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Abstract

We studied the semi-supervised training in a fully connected
deep neural network (DNN), unfolded recurrent neural network
(RNN), and long short-term memory recurrent neural network
(LSTM-RNN) with respect to the transcription quality, the im-
portance data sampling, and the training data amount. We found
that DNN, unfolded RNN, and LSTM-RNN are increasingly
more sensitive to labeling errors. For example, with the simu-
lated erroneous training transcription at 5%, 10%, or 15% word
error rate (WER) level, the semi-supervised DNN yields 2.37%,
4.84%, or 7.46% relative WER increase against the baseline
model trained with the perfect transcription; in comparison, the
corresponding WER increase is 2.53%, 4.89%, or 8.85% in an
unfolded RNN and 4.47%, 9.38%, or 14.01% in an LSTM-
RNN. We further found that the importance sampling has sim-
ilar impact on all three models with 2~3% relative WER re-
duction comparing to the random sampling. Lastly, we com-
pared the modeling capability with increased training data. Ex-
perimental results suggested that LSTM-RNN can benefit more
from enlarged training data comparing to unfolded RNN and
DNN.

We trained a semi-supervised LSTM-RNN using 2600 hr
transcribed and 10100 hr untranscribed data on a mobile speech
task. The semi-supervised LSTM-RNN yields 6.56% relative
WER reduction against the supervised baseline.

Index Terms: semi-supervised learning, DNN, unfolded RNN,
LSTM-RNN, importance data sampling

1. Introduction

Semi-supervised learning, as a classical machine learning prob-
lem, has been researched extensively in both the theoreti-
cal [1, 2, 3, 4] and the applied machine learning communi-
ties [5, 6, 7, 8, 9]. The motivation behind is simple: human
labelled data is expensive and time consuming. In a mobile
speech service, constantly updating the acoustic model with
fresh speech data from latest production traffic has been found
to be important to achieve best production accuracy perfor-
mance. Therefore, semi-supervised training continues to be
thought of as an ideal and economic acoustic model develop-
ment strategy in a practical speech service system. This is espe-
cially true with the emerging new types of deep learning acous-
tic model with ever enlarged model capacity.

The self-training based semi-supervised acoustic model
training approach [10, 11, 12, 13], including its many varia-
tions, explicitly generates machine inferred transcription for un-
labeled data for model training. It is widely adopted in most
large-scale semi-supervised acoustic model training [15, 16]
due to its simplicity and good scalability. We will primarily
focus on this approach in this study.

In the past, there were good sources of semi-supervised
acoustic model training research in the Gaussian mixture hid-

den Markov model (GMM-HMM) [10, 11, 12, 13] and the fully
connected deep neural network hidden Markov model (DNN-
HMM) [14, 15, 16]. In this paper, we answer the question
with the immerging new types of deep learning acoustic model
what are the new challenges for the semi-supervised training
and what are the key strategies to address these problems.

Specifically, we studied three distinct factors of the semi-
supervised training: the transcription quality, the importance
data sampling, and the training data amount, in a fully con-
nected deep neural network (DNN) [18], unfolded recurrent
neural network (RNN) [19], and long short-term memory re-
current neural network (LSTM-RNN) [21].

‘We found that DNN, unfolded RNN, and LSTM-RNN ex-
hibits increased sensitivity to labeling errors. One point WER
increase in the training transcription translates to a half point
WER increase in DNN; while in LSTM-RNN it translates to
one full point WER increase. For example, with the simulated
erroneous training transcription at 5%, 10%, or 15% WER level,
the semi-supervised DNN yields 2.37%, 4.84%, or 7.46% rela-
tive WER increase comparing to the baseline model trained with
the human transcription; in contrast, the corresponding WER
increase is 2.53%, 4.89%, or 8.85% in an unfolded RNN and
4.47%, 9.38%, or 14.01% in an LSTM-RNN. Generating high
quality derived transcription and developing alternative LSTM
neurons which is less sensitive to labeling errors are the key to
the success of the high quality semi-supervised LSTM.

We further found that DNN, unfolded RNN, and LSTM-
RNN can similarly benefit from the importance data sampling
with 3% relative WER reduction comparing to the random sam-
pling in the supervised training setup. The gain was reduced in
the semi-supervised training setup.

Lastly, we compared the modeling capability with in-
creased amount of training data. LSTM-RNN can benefit more
from enlarged data comparing to unfolded RNN and DNN in
the supervised setup. In the semi-supervised setup with er-
roneous transcription, the gain is significantly reduced due to
its sensitivity to transcription errors. We conducted a semi-
supervised LSTM-RNN training using 2600 hr transcribed and
10100 hr untranscribed data on a mobile speech task. The semi-
supervised LSTM-RNN yields 6.56% average relative WER re-
duction against the supervised baseline.

The remainder of this paper is organized as follows:
Section 2 discusses the transcription quality factor in semi-
supervised DNN, unfolded RNN, and LSTM-RNN; Section 3
discuss the data sampling factor; Section 4 discuss the training
data amount factor; Section 5 concludes this study.

2. Transcription Quality

In this section, we study how transcription quality affects the
deep learning acoustic model training in DNN, unfold RNN,
and LSTM.



2.1. Model Formulation

All three deep learning acoustic models studied in this paper
share the same layer-wise deep structure for the input feature
to phonetic class mapping. The differences lie in whether a
recurrent network path exists and the specific type of neuron
used.

A DNN [13] is a fully connected feed-forward neural net-
work. The input signal x; is forward-propagated through the
hidden layers (W;, b;) until it reaches the last layer (L), where
the sigmoid non-linearity (o) is replaced by the softmax (¢):

ho = x¢
hi =oc(Wihi—1 + bz) 1<I<L (1)
yr = ¢(Wrhr_1+br) I=1L

An RNN [20] uses both the current (x:) and the previous
frames encoded as a history vector (h—1)) to predict the output

(ye):
{ ht = c(Wanxe + Wanhe—1) )

Yt = d(Whyhi—1)

The unfolded RNN [19] is obtained by unfolding an RNN into a
feed-forward network with certain time steps. It can be thought
of either as a feed-forward network with special temporal net-
work parameter tying or as a truncated simplified RNN.

An LSTM-RNN is a special type of re-current neural net-
work with specially designed memory cell. It determines what
to store and when to read, write or erasure via a set differen-
tiable gates, namely the input gate (i+), forgetting gate (f:), out-
put gate (o), and the control gate (c¢). The first three gates are
parameterized by a set of weight matrix (W.,, W.,,,, W..) con-
necting with the input (x), re-current cell activation (m), control
gate (c) respectively together with the bias. The control gate
(ct), with a slightly different parameterization, is determined
by the previous state of itself, the forgetting gate, and the input
gate. We adopted a similar LSTM-RNN structure as in [21]:

it = o(Wizxs + Wimmi—1 + Wicce—1 + b;)
fe = 0(Wiemy + Wiemmy—1 + Wyece—1 + by)
et =fr ©ci—1+ it © Weai—1 + Wemme—1 + be)
ot = O‘(Wozxt + Wommtfl + Wocct + bo)
my = 0y © h(ct)
yr = ¢(Wymmy + by)
3)
In the cross-entropy objective, a frame-level error signal
is calculated and the gradient is back-propagated through the
network for optimization. When a transcription error happens,
an incorrect gradient will be generated and back-propagated in
the optimization. In DNN, the incorrect gradient of the cur-
rent frame only affects the prediction of the current frame. In
unfolded RNN, the incorrect gradient can get accumulated and
affect the previous time step in the back propagation. In LSTM-
RNN, it has the recurrent structure, which can accumulative the
impact of the incorrect gradient; more importantly, the control
gate and the forgetting gate, which together define the special
memorization function in the LSTM neuron, can magnify the
adverse impact of incorrect gradient during the optimization.

2.2. Simulation Experiment

To empirically study the impact of the transcription quality, we
conducted a simulation experiment in semi-supervised DNN,
unfolded RNN, and LSTM-RNN on a mobile speech task.

Table 1: Specification of the DNN, unfolded RNN, and LSTM-
RNN models and the baseline supervised training accuracy.

| Model [ DNN [ unfolded RNN [ LSTM-RNN ]
Front-end LFB LFB LFB
# of Senones 5980 5980 5980
# of Hidden Layers | 5 4 4
# of Parameters 30M M 20M
WER 19.4% | 18.2% 17.1%
WERR NA 6.3% 12.2%
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Figure 1: Performance comparison of the semi-supervised
DNN, unfolded RNN, and LSTM-RNN. The models were
trained using the same 400 hr training data with different tran-
scription quality measured by the transcription WER. WERR
and WER.INC refer to relative WER reduction and WER in-
crease respectively.

We first used a recognizer to decode the 400 hr mobile
speech training data and generate erroneous machine transcrip-
tion at 25% WER level. The recognizer was intentionally con-
figured at a lower accuracy mode which allowed us to simulate
transcription at a wide range of qualities. Then, we randomly
selected a certain portion of the training data with machine tran-
scription, which was to be mixed with the rest with human tran-
scription. By adjusting the proportion of the machine transcrip-
tion, we can effectively generate simulated training sets with
the desired transcription quality with realistic error patterns in
typical recognition-based machine transcription. Thus, we ob-
tained four versions of simulated transcription at 2%, 5%, 10%,
and 15% WER level for the 400 hr training data. The utter-
ances with machine transcription were chosen randomly, which
ensured no sampling bias between the simulated data sets.

We trained the semi-supervised DNN, unfolded RNN, and
LSTM-RNN using the 400 hr mobile speech data with each of
the four simulated transcription separately. The corresponding
baseline models were also trained on the same data with the
human transcription. All models share the same senone states,
alignment model, and similar front-end. The model specifica-
tion and the corresponding baseline supervised training model
accuracy are summarized in Table 1. The models were evalu-
ated on a 5 hr mobile speech test set.

Figure 1 presents the semi-supervised DNN, unfolded
RNN, and LSTM-RNN accuracy performance at different tran-
scription quality in comparison with the supervised baseline:

e In DNN, one point WER increase in the training tran-
scription translates to a half point WER increase in
the resulting model accuracy performance. The semi-
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supervised training generates 0.77%, 2.37%, 4.84%, or
7.46% relative WER increase for the simulated transcrip-
tion at 2%, 5%, 10%, or 15% WER level.

e In LSTM-RNN, one point WER increase in the train-
ing transcription roughly translates into one full point
WER increase in the resulting LSTM-RNN. We ob-
served 1.69%, 4.47%, 9.38%, or 14.01%, nearly dou-
bled relative WER increase, comparing to the semi-
supervised DNN, at the same simulated transcription
quality level. LSTM-RNN is notably more sensitive to
transcription error.

e The unfold RNN is slightly more sensitive to training
transcription error comparing to the DNN, residing in the
middle of the DNN and the LSTM-RNN. We observed
1.26%, 2.53%, 4.89%, or 8.85% relative WER increase
accordingly.

2.3. Discussion and Ongoing Work

The simulation experiments reveal a distinct fact that LSTM-
RNN is significantly more sensitive to transcription errors com-
paring to DNN and unfolded RNN. Generating high quality de-
rived transcription and developing alternative LSTM neurons
less sensitive to labeling errors are the key to high quality semi-
supervisved LSTM-RNN.

One simple strategy is to apply sentence-level only col-
lect error signal and back-propagate gradient from “well tran-
scribed” frames while blackening out those frames believed to
be “poorly transcribed”.

Given the fact that the unfolded RNN is only moderately
more sensitive to transcription error comparing to DNN, we be-
lieve that the memory cell in the LSTM-RNN is the root cause.
We can parametrize the control gate and the forgetting gate as a
function of the frame-level confidence to reduce the accumula-
tive factor when transcription error happens.

3. Importance Data Sampling

Data are not equally valuable, which has been an important
observation in our practice in semi-supervised acoustic model
training [16]. Over the time, we found, besides the transcription
quality, data sampling difference is another fundamental differ-
ence between the machine supervised/selected data and human
transcribed data.

In this section, we study how importance data sampling
affects DNN and LSTM, both in the supervised and semi-
supervised training setting. We adopted this simple importance
data sampling based on confidence as suggested in [16] in this
study. Starting with the same baseline models as in Section 2.2,
we trained the DNN and LSTM-RNN with additional 400 hr
data via random sampling or the importance sampling. The
transcription quality of the machine supervised/selected data is
at 5% WER level.

Table 2 summarizes the accuracy performance compari-
son of the importance sampling versus the random sampling in
semi-supervised DNN and LSTM:

e In supervised setup, adding 400 hr machine super-
vised data via randomly or importance sampling yield
12.45% or 9.62% relative WER reduction against the
baseline model trained from 400 hr transcribe data. In
LSTM-RNN, the corresponding relative WER reduction
is 11.08% or 14.07%. We observe around 3% additional
WER reduction with importance sampling both in DNN
and LSTM-RNN

Table 2: Model accuracy performance comparison of the impor-
tance sampling versus the random sampling in semi-supervised
DNN and LSTM. WERR is the relative WER reduction.

SEMI-SUP Baseline | Random_400nr | Import.+a0onr
DNN(WER) 19.43 17.63 17.31
DNN(WERR) NA 9.26 10.91
LSTM(WER) 17.06 16.06 15.86
LSTM(WERR) | NA 5.86 7.03

SUP Baseline | Random4oonr | Import.4aoonr
DNN(WER) 19.43 17.56 17.01
DNN(WERR) NA 9.62 12.45
LSTM(WER) 17.06 15.17 14.66
LSTM(WERR) | NA 11.08 14.07

e In semi-supervised setup, adding 400 hr human tran-
scribed data via random or importance sampling yield
9.26% or 10.91% relative WER reduction. In LSTM-
RNN, the corresponding relative WER reduction is
7.03% or 5.86%. The benefit of importance sampling
drops to 1~2%.

Both DNN and LSTM-RNN can benefit similarly from im-
portance data sampling in the supervised and semi-supervised
setup with small but consistent gain. We didn’t observe distinct
systematic differences between these two models in this regard.

The gain from the importance sampling is smaller in the
semi-supervised setup. Here the value of the data itself and
the quality of the inferred transcription jointly determine how
much it can benefit from the importance sampling. The gain is
reduced due to the fact that the more valuable data are usually
“harder” to recognize and typically with lower accuracy.

Overall, data sampling can yield additional moderate but
consistent gain in semi-supervised LSTM. We think that the im-
proved transcription quality and an effective strategy to reduce
the model sensitivity to transcription error can help maximize
the benefit from the importance sampling.

4. Training Data Amount

In this section, we study how increased training data affects the
supervised and semi-supervised neural network acoustic model.

4.1. Simulation Experiments

We adopted the similar set of DNN and LSTM-RNN models as
described in Section 2 in this study. The baseline models are
the supervised baseline DNN and LSTM-RNN models trained
from 400 hr mobile speech training data. We added 400hr, 800
hr, or 1200 hr mobile speech with the human transcription in
the supervised training or with the machine transcription in the
semi-supervised training. No importance data sampling was ap-
plied here.

The transcription quality of the machine super-
vised/selected data is at around 5% WER level. Note
that the average quality of the semi-supervised training data
degrades as more machine supervised data was mixed with the
fixed amount of baseline transcribed training data.

Figure 2 presents supervised and semi-supervised DNN and
LSTM-RNN model results.

o In supervised training setup, LSTM-RNN can benefit
more from enlarged training data comparing to DNN.
For example, the LSTM-RNN yields 11.08%, 13.89%,
and 16.60% relative WER reduction against the base-
line with additional 400 hr, 800 hr and 1200 hr training
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Figure 2: Performance of the supervised and semi-supervised
DNN and LSTM-RNN with increased training data. WERR is
the relative WER reduction.

data. In comparison, the corresponding WER reduction
in DNN is 9.62%, 12.40%, or 14.50%.

In semi-supervised training setup, DNN continues to
benefit from enlarged training data with around 1~3%
gap in WER reduction comparing to the supervised
counterpart. For example, the corresponding semi-
supervised DNN yields 9.26%, 10.91%, and 12.97% at
the same training data points. The gap between the su-
pervised and semi-supervised training exhibits slightly
increased trend due to the lower average transcription
quality with more machine transcription mixed.

In the semi-supervised LSTM-RNN, we observe 5.86%,
6.91%, and 7.69% relative WER reduction, roughly only
half of the gain comparing to the supervised LSTM-RNN
counterpart. The gap between the supervised and semi-
supervised training also exhibits a more dramatic in-
creased trend as the average training transcription quality
drops with more machine derived transcription mixed.
The root cause here is the sensitivity to transcription er-
rors in LSTM-RNN, which is consistent with our previ-
ous study on the transcription quality sensitivity study.

LSTM-RNN has larger modeling capacity comparing to
DNN and can potentially benefit from large amount of train-
ing data. Nevertheless, in the semi-supervised training setup,
the performance gain can be largely reduced due to its high sen-
sitivity to transcription error. It is to be noted that we did exper-
iment with increased model size and observed similar results.

4.2. Large Scale Semi-Supervised LSTM-RNN

We conducted an initial experiment on a large scale semi-
supervised LSTM-RNN training on the mobile speech task. We
automatically supervised and selected 10100 hr untranscribed
data from our production traffic using a multi-view learning ap-
proach similar to [16] and the simple confidence-based impor-
tance sampling. The selected machine supervised transcription
is at around 2-3% WERR level.

The baseline LSTM was trained from 2600 hr transcribed
data. The semi-supervised LSTM-RNN was trained on 12700
hr data in total. The LSTM-RNN has similar model structure as
in Table 1, except with a larger senone set (9404 senone states).

‘We used the implementation of the scalable training of deep
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Table 3: Accuracy performance of the 12700 hr semi-
supervised LSTM-RNN and the supervised baseline trained
from 2600 hr transcribed data. WERR is the relative WER re-
duction.

[ Test Sets | Sup LSTM | Semi-sup LSTM [ WERR |

Test A 14.48 13.62 5.94
Test B 14.17 13.16 7.13
| Average [ 14.33 [ 13.39 [ 6.56 ‘

learning machines on a distributed GPU cluster. It uses incre-
mental block training with training block parallel optimization
and blockwise model-update filtering [22]. With 16 GPUs, the
training of the 12700 hr semi-supervised LSTM takes 8 days to
finish 9 full sweepings through the whole data set followed by
additional 3 passes through the transcribed data only.

Two test sets collected during different period of time from
production traffic were used to evaluate the models. Test A con-
sists of 25 hr speech, which was collected around two years
earlier than the time period when the untranscribed data were
harvested; Test B consists of 17 hr speech, which was collected
about half year later than the time period when the untranscribed
data were harvested. The untranscribed training data are strictly
separated from the testing data.

Table 3 presents the accuracy performance of the large scale
semi-supervised LSTM training. On Test A, the WER drops
from 14.48% to 13.62% or 5.94% relative WER reduction com-
paring to the supervised baseline. On test B, the WER drops
from 14.17% to 13.16% or 7.13% relative WER comparing to
the supervised baseline.

5. Conclusion

In conclusion, we studied the transcription quality, the impor-
tance data sampling, and the training data amount, in a fully
connected deep neural network (DNN), unfolded recurrent neu-
ral network (RNN), and long short-term memory recurrent neu-
ral network (LSTM-RNN).

We found that LSTM-RNN exhibits high sensitivity to tran-
scription errors. One point WER increase in the training tran-
scription translates to one full point WER increase in LSTM-
RNN, comparing to a half point WER increase in DNN. All
three models benefit from importance data sampling with sim-
ilar 2~3% relative WER reduction comparing to the random
sampling. Regarding the training data amount, LSTM-RNN
can benefit more from enlarged data comparing to unfolded
RNN and DNN in the supervised setup. In the semi-supervised
setup, the gain from enlarged training data in the LSTM-RNN
shrinks significantly due to its sensitivity to transcription er-
rors. Therefore, we conclude generating high quality transcrip-
tion and effectively suppressing effect of the erroneous tran-
scription is the key to the success of a high quality large scale
semi-supervised LSTM-RNN acoustic model training. The im-
portance data sampling can yield consistent moderate accuracy
gain. It is worth to practice especially after the core transcrip-
tion quality issue is resolved.

We conducted an initial semi-supervised LSTM-RNN train-
ing with 2600 hr transcribed and 10100 hr untranscribed data on
a mobile speech task. The semi-supervised LSTM-RNN yields
6.56% relative WER reduction against the supervised baseline.

Ongoing work includes the transcription error robust semi-
supervised LSTM-RNN training and semi-supervised sequence
training in LSTM-RNN.
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