richer model classes.

Non-linear modelling

- Simple linear models are incapable of representing or capturing complex interactions between the variables.
- For the final model we use Gradient-Boosted Regression Trees (GBRTs)
- An ensemble of weak predictors (regression trees).
- Each RT is trained on the residuals of the previous one.
- GBRTs can easily handle non-homogeneous data (mix of categorical and continuous).

Systematic comparison of models

Impact of our Azimuth model

- Nature Biotechnology 2016.
- Recommended by independent studies (Haeussler et al. 2016).
- Adoption by two startups and academics/researchers worldwide.
- Azure ML service ~1000 requests/day, doubling every 3 months
- Web service ~300 requests/day.
- Over 1000 open-source software downloads.

http://research.microsoft.com/en-us/projects/azimuth

Not quite ready for prime time

Two problems and two solutions:

- 1. Better "on-target" efficiency needed: Azimuth.
- 2. Elimination/reduction of "off-target" effects: *Elevation*.

Solution paths:

- Smarter/improved lab protocols.
- Machine learning.

Elevation: prediction of off-target effects

Much more challenging than on-target:

- For just one single guide need to check for imperfect matches genome-wide.
- Combinatorial explosion of mismatches, hard to get enough training data.

intended target

GGCTGCTTTACCCGGTGTGGG

..CTATAACTGGCAGCTCTACCCGGTGTGGGACAAG...
whole genome—potential off-targets

Combinatorial explosion (for 1 guide in 1 gene)

1 mismatch: 69 sites

2 mismatches: 2277 sites

3 mismatches: 47,817 sites

4 mismatches: 717,255 sites

5 mismatches: 8,176,707 sites

1 full example

very sparsely sampled across different genes

Previous state-of-the-art approach: CFD (Doench et al 2016)

intended target

GGCTGCTTTTACCCGGTGTGGG

...CTATAACTGGCAGCTCTACCCGGTGTGGGACAAG...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

categorical (i.e. one-hot) encoding of single mismatch and position

Previous state-of-the-art approach: CFD (Doench et al 2016)

$$CFD \approx \prod_{i} P(Y = 1 | X_i = 1)$$

- Measured off-target activities (on a continuous scale) are discretized in present (1) vs not present (0).
- CFD computes probability of off-target given mismatch.
- Probabilities are aggregated assuming conditional independencies.

Elevation: generalizations of CFD

$$CFD \approx \prod_{i} P(Y = 1 | X_i = 1)$$

- 1. Change from classification to regression for $P(Y = 1 | X_i = 1)$.
- 2. Augment the feature space from T:C,8.
- 3. Use non-linear regression model for $P(Y=1|X_i=1)$, in particular Boosted Regression trees.
- 4. Refine predictions with a second model layer using the multimismatch data.

Elevation: generalizations of CFD

Goal 1: make better use of the better-sampled 1 mismatch data $P(Y = 1 | X_i = 1)$

- 1. Change from classification to regression for $P(Y = 1 | X_i = 1)$.
- 2. Augment the feature space from T:C,8.
- 3. Use non-linear regression model for $P(Y=1|X_i=1)$, in particular Boosted Regression trees.
- 4. Refine predictions with a second model layer using the multi-mismatch data.

Elevation: generalizations of CFD

Goal 2: relax independence and other assumptions using sparsely-sampled data

- 1. Change from classification to regression for $P(Y=1|X_i=1)$
- 2. Augment the feature space from T:C,8
- 3. Use non-linear regression model for $P(Y=1|X_i=1)$, in particular Boosted Regression trees.
- 4. Refine predictions with a second model layer using the multimismatch data.

Cascading from single mismatch to multi-mismatch

- 1. Non-linear regression model trained on 1-mismatch data.
 - Complex model capturing interactions
 - Can only compute predictions for 1 mismatch at a time

Flevation-naive

- 2. Linear model trained on scarce multi-mismatch data
 - Relatively simple model
 - Trained on individual and aggregated predictions (e.g. product, sum) from layer 1

Elevation

Elevation outperforms CFD by 64%

- Elevation spearman $\rho = 0.59$
- CFD spearman $\rho = 0.36$
- 64% improvement $(p = 5.5 \times 10^{-5})$

Elevation performs best on 4/5 other data sets

Mitigation of assumptions

Quantitative correction from the full-assumptions model

Putting it all together

- Elevation cloud prediction server.
- Open source code.
- Framework to efficiently search genome-wide for mismatches and call Azimuth & Elevation.

Acknowledgements

Broad Institute of MIT and Harvard

John Doench

Meagan Sullender Mudra Hegde Emma W. Vaimberg Katherine Donovan Ian Smith David Root

Microsoft Research

Jennifer Listgarten

Washington University School of Medicine
Zuzana Tothova

Dana Farber Cancer Institute
Craig Wilen
Robert Orchard
Herbert W. Virgin