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ABSTRACT
With Internet delivery of video content surging to an un-
precedented level, online video advertising is becoming in-
creasingly pervasive. In this paper, we present a novel ad-
vertising system for online video service called VideoSense,
which automatically associates the most relevant video ads
with online videos and seamlessly inserts the ads at the most
appropriate positions within each individual video. Unlike
most current video-oriented sites that only display a video
ad at the beginning or the end of a video, VideoSense aims
to embed more contextually relevant ads at less intrusive
positions within the video stream. Given an online video,
VideoSense is able to detect a set of candidate ad insertion
points based on content discontinuity and attractiveness, se-
lect a list of relevant candidate ads ranked according to global
textual relevance, and compute local visual-aural relevance
between each pair of insertion points and ads. To support
contextually relevant and less intrusive advertising, the ads
are expected to be inserted at the positions with highest dis-
continuity and lowest attractiveness, while the overall global
and local relevance is maximized. We formulate this task as
a nonlinear 0-1 integer programming problem and embed
these rules as constraints. The experiments have proved the
effectiveness of VideoSense for online video advertising.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems—video; H.3.5 [Information
Storage and Retrieval]: Online Information Services—
Web-based services

General Terms
Algorithms, Experimentation, Human Factors.

Keywords
Online video advertising, contextual relevance, less intru-
siveness.
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1. INTRODUCTION
Driven by the coming age of the Internet and the advent of

near-ubiquitous broadband Internet access, online delivery
of video content has surged to an unprecedented level. To-
day’s online users face a daunting volume of video content
– be it from video sharing or blog content, or from IPTV
and mobile TV. ComScore reports that in March 2006 alone
consumers viewed 3.7 billion video streams and nearly 100
minutes of video content per viewer per month, compared
to an average of 85 minutes in October [5]. Moreover, as
reported by Online Publisher Association [22], the major-
ity (66%) of Internet users have ever seen video ads, while
44% have taken some action after viewing ads. Accordingly,
spending on online video advertising is dramatically increas-
ing. eMarketer reports that the spending for Internet video
advertising in the U.S. will nearly triple in 2007 to $640
million from 2006 year’s $225 million [7]. To take the ad-
vantages of this increasing market share and effectively mon-
etize video content, video advertising, which associates ad-
vertisements with an online video, has become a key online
monetization strategy. By implementing a solid online video
advertising strategy into an existing content delivery chain,
content providers have the ability to deliver compelling con-
tent, reach a growing online audience, and generate addi-
tional revenue from online media.

The “effectiveness” of an online advertising was primarily
defined from the advertisers’ perspective, and usually mea-
sured by performance of a given ad (e.g. Click-Though Rate)
or brand perception. Recent research has discovered that
the deep understanding of user experience can help explore
the nature and negative impacts of online advertising [26].
Thus, user experience reflects “effectiveness” from another
perspective. It has been recognized that perceived intru-
siveness and irrelevance have the leading negative effect on
user experience [16] [20]. Intrusiveness is “a perception or
psychological consequence that occurs when an audience’s
cognitive processes are interrupted” [16] such as television
commercials during an exciting scene in a program, while
contextual relevance in our study addresses the relationship
or relevance of the ad content with the source video content.
Therefore, an effective online advertising system designed
from the viewers’ perspective should take both contextual
relevance and less intrusiveness into consideration.

Many existing video-oriented sites, such as YouTube [34],
Google Video [8], Yahoo! Video [31], Metacafe [21], and
Revver [24], have tried to provide effective video advertising
services. However, it is likely that most of them match the
ads with online videos only based on textual information and



insert ads at the beginning or the end of a video 1. In other
words, contextual relevance in these sites is only based on
textual information, while less intrusive insertion points are
fixed to the beginning or the end of videos. For instance, the
most similar advertising system to VideoSense – Revver [24],
selects one relevant ad (i.e., a static picture or video clip) for
each video clip, and shows it as the last frame or segment of
the corresponding video. A hyperlink to the original ad is
embedded in this frame. As a result, the following problems
that significantly affect advertising effectiveness and impede
user experience have not been investigated.

• We believe ads should be inserted at appropriate po-
sitions within video streams rather than only at the
beginning or the end of video streams. While most
of the videos on the Internet consist of shorter clips,
we are now seeing longer-form content, particularly as
networks and film studios have started releasing top
programs online. This capability will enable embed-
ding not only a greater number of ads but also less
intrusive ads within video content.

• We believe ads should be contextually relevant to on-
line video content in terms of not only textual informa-
tion but also visual and aural content. For example,
when viewing an online music video, users may prefer
a relevant ad with the similar editing style or audio
tempo style to the video, which cannot be measured
just by textual information. This capability will enable
delivering the ads with more relevance.

Although the insertion of video ads within a video stream
is similar to a traditional advertising spot in TV broadcast-
ing, which temporarily interrupts programs to provide a paid
sponsor’s message, ads are manually inserted at a fixed in-
terval without considering whether they are less intrusive
and contextually relevant. This practice has been often crit-
icized in the field of TV for disappointing viewers and for
taking them to do zapping [13]. From this point of view, ads
have not reached users positively.

Motivated by the above observations, we present a novel
advertising system for online video called VideoSense, which
supports more effective video advertising in terms of contex-
tual relevance and less intrusiveness. In VideoSense, given
an online source video consisting of video content and re-
lated textual information, relevant video ads will be auto-
matically associated with the source video and seamlessly
inserted into the video at appropriate positions. As a re-
sult, VideoSense generates an augmented video stream with
ads embedded – selecting the most relevant ads in terms
of global textual relevance, detecting the most appropriate
insertion points with high content discontinuity and low at-
tractiveness, keeping the high local visual-aural relevance
between the ads and source video content around the in-
sertion points, and uniformly distributing the ads along a
timeline. We formulate the task as a nonlinear integer pro-
gramming problem in which each of the above desirability
is embedded as a constraint. We conducted both objective
and subjective evaluations on an extensive experiment and
proved the effectiveness of VideoSense for online video ad-
vertising.

1
Typical examples for textual relevance matching are the keyword-

targeted (e.g., Google’s AdWord) and content-targeted advertising

(e.g., Google’s AdSense).

(a) The related information of the source video

(b) VideoSense user interface

Figure 1: An example of an online source video
with contextually relevant ads embedded. The yel-
low bars below the timeline indicate video ads be-
ing inserted at these points. The thumbnails with
yellow box in a filmstrip view correspond to video
ads. The candidate ads are listed in the right panel
in which the highlighted ads are inserted into the
source video.

An example is shown in Fig. 1. Since the content provider
of this source video has tagged it “Lexus,” as show in Fig.
1(a), some candidate ads listed at the right panel in Fig.
1(b) are related to “car.” One of the candidate ads has been
inserted into this video, i.e. the highlighted thumbnail with
yellow box in the filmstrip view. Since this ad is inserted at
the boundary of two scenes, as well as both the source video
and ad are related to “car,” we propose that the ad is less
intrusive and contextually relevant.

The rest of the paper is organized as follows. Section 2
reviews research work related to online video advertising.
Section 3 provides a system overview of VideoSense. The
main components of VideoSense, i.e. candidate ad ranking,
ad insertion point detection, and online ad insertion are de-
scribed in Section 4, 5, and 6. The effectiveness is evaluated
in Section 7, followed by conclusions in Section 8.

2. RELATED WORK
The research problems closely related to online video ad-

vertising include advertisement placement in sports videos
and Interactive Digital Television (IDTV), as well as text-
based online advertising.

To make video content more enriching, previous work in
literature [17] [29] has attempted to spatially replace a spe-
cific region with product advertisement in sports videos.
These regions could be locations with less information in
baseball video [17], or the region above the goal-mouth in
soccer video [29]. An online platform is also presented to
measure the quality of product placement [11]. However,



VideoSense is designed for general online video rather than
specific video, as well as VideoSense aims at video and video
segment level advertising in contrast to the object/region-
level advertising. The domain-specific approaches in these
applications such as the detection of line and less-information-
region [17] [29], are not practical in a general case, especially
in online videos. Moreover, contextual relevance, which is
the main aspect influencing viewing experiences, is not taken
into consideration in these systems.

While region-based product placement is challenging, the
personalized ad delivery in IDTV has been a potentially hot
application [12] [15] [27]. Such advertising refers to the de-
livery of advertisements tailored to the individual viewers’
profiles on the basis of knowledge about their preferences [15]
or current and past contextual information [12] [27]. How-
ever, most of these systems do not study relevance in terms
of video content and the elaborate selection of ad insertion
points. In other words, they focus on targeted advertising
rather than contextual advertising.

In recent years, text-based contextual advertising efforts
such as Google’s AdWord/AdSense and Yahoo!’s Contex-
tual Ad programs have become a substantial source of web
revenue. These platforms automatically find prominent key-
words from user’s search query or on a web page, match
these keywords against keywords associated with ads pro-
vided by advertisers, and then display contextually relevant
ads to the user. The approach associating ads with user’s
query is referred to as keyword-targeted advertising (e.g.
AdWords) [1], while associating ads with a web page is re-
ferred to as content-targeted advertising (e.g. AdSense and
Contextual Ad) [14] [25] [33]. Although keyword-targeted
advertising is effective, it is deemed that the use of web con-
tent information can allow more relevant ads to be displayed.
Ribeiro-Neto et al. studied 10 strategies and evaluated their
effectiveness for content-targeted advertising [25]. Lacerda
et al. proposed a learning-based framework to apply Ge-
netic Programming to select the most appropriate ads with
respect to a given web page [14]. Another content-targeted
advertising system is proposed by Yih et al. to learn how to
extract keywords from a web page for ad targeting [33].

In summarize, most related work focuses on domain-specific
ad placement and text-based web page advertising. Contex-
tual video advertising or that associates video ads within an
online video content has not yet been studied adequately.
Compared with text, video has distinctive characteristics
such that text-based advertising cannot be directly applied
to video advertising. First, video is an information-intensive
media embedding multimodal tracks. Thus, we argue that
contextual relevance between ads and videos should not be
measured only based on textual keywords. In addition to
textual relevance, both visual and aural relevance should be
taken into consideration for relevance matching. Second,
video content is represented as a temporal sequence. Ad
insertion positions within the video steam should be elabo-
rately selected to support less intrusive advertising. There-
fore, there is an urgent demand for an online video adver-
tising platform in which the following three problems are
effectively addressed: (1) how to select relevant video ads
based on video-related information; (2) how to detect a set
of less intrusive ad insertion points within the video content;
(3) how to match selected ads to these insertion points to
maximize overall contextual relevance.

Input:Source Video
DiscontinuityDetectionAttractivenessDetection
Visual / AuralFeature Analysis Ad InsertionPointDetection

ColorMotion IntensityConceptAudio Tempo
Keyword Extraction(Query, Title, Tag, etc.)Ads Keyword Index Ads Content MetadataCandidateAd List

Online Optimization-Based Ad Insertion Ads ServerOutput:Augmented VideoVideo Stream

back-end

front-end

multimedia-processing for contextual adsAds Stream
Figure 2: System overview of VideoSense. The gray
blocks are performed offline, while the white ones
are performed online.

3. SYSTEM OVERVIEW

3.1 Preliminaries
To clearly present the system framework of VideoSense,

the following terms are clarified:

• Video ad: A video advertisement clip provided by
advertisers that can be inserted into or associated with
a source video. Although video ads will be associated
with video in VideoSense, they may be in different
forms (or a combination of forms) including typical ad
clips in TV programs, animations, images, or text.

• Source video: Source video is most often produced
or owned by content providers, which may be profes-
sional videographers or grassroots. Video ads will be
embedded at appropriate positions in the source video.

• Ad insertion point: A point/position in the timeline
of a source video at which one or more ad clips will be
inserted, as yellow bars in the timeline in Fig. 1(b).

3.2 System Overview
Figure 2 illustrates the system overview of VideoSense.

The system consists of three main parts: a back-end for
building ad keyword index and extracting ad metadata; a
multimedia-processing-end for selecting relevant ads, as well
as detecting candidate ad insertion points and extracting
visual-aural features for source videos; and a front-end for
online matching ads and insertion points. The back-end
builds ad keyword index, extracts a set of content features
(i.e. color, motion, audio tempo, and concepts), and stores
them in ad metadata database. The keywords of ads include
title and tags provided by advertisers, as well as automati-
cally recognized categories. The keyword index is used for
online ranking of an ad list in the multimedia-processing-
end, while the metadata is used for online ad insertion in
the front-end. In the multimedia-processing-end, for a given
source video, a list of candidate ads is generated and ranked
according to global textual relevance, and a set of candidate
ad insertion points are detected based on content discontinu-
ity and attractiveness. Meanwhile, a set of content features



Benz car Benz,Mercedes BenzMoviepreview movie previews, movie releases, movie news, video trailers, trailers, movie wallpaper, movie, video
vehicles, automobiles, p = 0.0404;news and magazines, automotive, p = 0.0352;sports and recreation, hobbies, cars, p = 0.0270;arts and entertainment, performing arts, p = 0.0102;arts and entertainment, movies, p = 0.0099;arts and entertainment, digital art, p = 0.0096;

Thumbnail Tag Tag Expansion Categories and ConfidenceBenzMummy Return
Title

Figure 3: Ad textual information examples

is extracted. In the front-end, given a ranking list of candi-
date ads and a set of candidate insertion points, online ad
insertion is formulated as an optimization problem, which
aims at selecting a subset of insertion points and ads to
maximize contextual relevance and minimize intrusiveness.
Finally, a description file is generated for augmented video,
in which the most relevant ads are embedded at the most
appropriate positions within the source video.

4. CANDIDATE AD RANKING
In contextual advertising, ads are expected to be relevant

to source videos. Given a source video, a list of candidate ads
is desired to be returned from an ad database and ranked ac-
cording to textual relevance. Since a video segment usually
contains few textual descriptions, as well as textual infor-
mation have quite a few non-informative terms, it is reason-
able to rank ads based on textual information related to the
whole video instead of a video segment.

In VideoSense, we consider textual information of a video
(either a source video or an ad) consisting of the follow-
ing parts: query (if a source video is reached by searching
through a query), title, tags (a textual description provided
by content providers or advertisers), and closed captions (if
available) 2. In contrast to web pages that embed enriching
information, the amount of textual information related to
video is usually limited. Therefore, we perform tag expan-
sion and leverage automatic text categorization to obtain
more relevant descriptions. Figure 3 shows two examples of
textual information in ads.

From Figure 3, we can see that video-related textual in-
formation can be classified into two types: (1) direct text,
referring to the query, title, tags, expanded tags, and closed
captions; (2) indirect text, referring to categories and their
corresponding probabilities obtained by automatic text cat-
egorization 3. Thus, a video-related textual document D can
be represented by (k1, k2, . . ., kt; c1, c2, . . ., cm), where (k1,
k2, . . ., kt) denote the set of index keywords of direct text in
which each keyword ki can be associated with a weight wi

indicating the importance of ki, (c1, c2, . . ., cm) denote the
set of predefined categories of indirect text in which each
category ci can be associated with a probability pi, t and
m denote the number of index keywords and categories, re-
spectively. We adopt the vector model and probabilistic
model to measure the relevance based on direct and indirect
text, respectively. Let Dx and Dy denote two textual doc-
uments, the textual relevance R(Dx, Dy) between Dx and
Dy is defined as the average of relevance from vector and

2
It is a typical scenario that a user input a query to search some

online videos. It is also a commonplace that users or advertisers

upload their source videos or video ads, and tag their videos or ads

by a set of keywords.
3

In our work, a document can correspond to multiple categories.

probabilistic models

R(Dx, Dy) =
1

2
(Rvec(Dx, Dy) + Rprob(Dx, Dy)) (1)

where Rvec(Dx, Dy) and Rprob(Dx, Dy) denote the relevance
from vector and probabilistic models, respectively.

4.1 Vector Model for Textual Relevance
Ribeiro-Neto et al. [25] have proved that matching the ads

based on vector model with direct text is the best among a
set of simple methods for ad ranking. In vector model, a doc-
ument D is represented as a vector of weights (w1, w2, . . . , wt),
and the similarity between two documents Dx and Dy is
evaluated by the cosine of the angle between the vectors [2].
That is

Rvec(Dx, Dy) =
ω(Dx) · ω(Dy)

‖ω(Dx)‖ · ‖ω(Dy)‖ (2)

where ω(·) denote the weighting vector of index keywords.
In general, the weights of index keywords can be calcu-

lated in many different ways. A typical way is to use the
product of term frequency (tf ) and inverted document fre-
quency (idf ), based on the assumption that the more fre-
quently a word appears in a document and the rarer the
word appears in all documents, the more informative it is [2].
However, such an approach is not suitable in our scenario.
First, the number of keywords related to an online video
is generally much less than that in a regular textual docu-
ment, which leads to a small document frequencies (df ) and
an unstable idf 4. Second, most online content providers
tend to use general keywords rather than specific keywords
to describe their video content. For instance, many would
like to use “car” instead of “Benz” to describe a video clip.
Using idf will make some non-informative keywords over-
whelm the informative ones. Therefore, we only use tf to
measure the weight of a keyword. Specifically, the weight
wi of keyword ki is measured by its term frequency.

4.2 Probabilistic Model for Textual Relevance
Although vector model is able to represent the keywords

of a textual document, it is not enough to describe the latent
semantic within a textual document related to a video. For
example, a music video named “flower” may be associated
with ads related to real flowers instead of more relevant ads
related to music albums. This is because “flower” is an im-
portant keyword and has a high weight in vector model. To
address this problem, we propose a probabilistic model to
leverage the categories and corresponding probabilities. We
use text categorization based on SVM [32] to automatically
classify a textual document into a set of predefined category
hierarchy which consists of more than 1k categories.

In probabilistic model, a document D is represented as
a vector of probabilities (p1, . . ., pm). The predefined cat-
egories make up a hierarchical category tree, as shown in
Figure 4. Let d(ci) denote the depth of category ci in this
category tree, where the depth of root is 0. For two cate-
gories ci and cj , we define `(ci, cj) as the depth of their first
common ancestor. Then for two textual documents Dx and
Dy which are represented by (px

1 , px
2 , . . ., px

m) and (py
1 , py

2 ,
. . ., py

m), the relevance between Dx and Dy in probabilistic

4
For example, idf can be given by log( 1

df ) [2].
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Figure 4: An hierarchical category tree. Each node
denotes a category. A is the first common ancestor
of B and C.

model is defined as

Rprob(Dx, Dy) =
Xm

i=1

Xm

j=1
R(cx

i , px
i ; cy

j , py
j ) (3)

where R(cx
i , px

i ; cy
j , py

j ) = α(d(cx
i )−`(cx

i ,c
y
j ))px

i ·α(d(c
y
j )−`(cx

i ,c
y
j ))py

j ,
if `(cx

i , cy
j ) > 0; otherwise, 0. α is a predefined parameter

to control the probabilities of upper-level categories. In our
experiments, α is fixed to 0.5. Intuitively, the deeper level
two documents are similar at, the more related they are.
For instance, in Figure 4, for the two nodes “B” and “C”
represented by (ci, pi) and (cj , pj), thus R(ci, pi; cj , pj) =
α2pi · α3pj = α5pipj .

5. AD INSERTION POINT DETECTION
Before detection of insertion points, a pre-processing step

is assumed to parse source video into shots and represent
each shot by a key-frame using the color-based method [35].
Since ads will be inserted into source videos, a process to
elaborately detect a set of insertion points is desirable. The
appropriate insertion points will reduce viewers’ sensation
of intrusiveness while watching augmented video content.
Li et al. [16] examined eight factors that affect consumers’
perceptions of the intrusiveness of ads in traditional TV pro-
grams. We excerpt two computable measurements based on
these eight factors to intrusiveness, i.e. content discontinu-
ity and attractiveness. Discontinuity measures the content
“dissimilarity”between the two shot series at the two sides of
a shot boundary, while attractiveness measures the “impor-
tance”or “interestingness”of the content in a shot. Different
combinations of discontinuity and attractiveness fit the re-
quirements of different roles. For example, it is intuitive that
ads are expected to be inserted at the shot boundaries with
high discontinuity and low attractiveness from the viewers’
perspective. On the other hand, “high discontinuity plus
high attractiveness” may be a tradeoff between viewers and
advertisers (which will be part of our future investigations).
Then, the detection of ad insertion points can be formulated
as ranking the shot boundaries based on different combina-
tions of content discontinuity and attractiveness.

5.1 Discontinuity Detection
The research problem close to content discontinuity detec-

tion is video segmentation such as story/scene/shot detec-
tion. Although many efforts have been conducted for video
segmentation, most of them treated“discontinuity”as a hard

s1 sNss3s2
p1 pNsp3p2 pNs+1ShotsCandidate AdInsertion Points

Figure 5: Candidate ad insertion points within a
source video

A B C D E F
Figure 6: The interlaced repetitive pattern of shots

decision, that is, whether a detected boundary is true or not.
In VideoSense, we seek a soft measure of a shot boundary
belonging to an ad insertion point.

Suppose a source video is composed of Ns shots {si}Ns
i=1,

thus there are Ns+1 candidate ad insertion points {pj}Ns+1
j=1 ,

say, Ns−1 shot boundaries together with the beginning and
the end of video, as shown in Figure 5. A degree of discon-
tinuity D(pj) is assigned to each point pj . The higher the
discontinuity is, the more likely the corresponding insertion
point is a boundary of two episodes.

Therefore, the detection of content discontinuity can be
performed similarly to traditional video scene/story segmen-
tation. Zhao et al. proposed Best-First Model Merging
(BFMM) for scene segmentation in which visually similar
shots are gradually merged [36]. We adopt BFMM for dis-
continuity detection since the merge order in BFMM can be
regarded as the degree of discontinuity. However, BFMM
cannot deal with interlaced repetitive patterns of shots as
only the similarity of adjacent shots is considered. For an
example in Figure 6, the shots “B” and “D” are supposed to
first be merged as they depict the same person. But they
are merged later because BFMM only consider the similarity
between “B” and “C” or “C” and “D”. To address this prob-
lem, we propose an improved BFMM (so-called iBFMM) to
deal with the interlaced repetitive pattern. The novelties of
iBFMM lie in: (1) A preprocess step is added to BFMM
to group the interlaced repetitive shots in a multiscale man-
ner; and (2) the normalized merge order of shots around each
candidate insertion point is adopted as the measurement of
its discontinuity. The algorithm for iBFMM is given in Al-
gorithm 1. In the preprocess step, the most similar shots are
merged at different scales to eliminate interlaced repetitive
pattern. In the BFMM and normalization step, the merge
order is recorded and normalized as the final discontinuity.
Although we proposed iBFMM for discontinuity detection
in this paper, any method that generates soft measure for
shot boundary can be employed here.

5.2 Attractiveness Detection
In general, it is difficult to evaluate how a video clip at-

tracts viewers’ attention since“attractiveness”or“attention”
is a neurobiological concept. Alternatively, a user attention
model is proposed by Ma et al. [18] to estimate human’s at-
tention by integrating a set of visual, auditory and linguis-
tic elements related to attractiveness, such as motion, ob-
jects (faces), static attention regions, audio and language.
Another approach to exploring the attention in video se-
quence is averaging static image attention over a segment of



Algorithm 1 iBFMM for discontinuity detection

Input: S = {si}Ns
i=1, P = {pj}Ns+1

j=1

Output: D = {D(pj)}Ns+1
j=1

1: Initialize: set D(pNs+1 ) = 1.00, D(p1) = 0.99.

2: Preprocess
for scale σ=1 to 4 do

compute similarity Sim(si, si+σ) for each pair [36]
if Sim(si, si+σ) < Ts do

merge {sk}i+σ
k=i+1 to si, remove {sk}i+σ

k=i+1 from S
set {D(pk)}i+σ

k=i+1 = 0, Ns = Ns − (σ − 1)

end if
end for

3: BFMM
set merging order Nm = 1
while Ns > 0 do

compute Sim(·) for adjacent shots, get closest (si, si+1)
merge si+1 to si, remove si+1 from S
set D(pi + 1) = Nm, and Nm = Nm + 1, Ns = Ns − 1

end while

4: Normalize: set {D(pj) =
D(pj)

Nm
}Ns

j=2

frames [19]. In VideoSense, we compute an attention value
A(si) for each shot si by the user attention model in [18].
The content attractiveness of insertion point pi is highly re-
lated to the neighboring shots on both sides of pi. Therefore,
the attractiveness of pi can be computed by weighted aver-
aging the attention values of its neighboring shots as follows.

A(pi) =
Xδ

k=−δ
α|k|A(si+k) (4)

where
P

k αk = 1 and 1 > α0 > α1 > . . . > αδ > 0, since
the nearer the neighboring shot is, the more effect it has on
the attractiveness. In our implementation, we empirically
set δ = 2, and (α0, α1, α2)=(0.4, 0.2, 0.1).

5.3 Ad Insertion Point Detection
Figure 7 gives an example of discontinuity and attractive-

ness detection for a feature film. One way for detecting ad
insertion points can be finding peaks at the combined curve
with “discontinuity minus attractiveness.” However, the de-
tection of ad insertion point should be based not only on
discontinuity and attractiveness, but also on the temporal
distribution of these points, as well as the global and local
relevance between source video content and ad content. In
other words, the selected ad insertion points should com-
ply with contextually relevant and less intrusive advertising
strategy. Thus, we integrate discontinuity and attractive-
ness for ad insertion point detection into an optimization
framework by considering a set of rules from the viewers’
perspective. This will be detailed in the next section.

6. ONLINE OPTIMIZATION-BASED AD IN-
SERTION

The typical scenario in VideoSense can be described as
follows: A user clicks an online video, then the augmented
video with embedded ads is immediately returned to this
user. An alternative scenario is that the ads can be asso-
ciated with an online video when it is uploaded, without
considering viewers’ profiles and new coming ads provided
by advertisers. We focus on the first scenario since it is
more reasonable and extensible for current online advertis-
ing. Hence given the online video with its candidate ad inser-

Thumbnail
Discontinuity

Figure 7: An example of discontinuity and attrac-
tiveness detection. Each thumbnail in the above fig-
ure corresponds to a shot. The thumbnails high-
lighted with yellow box indicate inserted ads. The
curves in the below figure indicate discontinuity
(cyan) and attractiveness (red).

tion points and a ranking list of candidate, the optimization-
based ad insertion should be performed in real time.

The contextual relevance between source video and em-
bedded video ads consists of two parts: (1) textual relevance
between the source video and embedded ads, as described
in Section 4; and (2) visual-aural relevance between each
ad and the neighboring source video content on both sides
of corresponding insertion point. The textual relevance is
referred to as global relevance in this paper as it measures
the correlation between a source video and an ad, while the
visual-aural relevance is referred to as local relevance since it
measures the correlation between a segment of source video
and an ad at a local point within the source video. Before
formulating ad insertion problem, we introduce the compu-
tation of local relevance at first.

6.1 Local Visual-Aural Relevance
As illustrated in Figure 2, the local visual relevance is mea-

sured by a set of low-level features such as motion intensity
and color, as well as high-level semantic concepts, while the
aural relevance is derived from audio tempo 5. These fea-
tures have proved to be effective to describe video content in
many existing multimedia applications [4] [9]. More sophis-
ticate low-level features related to visual-aural relevance can
be also applied here. The local visual-aural relevance leads
to non-invasive sensation when users are interrupted by rel-
evant ads. Actually, we suggest various ways for using local
relevance in VideoSense. Specifically, we can use the “pos-
itive” local relevance to keep high similarity between video
and ad content, or use it in a “negative” way to gain more
attention from viewers because of the high contrast. We
choose the “positive” way in this paper since it is more nat-
ural for the viewers. For example, when viewing an online
music video, users may feel that an ad with similar music
tempo and the same concept (such as“Entertainment”) does
not disrupt their experiences.

Since local relevance indicates the visual-aural similarity
between a source video shot and a video ad, the set of visual
and aural features is computed at video level by averaging
the features over all shots for ad, rather than computed at
shot level for source video. Let F = {color, motion, concept,

5
We select 16 concepts appearing frequently from TRECVID

2006 [28], including “Building,” “Car,” “Entertainment,” “Face,”

“Government-Leader,” “Meeting,” “Military,” “Mountain,” “Office,”

“Person,” “Road,” “Sky,” “Sports,” “Studio,” “Vegetation,” and

“Waterscape-Waterfront.” The concept models are built based on our

previous work submitted to TRECVID 2006 [10]. The 16-D concept

probabilities constitute a feature vector.



tempo} denote the feature set and Rf (si, aj) denote the local
relevance between the source video shot si and ad aj in terms
of feature f (f ∈ F), Rf (si, aj) can be computed as the
intersection (i.e., similarity) of f . Then the local relevance
R`(si, aj) between si and aj is given by

R`(si, aj) = max
f
{Rf (si, aj)} (5)

It is reasonable that there is high relevance between si and
aj if one type of their features depict similar. Accordingly,
the local relevance between an ad insertion point pi and ad
aj is decided by the visual-aural similarity between the shots
beside pi and aj as follows

R`(pi, aj) = λR`(p
−
i , aj) + (1− λ)R`(p

+
i , aj) (6)

where p−i and p+
i denote the neighboring shots before and

behind pi, and λ (0 < λ < 1) controls the strength of rele-
vance from the both sides of pi. Perceptually the relevance
from p−i has more contribution to the final local relevance as
the content of p−i is viewed before the ad is displayed. Thus
the constant λ can be set bigger than 0.5. The relevance
from the both sides of pi is given by

R`(p
−
i , aj) =

XW

k=1
wkR`(si−k, aj) (7)

R`(p
+
i , aj) =

XW

k=1
wkR`(si+k−1, aj)

where w (0 < w < 1) is the summing weight and W is the
size of neighboring window. In our implementation, λ =
0.80, w = 2/3, and W = 3.

6.2 Problem Formulation
Let V denote the source video which consists of Ns shots

represented by S = {si}Ns
i=1, accordingly there are Np (Np =

Ns + 1) candidate ad insertion points which is represented

by P = {pi}Np

i=1, as discussed in Section 5.1. Each insertion
point pj has a degree of discontinuity D(pi) and attractive-
ness A(pi), as discussed in Section 5.2. Given V, a list of
candidate ads A = {aj}Na

j=1 is ranked according to global
textual relevance, as discussed in Section 4. Each ad aj has
a degree of global relevance Rg(aj ,V), which is computed
by equation (1). For the sake of simplicity, we neglect V
since it is given in the formulation. Therefore, the global
relevance of aj can be written as Rg(aj). Moreover, for a
pair of (pi, aj), a local relevance R`(pi, aj) can be give by
equation (6).

The problem of online ad insertion can be described as
given a set of insertion points P and a list of ranked ads
A, to select N elements from P and A, respectively, and
to associate each aj ∈ A with an appropriate pi ∈ P. N
is the number of expected ads to be inserted, which can be
given by source video content providers. To support contex-
tually relevant and less intrusive advertising from viewers’
perspective, three computable objectives can be expressed
as below:

(1) The overall contextual relevance (including the global
relevance from selected ads and local relevance from pairs of
selected insertion point and ad) is maximized;

(2) The overall attractiveness of selected insertion points
is minimized, while the discontinuity is maximized;

(3) The selected insertion points are uniformly distrib-
uted.

Suppose we introduce the following design variables x ∈
RNp , y ∈ RNa , x = [x1, . . . , xNp ]T , xi ∈ {0, 1}, and y =

Algorithm 2 The heuristic searching algorithm for Eq. (8)

1: Initialize: set the labels of all the elements in x and y as “0”
(i.e. “not selected”).

2: Among all the elements labeled as“0”in x, select the maximal
ui, and set xi = 1. This is to make objective (2) satisfied.

3: For each element xk in x falling into [xi − Np/2N, xi +
Np/2N ], set uk = uk − 1.0. Thus these elements will not
be selected in the next loop, which assures that objective (3)
is satisfied.

4: Among all the elements (i.e. ranked ads) labeled as “0” in y,
select yj with the maximal (xiyjrij), and set yj = 1. This is
to make objective (1) satisfied.

5: If
PNp

k=1 xk = N , output all the pairs of (xi, yj); otherwise
return to step 2.

[y1, . . . , yNp ]T , yj ∈ {0, 1}, where xi and yj indicate whether
pi and aj are selected (xi = 1, yj = 1). The above problem
can be formulated as the following nonlinear 0-1 integer pro-
gramming problem (NIP) [3].

max
(xi,yj)

f(x,y) = α

NpX

i=1

xi(D(pi)−A(pi)) (8)

+β

NpX

i=1

NaX

j=1

xiyjRg(ai)R`(ai, pj) + γEn(x)

= αxT u + βxT Ry + γEn(x)

s.t.

NpX

i=1

xi = N,

NaX

j=1

yj = N, xi, yj ∈ {0, 1}

where R ∈ RNp×Na , R = [rij ], rij = Rg(aj)R`(pi, aj),
u=[u1, u2, . . . , uNp ]T , ui = D(pi) − A(pi), and En(x) is an
entropy-like problem measuring the distribution uniformity
as follows

En(x) = − 1

log N

Np−1X

k=1

(pφ(xk+1) − pφ(xk)) log(pφ(xk+1) − pφ(xk))

where φ(xk) : xk 7→ i ∈ {1, . . . , Np} is an index function
indicating the location of k-th nonzero xk in x. Notice that,
here the total length of V is 1, and pi ∈ [0, 1] denote the in-
sertion point. The parameters (α, β, γ) controls the strength
from different constraints, which satisfying 0 6 α, β, γ 6 1
and α + β + γ = 1.

6.3 Problem Solution
It is observed that there are CN

Np
CN

Na
N ! solutions in to-

tal to equation (8). As a result, when the number of el-
ements in A and P is large, the searching space for opti-
mization increases dramatically. However, we can use the
Genetic Algorithm (GA) [30] to find solutions approaching
the global optimum. Alternatively, the above problem can
be solved by a similar heuristic searching algorithm in prac-
tice, which is given in Algorithm 2. Although a local optimal
solution to equation (8) can be achieved in Algorithm 2, the
number of possible solutions can be significantly reduced to
C1

Np
C1

Na
N !.

7. EXPERIMENTS AND EVALUATIONS
In VideoSense, the candidate ad ranking and optimization-

based ad insertion can be performed on-the-fly. In our imple-
mentation, a fixed number of candidate ads (i.e. Na = 200)
is returned, and the number of inserted ads within the source



Table 1: The source videos used for evaluations.
Video # Length (min.) # of Shots # of Ads

Micro Video 20 47 557 40
Home Video 4 182 1037 36
Movie Clip 4 110 1784 22

Documentary 2 60 220 12

Auto 9%
Service 12%

Food 8%

Beauty 
Product 7%

Others 13%

Healthcares 
19%

Finance 15%
IT 17%

Figure 8: The distribution of ad category

video V is given by N = max(|V|/5, 2), where |V| is the
duration in minutes. It takes around 0.5 seconds for on-
line ranking of 200 candidate ads and less than 0.2 seconds
for ad insertion using Algorithm 2. Each embedded ad will
only be displayed for up to 10 seconds as suggested by P.
Horan that “the point at which a consumer has patience for
an online video ad is 10 seconds” [22]. To validate the ca-
pability of VideoSense supporting contextually relevant and
less intrusive advertising, we conduct an extensive objective
experiments and comparisons for ad insertion point detec-
tion, and subjective experiments for evaluating contextual
relevance and viewing experience of augmented videos.

7.1 Dataset
We collected more than 14k source videos which consists

of more than 13k online micro videos from the most popu-
lar video sharing site, i.e. YouTube [34], and about 50 long
videos such as movie clips, home videos, and documentaries.
We select 32 videos for evaluations. These consist of 20 mi-
cro videos searched by top 10 representative queries from
our video database, four movie clips, four home videos, and
two documentaries, as listed in Table 1.The selected 10 rep-
resentative queries come from the most popular queries in
a video site, including “flowers,” “cat,” “baby,” “sun,” “soc-
cer,”“fire,”“beach,”“food,”“car,” and “Microsoft.” For each
query, only top two videos are selected for evaluations.

We have also collected 1028 unique video ads with the
total duration of 547 minutes from 277 news programs in
TRECVID 2006 corpus and TV programs of TNT channel.
These ads cover a variety of categories defined in [6], as
shown in Figure 8. The title and keywords of each ad are
manually annotated in our experiment.

7.2 Objective Evaluation on Ad Insertion Point
Detection

To evaluate the detection of ad insertion point, we firstly
compare the results of iBFMM for video scene detection with
BFMM [36] and Graph-based method [23] in terms of con-
tent discontinuity. It is easy to obtain objective benchmarks
for scene detection using these methods, and there is little
work on automatic detection of ad insertion points. The
three methods used for scene detection can be divided into
two paradigms based on processing manners: merging-based
(BFMM and iBFMM), and splitting-based (Graph). The
experiments were carried out on the 10 long videos. We did

Table 2: The comparisons among Graph, BFMM,
and iBFMM for video scene detection.

Method
tolerance = 1 sec tolerance = 9 sec

recall prec. F1 recall prec. F1

Graph [23] 0.36 0.30 0.32 0.55 0.46 0.50
BFMM [36] 0.40 0.41 0.40 0.59 0.60 0.50
iBFMM 0.47 0.48 0.47 0.63 0.63 0.63

not use the micro videos for this evaluation since usually
there are only two insertion points detected (i.e. the begin-
ning and the end of source videos) in these videos due to
their limited durations. The scene boundaries are manually
labeled. The number of scenes in BFMM and iBFMM is
set as same as the output of Graph. The “tolerance” [23]
is adopted as the offset of detected boundaries, say, the de-
tected boundary is regarded as true positive if the offset is
less than “tolerance.” As the average duration of shot in the
long videos is 6.9 seconds, we compare the results in differ-
ent settings of tolerance, i.e. 1 second and 9 seconds. The
performance is validated by three measurements, i.e., preci-
sion, recall and F1 (F1 = 2×precision×recall

precision+recall
). The results are

listed in Table 2. It is observed that iBFMM achieves the
best performance among the three methods, which supports
the effective detection of ad insertion point in VideoSense.

Furthermore, we compare the results of content discon-
tinuity detection between iBFMM and BFMM. We invited
five annotators to label the confidence of scene boundary
(i.e., the probability that the annotator regards a detected
shot boundary as a ground truth of ad insertion point) on the
set of long videos. The annotation results are averaged as the
ground truth of ad insertion points. The performance is val-
idated by a non-interpolated average precision (AP), which
is widely used as a measure of retrieval effectiveness [28].
Suppose the boundaries are ranked according to content dis-

continuity, the AP is given by AP (n) = 1
Rn

Pn
j=1(

Rj

j
Ij),

where Rn is the number of true boundaries in a size of n,
Ij = 1 if the j-th boundary is true and 0 otherwise. The
AP corresponds to the area under the (non-interpolated)
recall/precision curve, and incorporates the effect of recall
when it is computed over the entire result set. The AP
results among all videos are averaged as mean average pre-
cision (MAP). The different results of MAP(n) are shown in
Figure 9. It is observed that iBFMM outperforms BFMM
in all settings of n.

7.3 Subjective Evaluation on Ad Insertion
As objective evaluation of ad insertion performance is dif-

ficult, we conducted a subjective user study to evaluate our
work. Twelve evaluators majoring in computer science were
invited to participate in the user study, including four grad-
uate students, four undergraduate students, and four re-
searchers. All of them are familiar with several online video
sites and have ever watched online videos. Each individual
was assigned with eight videos and asked to get familiar with
the content in advance. The eight videos consisted of five
micro videos, a home video, a movie, and a documentary.
In order to evaluate the effectiveness of Ad insertion from
different perspectives, we rewrite equation (8) as follows:

max
(xi,yj)

f(x,y) = λ1αxT u + λ2βxT Ry + γEn(x) (9)

where λi ∈ {−1, +1} (i = 1, 2) is an indicator. Clearly,
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the different settings of (λ1, λ2) will significant affect the
ad insertion strategy. The following five results were ran-
domly given to the evaluators according to different settings
of (λ1, λ2) and rij in equation (9).

• I: Radom (λ1 = 0, λ2 = 0). Randomly select N ads
from candidate ad list, and randomly insert them at
a fixed interval of |V|/N , as the traditional TV spot,
which can regarded as the baseline for comparison.

• II: Less global relevance and more intrusiveness
(λ1 = −1, λ2 = −1, rij = Rg(aj)). Select the most ir-
relevant ads from candidate ad list, and insert them at
the positions with low discontinuity and high attrac-
tiveness, without considering local relevance.

• III: More global relevance and less intrusive-
ness (λ1 = +1, λ2 = +1, rij = Rg(aj)). Select the
most relevant ads from candidate ad list, and insert
them at the positions with high discontinuity and low
attractiveness, without considering local relevance.

• IV: Less global and local relevance, and more
intrusiveness (λ1 = −1, λ2 = −1). It is similar to II,
except for considering local relevance here.

• V: More global and local relevance, and less
intrusiveness (λ1 = +1, λ2 = +1). It is similar to
III, except for considering local relevance here. This is
the basic scenario supported by VideoSense.

The evaluators have no knowledge of current settings.
When viewing each of the five results, the evaluators were
asked to give a score from 1 to 5 (higher score indicating
better satisfaction) to show their satisfactions level based
on the following aspects:

• Local relevance. For each inserted ad, how did you
feel about the local relevance between the ad and its
surround content?

• Comfortableness. For each inserted ad, did you feel
comfortable as you viewed the ad?

• Satisfaction. For each source video, what was your
level of overall satisfaction in how the ads were in-
serted?

Furthermore, the evaluators were required to give a score
of the global relevance of candidate ad list with respect to
source video. Since the returned ad ranking lists for the five
results were identical, an evaluator had to do this once for
each source video. As a result, the average global relevance
is 2.71 (for micro videos) and 3.34 (for long videos). This is
because that the online micro videos usually contain quite a
little random textual information.

The average results of the above three questions are listed
in Figure 10. In general, the evaluations of V (i.e. the re-
sults of VideoSense) achieve the best among the five results.
We can see that IV achieves the worst evaluation. This ob-
servation has proved that contextual relevance (i.e. global
textual relevance and local visual-aural relevance) and ad
insertion points significantly influence viewers’ experiences
of augmented videos. In the case of IV, the evaluators felt
worst when watching irrelevant ads at the inappropriate po-
sitions. The performances of II and IV are lower than I,
which demonstrate that lack-of-relevance and intrusiveness
can lead to worse perceptive experiences than traditional
TV spot. The superior performance of III to I also indi-
cates that adding relevance to traditional TV spot setting
can result in better experience. The different settings of in-
trusiveness correspond to different combinations of discon-
tinuity and attractiveness for ad insertion point detection.
The lower comfortableness of II and IV than those of III and
V demonstrated that the combination of“high discontinuity”
and“low attractiveness” is effective for ad insertion point de-
tection from the viewers’ perspective. For micro videos, the
advertising strategy in III is similar to most current video
sites, such as Revver [24] and Youtube [34], in which only
global textual relevance is taken into consideration and the
insertion points are just the beginning or the end of videos 6.
It is also observed from Figure 10(c) that the average eval-
uation results of all videos comply with: V>III>I>II>IV.
From this viewpoint, we can conclude that VideoSense sup-
ports more effective advertising than current video sites.

8. DISCUSSIONS AND CONCLUSIONS
In this paper, we presented VideoSense – a novel video

advertising system that is able to support contextually rel-
evant and less intrusive advertising for online video service.
To support less intrusiveness, we elaborately detect a set of
appropriate ad insertion points based on content discontinu-
ity and attractiveness. To support contextual relevance, we
introduce global textual relevance to find the most relevant
ads, and local visual-aural relevance to find good matching
between each insertion point and ad. The whole process is
further formulated as an optimization problem. The objec-
tive and subject evaluations proved that VideoSense sup-
ports more effective video advertising than current video
sites. Furthermore, we discussed some interesting extensions
of VideoSense to support more kinds of users.

There are a number of possible improvements for VideoSense.
For example, a suitable ontology for video ads will improve
the textual matching between ads and videos. Although we
propose two measurements, i.e. content discontinuity and
attractiveness, for detecting ad insertion point, it still re-
quires additional user studies in a typical viewer audience to

6
As we have set D(pNs+1) = 1.00 and D(p1) = 0.99 in Algorithm 1,

in many cases the ads are inserted at the beginning and end of micro

videos.
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Figure 10: Subjective evaluations of (a) micro videos, (b) long videos, and (c) all (micro and long) videos.

know what really a good ad insertion point is. Furthermore,
how we can simultaneously take both the viewers and adver-
tisers into consideration still remains a challenging problem.

To date, user-targeted advertising is another key for online
advertising in addition to contextual advertising. Targeted
video advertising means that video ads will reach specified
target audiences by leveraging user-provided demographic
profiles. To support such advertising framework, our future
work include collecting user profiles and click-through data,
and studying how to deliver personalized video ads based
on user interests, locations, past and current behaviors, and
other data. We also aim at embedding a variety of ads into
online videos, including textual, audio and image ads.
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