m Microsoft

What's Changing
in Big Data?

Matei Zaharia
Stanford University

Background

The first big data systems
were designed 10 years ago

What's changed since then?

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks

Michael Isard Mihai Budiu Yuan Yu
Microsoft Research, Silicon Valley ~ Microsoft Research, Silicon Valley ~ Microsoft Research, Silicon Valley

Andrew Birrell

Microsoft Research, Silicon Valley

ABSTRACT

Dryad is a general-purpose distributed execution engine for
coarse-grain data-parallel applications. A Dryad applica-
tion combines computational “vertices” with communica-
tion “channels” to form a dataflow graph. Dryad runs the
application by executing the vertices of this graph on a set of
available computers, communicating as appropriate through
files, TCP pipes, and shared-memory FIFOs.

The vertices provided by the application developer are
quite simple and are usually written as sequential programs
with no thread creation or locking. Concurrency arises from
Dryad scheduling vertices to run simultaneously on multi-
ple computers, or on multiple CPU cores within a computer.
The application can discover the size and placement of data
at Tun time, and modify the graph as the computation pro-
gresses to make efficient use of the available resources.

Dryad is designed to scale from powerful multi-core sin-
gle computers, through small clusters of computers, to data
centers with thousands of computers. The Dryad execution
engine handles all the difficult problems of creating a large
distributed, concurrent application: scheduling the use of
computers and their CPUs, recovering from communication
or computer failures, and transporting data between ver-
tices.

Categories and Subject Descriptors

D.1.3[PROGRAMMING TECHNIQUES]: Concurrent
Programming —Distributed programming

General Terms
Performance, Design, Reliability

Keywords

Concurrency, Distributed Programming, Dataflow, Cluster
Computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EuroSys*07, March 21-23, 2007, Lisboa, Portugal.

Copyright 2007 ACM 978-1-59593-636-3/07/0003 ...$5.00.

Dennis Fetterly

Microsoft Research, Silicon Valley

1. INTRODUCTION

The Dryad project addresses a long-standing problem:
how can we make it casier for developers to write efficient
parallel and distributed applications? We are motivated
both by the emergence of large-scale internet services that
depend on clusters of hundreds or thousands of general-
purpose servers, and also by the prediction that future ad-
vances in local computing power will come from increas-
ing the number of cores on a chip rather than improving
the speed or instruction-level parallelism of a single core
[3]. Both of these scenarios involve resources that are in
a single administrative domain, connected using a known,
high-performance communication topology, under central-
ized management and control. In such cases many of the
hard problems that arise in wide-area distributed systems
may be sidestepped: these include high-latency and unre-
liable networks, control of resources by separate federated
or competing entities, and issues of identity for authentica-
tion and access control. Our primary focus is instead on
the simplicity of the programming model and the reliability,
efficiency and scalability of the applications.

For many resource-intensive applications, the simplest way
to achieve scalable performance is to exploit data paral-
lelism. There has historically been a great deal of work
in the parallel computing community both on systems that
automatically discover and exploit parallelism in sequential
programs, and on those that require the developer to explic-
itly expose the data dependencies of a computation. There
are still limitations to the power of fully-automatic paral-
Ielization, and so we build mainly on ideas from the latter
research tradition. Condor [37] was an early example of such
a system in a distributed setting, and we take more direct
inspiration from three other models: shader languages devel-
oped for graphic processing units (GPUs) [30, 36], Google’s
MapReduce system [16], and parallel databases [18]. In all
these programming paradigms, the system dictates a com-
munication graph, but makes it simple for the developer to
supply subroutines to be executed at specified graph ver-
tices. All three have demonstrated great success, in that
large numbers of developers have been able to write con-
current software that is reliably exccuted in a distributed
fashion.

We believe that a major reason for the success of GPU
shader languages, MapReduce and parallel databases s that
the developer is explicitly forced to consider the data paral-
lelism of the computation. Once an application is cast into
this framework, the system is automatically able to provide
the necessary scheduling and distribution. The developer

lions are conceptu-
put data is usually
¢ distributed across
n order to finish in

ies of how to par-
data, and handle

al simple compu-
code to deal with

designed a new
simple computa-
es the messy de-
data distribution
abstraction is in-
es present in Lisp
We realized that
lying a map op-

r input in order to
pairs, and then

parallclization

utations, combined

scribes an imple-
ce tailored towards
Section 4 de-

g ning model
has performance

n for a variety of
Reduce within
using it as the basis

My Perspective

APACHE Open source processing engine

Spr’(and set of libraries

‘databriCkS” Cloud service based on Spark

Three Key Changes

@ Users: engineers = analysts

@ Hardware: I/O bottleneck =» compute

@ Delivery: the public cloud

Changing Users

Initial users: software engineers

« Use Java, C#, C++ to create large projects
 Build apps out of low-level operators

New users: data scientists & analysts
« SQL-like and scripting languages
* Bl tools, e.g. Tableau

Example: Languages Used for Spark

2014 Languages Used 2015 Languages Used

I I B

t!: Scala = & python

84%

Original Spark AP|

Functional API targeting Java / Scala developers
 Resilient Distributed Datasets (RDDs): collections with functional operators

lines = spark.textFile(“hdfs://...”)
points = lines.map(line => parsePoint(line))
points.filter(p => p.x > 100).count()

Challenge with Functional API

Looks high-level, but hides many semantics of program

« Functions are arbitrary blocks of Java bytecode
« Data stored is arbitrary Java objects

Users can mix APIs in suboptimal ways

Which Operator Causes the Most Issues?

map
filter
groupBy

sort

union

join
leftOuterloin

rightOuterlJoin

reduce
count

fold
reduceByKey
groupByKey
cogroup

Cross

Zip

sample
take

first
partitionBy
mapWith
pipe

Save

Example Problem

pairs = data.map(word => (word, 1))

groups = pairs.groupByKey() <4 Materializes all groups
as Seq[Int] objects

\ Then promptly

aggregates them

groups.map((k, vs) => (k, vs.sum))

Solution: DataFrames and Spark SQL

Efficient API for structured data (known schema)
« Based on the popular “data frame” APl in Python and R

Optimized execution similar to RDBMS

SIGMOD 2015

Spark SQL: Relational Data Processing in Spark

Michael Armbrustt, Reynold S. Xint, Cheng Liant, Yin Huait, Davies Liut, Joseph K. Bradley,
Xiangrui Meng', Tomer Kaftan:, Michael J. Franklin'#, Ali Ghodsi', Matei Zaharia'™

tDatabricks Inc. *MIT CSAIL 'AMPLab, UG Berkeley

ABSTRACT While the popularity of relational systems shows that u rsﬂe

fer writing declarativ queesthreltalpp ach is insuffi-
Spark SQL is a new module in Apache Spark that integrates rela- p“’
mpars 33 18 2 fiew moch e i Aparie Spark hat It gAPIB e ient for many big data applications. First, users want to P"'rfm‘

Execution Steps

EIRt-S
ST

{Logicaﬂ Optimizer (Physicaﬂ Code { RDDSJ

Plan J L Plan JGenerator

Programming Model

DataFrames hold rows with a known schema and offer
relational ops through a DSL

users = ctx.sqgl(“select * from hive.users”)

ca_users = users[users.state == “CA”]
\

J

ca_users.count() Expression AST
ca_users.groupBy(“name”).avg(“age”)

ca_users.map(lambda row: row.name.upper())

What DataFrames Enable

1. Compact binary representation
2. Optimization across operators (e.g. join ordering)
3. Runtime code generation

Aggregation benchmark (s)

DataFrame R
DataFrame Python
DataFrame Scala
RDD Python

RDD Scala

Other Declarative APIs in Spark

Machine Learning
Pipelines

Modular APl based on scikit-learn ,
g All built on DataFrames

enables cross-library optimization

GraphFrames
Relational + graph operations

Structured Streaming

Three Key Changes

@ Users: engineers = analysts

@ Hardware: I/O bottleneck =» compute

@ Delivery: the public cloud

Hardware Trends

2010

50+MB/s

Storage (HDD)

Network 1Gbps

CPU ~3GHz

Hardware Trends

Storage

Network

CPU

2010

50+MB/s
(HDD)

1Gbps

~3GHzZ

2016

500+MB/s
(SSD)

10Gbps

~3GHzZ

Hardware Trends

Storage

Network

CPU

2010

50+MB/s
(HDD)

1Gbps

~3GHzZ

2016

500+MB/s
(SSD)

10Gbps

~3GHzZ

10X

10X

Summary

In 2005-2010, I/0O was the name of the game

« Network locality, compression, in-memory caching

Now, CPU and DRAM are often bottlenecks

* Many current systems are 2-10x off peak performance

In-Memory Performance Gap

Results from Nested Vector Language (NVL) project at MIT

B Current in-memory
systems

B Hand tuned code

HyPer GraphMat TensorFlow
Database PageRank Word2Vec

Spark Effort: Project Tungsten

Optimize Spark’s CPU and memory usage via manual
memory management and code generation

Spark 1.djj 14M
rows/s

spark 2. "

rows/s

Three Key Changes

@ Users: engineers = analysts

@ Hardware: I/O bottleneck =» compute

@ Delivery: the public cloud

Cloud Requires a Rethink of Systems

 Multi-tenant

* Fully measured

« Elastic

« Continuously updated

Must design an organization, not a piece of software

Conclusion

Big data systems are now widely deployed, but still
face big usability challenges

If you want a large set of apps and libraries, Spark
DataFrames, ML Pipelines, etc are open source

