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Promising results for translational medicine

Proof of principle in stem cells/model organisms:

• Remove CCR5 receptor used by HIV.1

• Correct a CFTR defect associated with cystic fibrosis.2

• Corrected muscular dystrophy gene to produce cured 
mice.3

1. Mandal et al, Cell Stem Cell 2014

2. Schwank et al, Cell Stem Cell 2013

3. Long et al, Science 2014



Not quite ready for prime time
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Not quite ready for prime time

Two problems and two solutions:

1. Better “on-target” efficiency needed: Azimuth.

2. Elimination/reduction of “off-target” effects: Elevation.

Solution paths:

• Smarter/improved lab protocols.

• Machine learning.



A short intro to CRISPR for gene editing

Science 2007 Science 2012

CRISPR = Clustered Regularly Interspaced Short Palindromic Repeats



Originates from two-part bacterial defense 
mechanism

Viral scrapbook

Cut & paste mechanism



Gene editing using CRISPR

DNA to be edited
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Machine learning predictive modelling for CRISPR

…

𝑦 = not effective

𝑦 = effective

𝑦 = very effective

𝑦 = not effective

𝑓(𝑥Ԧ)

𝑓(𝑥Ԧ)

𝑓(𝑥Ԧ)

𝑓(𝑥Ԧ)DNA to be edited



In silico prediction of guide efficiency

Input features 
(e.g. guide sequence,

GC content of target gene)

Model
(e.g. Logistic 
Regression)

Measured guide efficacy
(e.g. “working” vs “not working”)

𝑓(𝑥Ԧ)



Azimuth: our state-of-the art approach

• Investigate and use richer features of the RNA guide.

•Removed information bottlenecks to the supervised 
signal.

• Investigate richer model classes.
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Featurization of a guide

TGGAGGCTGCTTTACCCGCTGTGGGGGCGC

3mer extra context4mer extra context

20mer guide NGG PAM

𝑥Ԧ =                          = [0,1,1,0, … 3.4, 0,1,0,0,0,9.8, 0,0,0.1]



J.A.J.



Just Ask John



Melting temperatures
temperature at which half of the DNA strands are in the random coil or single-
stranded (ssDNA) state.

TGGAGGCTGCTTTACCCGCTGTGGGGGCGC
30mer

5mer proximal to PAM

8mer in position 8-15 of 20mer guide

5mer in position 3-7 of 20mer guide
[credit: McGovern Institute for Brain Research at MIT]



*old feature

*

*

*

Additional features improve performance

evaluated using L1 regression
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Non-linear modelling

• Simple linear models are incapable of 
representing or capturing complex interactions 
between the variables.

• For the final model we use Gradient-Boosted 
Regression Trees (GBRTs)

• An ensemble of weak predictors (regression 
trees).

• Each RT is trained on the residuals of the 
previous one.

• GBRTs can easily handle non-homogeneous data 
(mix of categorical and continuous).



Systematic comparison of models

* *



Impact of our Azimuth model

http://research.microsoft.com/en-us/projects/azimuth

• Nature Biotechnology 2016.
• Recommended by independent studies (Haeussler et al. 2016).
• Adoption by two startups and academics/researchers worldwide.
• Azure ML service ~1000 requests/day, doubling every 3 months
• Web service ~300 requests/day.
• Over 1000 open-source software downloads.
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Elevation: prediction of off-target effects

Much more challenging than on-target:

• For just one single guide need to check for imperfect matches 
genome-wide.

• Combinatorial explosion of mismatches, hard to get enough 
training data.

GGCTGCTTTACCCGCTGTGGG
intended target

…CTATAACTGGCAGCTCTACCCGGTGTGGGACAAG…
whole genome—potential off-targets



Combinatorial explosion (for 1 guide in 1 gene)

1 mismatch:  69 sites

2 mismatches: 2277 sites

3 mismatches: 47,817 sites 

4 mismatches: 717,255 sites 

5 mismatches: 8,176,707 sites 

1 full example

very sparsely 
sampled across 
different genes



Previous state-of-the-art approach: CFD (Doench et al 2016)

GGCTGCTTTACCCGCTGTGGG

intended target

…CTATAACTGGCAGCTCTACCCGGTGTGGGACAAG…
1   2  3 4  5  6 7  8 9 10 11 12 13 14 15 16 17 18 19 20

featurization

T:C,8
categorical (i.e. one-hot) encoding of single mismatch and position



Previous state-of-the-art approach: CFD (Doench et al 2016)

• Measured off-target activities (on a continuous scale) are discretized in 
present (1) vs not present (0).

• CFD computes probability of off-target given mismatch.
• Probabilities are aggregated assuming conditional independencies.



Elevation: generalizations of CFD

1. Change from classification to regression for 𝑃 𝑌 = 1 𝑋𝑖 = 1 .

2. Augment the feature space from T:C,8.

3. Use non-linear regression model for 𝑃 𝑌 = 1 𝑋𝑖 = 1 , in 
particular Boosted Regression trees.

4. Refine predictions with a second model layer using the multi-
mismatch data.
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Goal 1: make better use of the better-sampled 1 mismatch 
data



Elevation: generalizations of CFD

1. Change from classification to regression for 𝑃 𝑌 = 1 𝑋𝑖 = 1 .

2. Augment the feature space from T:C,8.

3. Use non-linear regression model for 𝑃 𝑌 = 1 𝑋𝑖 = 1 , in 
particular Boosted Regression trees.

4. Refine predictions with a second model layer using the multi-
mismatch data.

Goal 2: relax independence and other assumptions using 
sparsely-sampled data



Cascading from single mismatch to multi-mismatch

1. Non-linear regression model trained on 1-mismatch data.
• Complex model capturing interactions
• Can only compute predictions for 1 mismatch at a time

2. Linear model trained on scarce multi-mismatch data
• Relatively simple model
• Trained on individual and aggregated predictions (e.g. 

product, sum) from layer 1

Elevation-naive

Elevation



Elevation outperforms CFD by 64%

• Elevation spearman 𝜌 = 0.59

• CFD spearman 𝜌 = 0.36
• 64% improvement (𝑝 = 5.5 × 10−5) 



Elevation performs best on 4/5 other data sets



Mitigation of assumptions

Quantitative correction from the full-assumptions model 



Putting it all together

• Elevation cloud prediction server.
• Open source code. 
• Framework to efficiently search genome-wide for 

mismatches and call Azimuth & Elevation.
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