

Aerophones in Flatland

Interactive Wave Simulation of Wind Instruments

Andrew Allen Nikunj Raghuvanshi

Simulation Domain

Mouthpiece

Spectrogram

Wind Instruments

Excitation models: Single Reed (Clarinet)

Excitation models: Lips (Trumpet)

Excitation models: Air Jet (Flute)

Realtime synthesis: Digital Waveguides

SMITH, JULIUS O. 2010. Physical Audio Signal Processing. http://ccrma.stanford.edu/~jos/pasp/ (online book, accessed Jan 2014).

Realtime synthesis: Digital Waveguides

Realtime synthesis: Digital Waveguides

Our approach

Advantages

- Signal processing networks require expertise to design and ensure physical plausibility.
- Geometric manipulation is intuitive.
- Guaranteed physical plausibility.
- Lower expertise bar for musical experimentation.

Challenges

- System is driven non-linearly and has perceptually salient transients (note beginnings/ends).
- Direct time-domain finite-difference solution.
- Standard finite difference generates artifacts on changing geometry.
- Need millimeter-scale resolution.
- Numerical stability requires small time-steps for wave equation.
- ~3.8mm resolution at **128,000Hz on the GPU**.

Linear Wave Equation

$$\frac{\partial p}{\partial t} = -\rho c^2 \nabla \cdot \mathbf{v}$$

$$\frac{\partial \mathbf{v}}{\partial t} = \frac{-\nabla p}{\rho}$$

Perfectly matched layer (PML)

$$\frac{\partial p}{\partial t} + \sigma p = -\rho c^2 \nabla \cdot \mathbf{v}$$

$$\frac{\partial \mathbf{v}}{\partial t} = -\nabla p$$

$$\frac{\partial \mathbf{v}}{\partial t} + \boldsymbol{\sigma} \, \mathbf{v} = \frac{-\nabla p}{\rho}$$

Dynamic Geometry

Tone Holes, Valves, Slides, Mutes

Abrupt geometric changes: clicks

Our formulation (time-varying PML)

$$\frac{\partial p}{\partial t} + (1 - \beta + \sigma)p = -\rho c^2 \nabla \cdot \mathbf{v}$$

$$\beta \frac{\partial \mathbf{v}}{\partial t} + (1 - \beta + \sigma)\mathbf{v} = \beta^2 \frac{-\nabla p}{\rho} + (1 - \beta + \sigma)\mathbf{v}_b$$

- $\beta(x,t) \in [0,1]$ introduces smoothly-varying dynamic geometry.
- \mathbf{v}_b enforces boundary conditions and input flow from mouthpiece.
- Handles all phenomena we model.

Our formulation (time-varying PML)

$$\beta \frac{\partial \mathbf{v}}{\partial t} + (1 - \beta + \sigma) \mathbf{v} = \beta^2 \frac{-\nabla p}{\rho} + (1 - \beta + \sigma) \mathbf{v}_b$$

 $(\sigma = 0 \text{ inside domain})$

Smoothly interpolates between **Boundary** and **Air** state in every cell

$$\beta = 0$$
: Boundary

$$\mathbf{v} =$$

 \mathbf{v}_b

$$\beta = 1$$
: Air

$$\frac{\partial \mathbf{v}}{\partial t}$$

$$\frac{-\nabla p}{\rho}$$

Our formulation: natural transients

- The transition rate of β controls the smoothness of the transition.
- Results in a simple conditional-free update equation for the entire domain.

Wall losses

- 2D simulations support transverse resonances
- Wall loss modeling is required (unlike 1D models)

High-amplitude non-linearity

- Brass instruments have high amplitudes inside the bore.
- Makes brass sound brighter.

- Solving Finite Difference uses a 5-point 2D stencil.
- Neighbor pressures and velocities are used to update center pressure.

R	G	В	Α
p	\mathbf{v}_{χ}	\mathbf{v}_{y}	state

Per Fragment

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.

Per Fragment

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.
- Ping-pong with R/Ws on one texture.

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.
- Ping-pong with R/Ws on one texture.

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.
- Ping-pong with R/Ws on one texture.

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.
- Ping-pong with R/Ws on one texture.

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.
- Ping-pong with R/Ws on one texture.

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.
- Ping-pong with R/Ws on one texture.
- Write output pressure (sound) to reserved space on the FBO.

Clarinet

Chalumeau melody

Altissimo melody (register key)

Saxophone

Simple melody

Fast Squeaks

Flute

"Robot" Performer

Wind Controller Interface

Bugle & Trumpet (brasses)

Lips Overblowing

Valve System

Trumpet w/o Bell and w/ Mutes

Bell On/Off

Straight, Cup and Harmon Mute

"Slide Whistle" and "Menorah"

Dynamic Bore Geometry

Interlocking Valve System

"Tuba?" and "Hybrid"

Implausible-to-construct Instrument

Reed, Lips, Valve, Tonehole, Bell

Comparisons to STK (Digital Waveguides)

Clarinet held note Clarinet register key A3 (220Hz) C#6 (1109Hz)

Low note High note

Conclusions and Future Work

- First system for real-time 2D simulation of Aerophones
- Improving the control of excitation mechanisms
- Automatic tuning of geometry
- Generalized excitation model
- Modeling of larynx/syrinx (speech synthesis/bird song)

Thank You! Questions?

Special thanks for providing performances –

- Kyle Rowan, clarinetist
- Paul Hembree, trumpeter