
A Characterization of the Dirichlet Distribution with Application toLearning Bayesian NetworksDan Geiger�Computer Science DepartmentTechnion, Haifa 32000, Israeldang@cs.technion.ac.il David HeckermanMicrosoft Research, Bldg 9S/1Redmond WA, 98052-6399heckerma@microsoft.comAbstractWe provide a new characterization of theDirichlet distribution. This characterizationimplies that under assumptions made by sev-eral previous authors for learning belief net-works, a Dirichlet prior on the parameters isinevitable.1 IntroductionIn recent years, several researchers have investigatedBayesian methods for learning belief networks [CH91,Bu91, SDLC93, HGC94]. These approaches all havethe same basic components: a scoring metric and asearch procedure. The scoring metric takes data anda network structure and returns a score re
ecting thegoodness-of-�t of the data to the structure. A searchprocedure generates networks for evaluation by thescoring metric. These approaches use the two com-ponents to identify a network structure or set of struc-tures that can be used to predict future hypotheses orinfer causal relationships.The Bayesian approach can be described as follows.Suppose we have a domain of variables fu1; : : : ; ung =U , and a set of cases fC1; : : : ; Cmg = D where eachcase is an instance of some or of all the variables inU . We sometimes refer to D as a database. Let(BS ; BP ) be a belief network, that is, BS is a di-rected acyclic graph , each node i of Bs is associatedwith a random variable ui and BP is a set of con-ditional distributions, p(uijui1; : : : ; uik), 1 � i � n,where ui1 ; : : : ; uik are the variables corresponding tothe parents of node i in BS . (For more details, consult[Pe88]). Let BhS stand for the hypothesis that casesare drawn from a belief network having the structureBS . Then a Bayesian measure of the goodness-of-�t ofa belief network structure BS is p(BhS jD; �) given byp(BhS jD; �) = c � p(BhS j�)p(DjBhS ; �) where c is a nor-malizing factor and � is the current state of knowledge.To compute p(DjBhS ; �) in closed form several assump-tions were made. First, the database D is a multino-�Part of this work was done while the author visitedMicrosoft Research Center

mial sample from some belief network (BS ; BP ). Sec-ond, for each network structure the parameters asso-ciated with one node are independent of the parame-ters associated with other nodes (global independence[SL90]) and the parameters associated within a nodegiven one instance of its parents are independent ofthe parameters of that node given other instances ofits parent nodes (local independence [SL90]). Third,if a node has the same parents in two distinct net-works then the distribution of the parameters asso-ciated with this node are identical in both networks(parameter modularity [HGC94]). Forth, each case iscomplete. Fifth, the distribution of the parametersassociated with each node is Dirichlet.The last two assumptions are made so as to createa conjugate sampling situation, namely, after data isseen the distributions of the parameters stay in thesame family| the Dirichlet family. A relaxation of theassumption of complete cases was carried out by pre-vious works (e.g., [SDLC93]). The contribution of thispaper is a characterization of the Dirichlet distributionwhich enables one to show that the �fth assumptionis implied from the �rst three assumptions and fromone additional plausible assumption that if B1 andB2 are equivalent belief networks (i.e., they representthe same independence assumptions) then the eventsBh1 and Bh2 are equivalent as well (hypothesis equiva-lence [HGC94]). We make this self-evident assumptionexplicit because it does not hold for causal networkswhere two edges with opposing directions correspondto distinct events.Our contribution can be described using common sta-tistical terminology as follows. We use this termi-nology because our result might be found applicablein other statistical uses of the Dirichlet distributionand because it falls under the broad area of charac-terizations of probability distribution functions. Sup-pose s and t are two discrete random variables hav-ing �nite domains, fsigki=1 and ftjgnj=1, respectively.We wish to infer the joint probability p(s; t) from asample of pairs of values (si; tj) of s and t. Thestandard Bayesian approach to this statistical infer-ence problem is to associate with p(si; tj) a parameter�ij (often called the multinomial parameter), assignf�ijj1 � i � k; 1 � j � ng a prior joint pdf and com-pute the posterior joint pdf of f�ijg given the observed



set of pairs of values. There are two closely-relatedvariants to this approach which can be described asfollows.Let �i� =Pnj=1 �ij stand for the multinomial parame-ter associated with p(s = si) and let �jji = �ij=Pj �ijstand for the multinomial parameter associated withp(t = tjjs = si). Furthermore, let �I� = f�i�gk�1i=1 and�Jji = f�jjign�1j=1 . We assume that f�I�; �Jj1; : : : ; �Jjkgare mutually independent and that each has a priorpdf. Now according to Bayesian practice we com-pute the joint posterior appropriately. That is, we up-date the pdf for �I� according to the counts of s = siin the observed pairs and update the pdf of �Jji ac-cording to the counts of t = tj in all pairs in whichs = si. In a symmetric fashion, let ��j = Pki=1 �ij,�ijj = �ij=Pi �ij , ��J = f��jgn�1j=1 and �Ijj = f�ijjgk�1i=1 .Now we assume that f��J ; �Ij1; : : : ; �Ijng are mutuallyindependent and that each has a prior pdf and we com-pute the posterior pdf for ��J according to the countsof t = tj and the posterior pdf of �Ijj according to thecounts of s = si in all pairs in which t = tj .To make these techniques operational one must choosea speci�c prior pdf for the multinomial parameters.The standard choice of a pdf for f�ijg is a Dirichletpdf usually for pragmatic reasons. When such a choiceis made, it can be shown that f�I�; �Jj1; : : : ; �Jjkg areindeed mutually independent and that each has a priorDirichlet pdf. Similarly, f��J ; �Ij1; : : : ; �Ijng are mutu-ally independent and each has a prior Dirichlet pdf.The surprising result proved in this article is that ifthese independence assertions are assumed to hold,and under the assumption of (strictly) positive pdfs,then a prior Dirichlet pdf for f�ijg is the only possi-ble choice. The assumption of strictly positive pdfscan possibly be dropped without a�ecting the conclu-sion but we have not carried out a proof of this claim.The implication of this result to learning Bayesian net-works is discussed in Section 3. A preliminary accountof analogous results for Gaussian networks is reportedin Section 4.2 Background and TechnicalSummaryThe Dirichlet pdf is de�ned as follows. Let �1; : : : ; �lbe positive random variables that sum to 1. Then�1; : : : ; �l�1 have a Dirichlet pdf f iff(�1; : : : ; �l�1) = �(Pli=1 �i)Qli=1 �(�i) lYi=1��i�1i (1)where �l = 1 �Pl�1i=1 �i and �i are positive constants(See, e.g., [De70, Wi62]).We use the following conventions. Suppose f�ijg,1 � i � k, 1 � j � n, is a set of positive random vari-ables that sum to 1. Let �i�; ��j; �I�; ��J ; �jji; �ijj; �Jji,and �Ijj be de�ned as in the introduction. Conse-quently, �i��jji = ��j�ijj for every i and j. Let fU

be the joint pdf of f�ijg, fI be the pdf of �I�, andfJji be the pdf of �Jji. Similarly, let fJ be the pdf of��J , and fIjj be the pdf of �Ijj . Finally, let fIJ be thejoint pdf of �I�; �Jj1; : : : ; �Jjk and fJI be the joint pdfof ��J ; �Ij1; : : : ; �Ijn.A Dirichlet pdf for f�ijg is given byfU (f�ijg) = c kYi=1 nYj=1 ��ij�1ij (2)where �kn = 1 �PA �ij , A = f(i; j)j1 � i; j � n; i 6=k or j 6= ng, c is the normalization constant and �ijare positive constants.We observe that fU and fIJ are related through achange of variables. Since both f�i�gki=1 and f�jjignj=1are de�ned in terms of f�ijg and since �ij = �i��jji,there exists a one-to-one and onto correspondence be-tween f�ijg and f�i�g [ f�jjig. The Jacobian Jk;n ofthis transformation is given byJkn = kYi=1 �n�1i� (3)[HGC95].The following lemma provides a known property ofthe Dirichlet distribution. A slightly weaker version isstated in [DL93] (Lemma 7.2).Lemma 1 Let f�ijg, 1 � i � k, 1 � j � n, wherek and n are integers greater than 1, be a set of posi-tive random variables having a Dirichlet distribution.Then, fI (�I�) is Dirichlet, fJji(�Jji) is Dirichlet for ev-ery i, 1 � i � k, and f�I�; �Jj1; : : : ; �Jjkg are mutuallyindependent.Proof: Set �ij = �i��jji in Eq. 2, multiply by Jkn, andregroup terms. 2The main claim of this article is that, under the as-sumption of a positive pdf for f�ijg, the converse holdsas well. More speci�cally, we prove the following the-orem.Theorem 2 Let f�ijg, 1 � i � k, 1 � j � n,Pij �ij = 1, where k and n are integers greater than1, be positive random variables having a positive pdffU (f�ijg). If f�I�; �Jj1; : : : ; �Jjkg are mutually inde-pendent and f��J ; �Ij1; : : : ; �Ijng are mutually indepen-dent, then fU (f�ijg) is Dirichlet.Recall that fU can be written both in terms of fIJand in terms of fJI by a change of variables and usingthe Jacobian given by Equation 3. Since both repre-sentations must be equal, and using the independenceassumptions made by Theorem 2 to factor fIJ and fJI ,we get the equality,0@ nYj=1 �k�1�j 1A�1 fJ (��J ) nYj=1 fIjj(�Ijj) = (4)



 kYi=1 �n�1i� !�1 fI (�I�) kYi=1 fJji(�Jji)This equality, which is in fact a functional equation,summarizes the independence assumptions stated inTheorem 2.Methods for solving functional equations such as Eq. 4,that is, �nding all functions that satisfy them un-der di�erent regularity assumptions, are discussed in[Ac66]. We use the following technique. First, we showthat any positive solution to Eq. 4 must be di�eren-tiable in any order (Acz�el, 66, Section 4.2.2, \Deduc-tion of di�erentiability from integrability"). Then wetake repeated derivatives of Eq. 4 and obtain a di�er-ential equation the solution of which after appropriatespecialization is the general solution of Eq. 4 (Acz�el,66, Section 4.2, \Reduction to di�erential equations").The proof is given is the appendix.Note that when n = k = 2 and by renaming of variableand function names, Eq. 4 can be written as follows:f0(y)g1(z)g2(w) = g0(x)f1(yzx )f2(y(1 � z)1� x ) (5)where x = yz + (1� y)wand where y, z and w replace ��j=1, �i=1jj=1, �i=1jj=2,respectively.3 Implications For LearningWe now explain how our characterization applies tolearning belief networks. We concentrate on belief net-works for two discrete variables s and t whose jointdistribution is p(s; t). The n-variate case is discussedin [HGC95]. There are three possible belief networkswith two nodes. The network that contains no edgebetween its two nodes s and t, a network s ! t andthe network t ! s. The �rst network B0 correspondsto the assertion that s and t are independent whilethe second network B1 and the third one B2 assertthat s and t are dependent. The last two belief net-works are equivalent, B1 represents the factorizationp(s; t) = p(s)p(tjs) and B2 represents the factorizationp(s; t) = p(t)p(sjt).We shall �rst examine the two complete networks B1and B2. We assume that if two networks B1 and B2are equivalent (as is the case in our example) thenthe corresponding events Bh1 and Bh2 are equivalent(hypothesis equivalence [HGC94]). Recalling the no-tations introduced in the introduction, we have that�i� = Pnj=1 �ij stand for the multinomial parame-ters associated with p(s = si) and �jji = �ij=Pj �ijstand for the multinomial parameters associated withp(t = tj js = si). Thus,fIJ (�I�; �Jj1; : : : ; �JjkjBh1 ) = fIJ (�I�; �Jj1; : : : ; �JjkjBh2 )fJI(��J ; �Ij1; : : : ; �IjkjBh2 ) = fJI (��J ; �Ij1; : : : ; �IjkjBh1 )

Due to these equalities and using local and global in-dependence to factor fIJ and fJI , we immediately ob-tain Equation 4 (dropping the conditioning events isvalid because Bh1 and Bh2 are equivalent). Thus for thetwo complete networks the only possible prior on theirparameters is, according to Theorem 2, the Dirichletdistribution.Note that we only use three assumptions: a multi-nomial sampling situation, local and global indepen-dence, and hypothesis equivalence. Implicitly, since wecondition on Bhi , is the assumption that each completestructure has a positive probability to be manifested.The prior for any non-complete network follows fromthe assumption of parameter modularity which saysthat the pdf associated with a node under the assump-tion that a speci�c network generates the data is thesame as the pdf of the parameters of that node givenanother network generates the data provided that theset of parents is identical in the two networks. In ourtwo-variables network, for example, the parameters �i�which are associated with node s have the same pdfwhen conditioned on B1 and when conditioned on B0because in both networks s has the same set of parents(the empty set) and similarly for node t. That is,fi(�i�jBh1 ; �) = fi(�i�jBh0 ; �)fj(��j jBh2 ; �) = fj(��j jBh0 ; �)These equalities imply that the prior for the parame-ters of B0 is Dirichlet as well. Thus, parameter mod-ularity is the assumption that extends our result fromcomplete to non-complete networks.This result of the inevitable choice of a Dirichlet priorfor two-variables networks is easily generalized to then-variate case by induction and without the need tosolve any additional functional equations. The induc-tive proof uses the fact that a cluster of variables eachhaving a Dirichlet distribution is distributed Dirichletas well. For details consult [HGC95].Recall that the exponents of �ij of a Dirichlet distribu-tion can be written as N�ij�1 where N is the \equiv-alent sample size" (the size of an imaginary databaseof complete cases{the prior sample{upon which theprior Dirichlet is based) and �ij is the expectation of�ij . The equivalent sample size re
ects the con�denceof the user and �ij represents the relative frequencyof the pair (i; j) in the prior sample. A joint Dirich-let prior is therefore quite restricting because it allowsonly one equivalent sample size for the entire domain.That is, there is no way to express di�erent con�dencelevels regarding the parameters of di�erent parts of thenetwork. Thus the practical rami�cation of our charac-terization is that the commonly-made global and localindependence assumption is inappropriate whenever asingle equivalent sample size is not su�cient to de-scribe prior knowledge. Such a situation occurs, forexample, if knowledge about �I� is more precise thanknowledge about �Jji.One possibility for overcoming this limitation of theDirichlet prior is to replace the notion of a single equiv-alent sample size with equivalent database. Namely,



we ask a user to imagine that she was initially com-pletely ignorant about a domain, having an uninfor-mative prior with equivalent sample size(s) close tothe lower bound. Then, we ask the user to specifya database De that would produce a posterior den-sity that re
ects her current state of knowledge. Thisdatabase may contain incomplete cases. Then, to scorea real database D, we score the database De [D, us-ing the uninformative prior and a learning algorithmthat handles missing data. This way of specifying aprior yields a mixture of Dirichlet distributions which,according to our result, cannot satisfy the local andglobal independence assumption.4 DiscussionThe independence assumptions made by Theorem 2can be divided into two parts: f�Jj1; : : : ; �Jjkg aremutually independent and f�Ij1; : : : ; �Ijng are mutu-ally independent (local independence) and �I� is in-dependent of f�Jj1; : : : ; �Jjkg and ��J is independentof f�Ij1; : : : ; �Ijng (global independence). A naturalquestion to ask is whether global independence aloneimplies a joint Dirichlet pdf for f�ijg.This question is particularly interesting in light of theanalysis of decomposable graphical models given by[DL93]. Dawid and Lauritzen term a pdf that satis�esglobal independence a strong hyper-Markov law andshow the importance of such laws in the analysis ofdecomposable graphical models. We now show thatthe class of strong hyper-Markov laws is larger thanthe Dirichlet class.When n = k = 2, and using the notations of Equa-tion 5 the new functional equation can be written asfollows: f0(y)g(z; w) = g0(x)f(yzx ; y(1 � z)1� x ) (6)where x = yz + (1� y)w. Note that Eq. 5 is obtainedfrom this equation by setting g(z; w) = g1(z)g2(w) andf(t1; t2) = f1(t1)f2(t2). These equalities correspond tolocal independence.Let fU be a joint pdf of f�ijg given byfU (f�ijg) = K 24 2Yi=1 2Yj=1 ��ij�1ij 35H(�11�22�12�21 ) (7)where K is the normalization constant, �ij are posi-tive constants andH is an arbitrary positive integrablefunction. That this pdf satis�es global independencecan be easily veri�ed. It can in fact be shown, by solv-ing Eq. 6, that every positive strong Hyper Markov lawcan be written in this form (when n = 2 and k = 2).This solution includes the Dirichlet family as a propersubclass.Since H is a single function that does not depend on aparticular network, one can conclude that if local pa-rameter independence is assumed to hold in one net-work, then fU must still be Dirichlet and therefore,

due to Lemma 1, local parameter independence musthold for all networks. We have so far proved this claimfor two-variables networks but we believe it holds forthe n-variate case as well.As a �nal comment, we should mention that a func-tional equation which restricts the possible prior dis-tributions for the parameters of Bayesian networks canbe formulated for other sampling situations not nec-essarily for the multinomial sampling which was as-sumed in our discussion so far. As another example,consider a two-continuous-variables domain fx1; x2ghaving a bivariate-normal distribution. Constructinga prior for the parameters of such Gaussian networksand performing the prior-to-posterior analysis was car-ried out in [GH94, HG95]. Let fm1; v1;m2j1; b12; v2j1gand fm2; v2;m1j2; b21; v1j2g denote the parameters forthe network structures x1 ! x2 and x1  x2, respec-tively. That is, m1 is the mean of x1 and v1 is thevariance for x1. Collectively, these are the parametersassociated with node x1 in the �rst network. The pa-rameters associated with node x2 are the conditionalmean m2j1, the regression coe�cient b12 of x2 givenx1 and the conditional variance v2j1. Now assumingglobal parameter independence and hypothesis equiv-alence and using the Jacobian given in [HG95] yieldsthe functional equationf1(m1; v1) f2j1(m2j1; b12; v2j1) = v21v32j1v22v31j2 �f2(m2; v2) f1j2(m1j2; b21; v1j2) (8)where f1, f2j1, f2, and f1j2 are arbitrary density func-tions, and wherev2 = v2j1 + v1b212 b21 = b12v1v2 v1j2 = v2j1v1v2m2 = m2j1 + b12m1 m1j2 = m1 + b21m2These relationship are well known from path analysisand can be derived from Eq. 4 in [HG95].We have solved this functional equation and found thatthe only integrable solutions are such that f1(v1) is aninverse gamma distribution, that is, 1=v1 has a gammadistribution, f1(m1jv1) is a normal distribution, andsimilarly for f2(m2; v2). The conditional distribu-tion f2j1(b12; v2j1) has an interesting form. An inversegamma distribution for v2j1 times a Normal distribu-tion for b12 times an arbitrary function H(b12=v2j1).The arbitrary function is not surprising since the func-tional equation only encodes global independence andso the solution depends on an arbitrary function justas for multinomial sampling (Equation 7).The natural question is now what does local indepen-dence mean for Gaussian networks. Because the sub-jective variance of b12 actually depends on v2j1, we can-not assume that b12 and v2j1 are independent. The an-swer is that local independence for Gaussian networksmeans that the standardized regression coe�cient b12is independent of the conditional variance v2j1 at each



node. When adding this assumption, which fully par-allels the discrete case, we get that H is the exponen-tial function and therefore f2j1(b12jv2j1) is a normaldistribution and f2j1(v2j1) is an inverse Gamma distri-bution.Consequently, it can further be shown that a bivari-ate normal{Wishart distribution is the only possibleprior on the joint space parameters (i.e., the inversecovariance matrix and the vector of means) if we as-sume global parameter independence, local parameterindependence for one network and hypothesis equiva-lence. Indeed this was the prior chosen by [GH94]. Ananalogous result holds for the n-variate case as well.AcknowledgmentWe thank J. D. Acz�el and M. Ungarish for valuablecomments, S. Altschuler and L. Wu for their help withLemma 3, M. Israeli for his help with Lemma 4 and G.Cooper who helped us de�ne the notion of an equiva-lent database.References[Ac66] J. Acz�el, Lectures on Functional Equations andTheir Applications, Academic Press, New York,1966.[Bu91] W. Buntine, Theory re�nement on Bayesiannetworks, Proceedings of Seventh Conference onUncertainty in Arti�cial Intelligence, Los Angeles,CA, Morgan Kaufmann, July, 1991, 52{60.[CH91] G. Cooper and E. Herskovits, A Bayesianmethod for the induction of probabilistic networksfrom data, Section on Medical Informatics, StanfordUniversity, January, 1991, Technical Report, SMI-91-1. Also in, Proceedings of Seventh Conference onUncertainty in Arti�cial Intelligence, Los Angeles,CA, Morgan Kaufmann, July, 1991, 52{60. Finalversion in Machine Learning, 1992, 9:309{347.[DL93] P. Dawid and S. Lauritzen, Hyper Markovlaws in statistical analysis of decomposable graphi-cal models,Annals of Statistics, 21:1272{1317, 1993.[De70] M. DeGroot, Optimal Statistical Decisions,McGraw-Hill, New York.[GH94] D. Geiger and D. Heckerman, Learning Gaus-sian networks, Proceedings of Tenth Conference onUncertainty in Arti�cial Intelligence, Seattle, WA,Morgan Kaufmann, July 1994, 235{243.[GH95] D. Geiger and D. Heckerman, A characteriza-tion of the Dirichlet distribution through global andlocal independence, Computer Science Department,Technical report 9506, February 1995. A prelimi-nary report appears as Microsoft Research Report,TR-94-16.[HG95] D. Heckerman and D. Geiger, LearningBayesian networks: A uni�cation for discrete andGaussian domains. In this proceedings.

[HGC94] D. Heckerman, D. Geiger, and D. Chicker-ing, Learning Bayesian networks: The combinationof knowledge and statistical data, Proceedings ofTenth Conference on Uncertainty in Arti�cial Intel-ligence, Seattle, WA, Morgan Kaufmann, July 1994,293{301.[HGC95] D. Heckerman, D. Geiger, and D. Chicker-ing, Learning Bayesian networks, Machine Learning,1995, to appear.[Pe88] J. Pearl, Probabilistic Reasoning in IntelligentSystems: Networks of Plausible Inference, 1988,Morgan Kaufmann, San Mateo, CA.[SL90] D. Spiegelhalter and S. Lauritzen, Sequentialupdating of conditional probabilities on directedgraphical structures, Networks, 20, 579{605, 1990.[SDLC93] D. Spiegelhalter, A. Dawid, S. Lauritzen,and R. Cowell, Bayesian analysis in expert systems,Statistical Science, 8, 219{282, 1993.[Wi62] S. Wilks, Mathematical Statistics, Wiley andSons, New York.Appendix: Proof 1Di�ereniability from IntegrabilityBy renaming of variable and function names, and byabsorbing the Jacobians into the new function de�ni-tions, Eq. 4 can be written as follows:f0(y1; : : : ; yn�1) nYj=1 gj(z1;j ; : : : ; zk�1;j) =g0(x1; : : : ; xk�1) kYi=1fi(zi1y1xi ; : : : ; zi;n�1yn�1xi ) (9)where xi = nXj=1 zijyj ; 1 � i � k � 1 (10)zkj = 1� k�1Xi=1 zij; 1 � j � nand whereyn = 1� n�1Xj=1 yj ; xk = 1� k�1Xi=1 xi (11)Note that the free variables in Eq. 9 are y1; : : : ; yn�1(yj replaces ��j) and zij , 1 � i � k � 1, 1 � j � n(zij replaces �ijj). All other variables which appear inEq. 9 are de�ned by Eqs. 10 and 11.1This proof �rst appeared in [GH95].



Furthermore, we may consider x1 : : : ; xk (xi replaces�i�) and wij = zijyjxi , 1 � i � k, 1 � j � n � 1 (wijreplaces �jji) to be free variables and rewrite Eq. 9 interm of these variables, namely,g0(x1; : : : ; xk�1) kYi=1 fi(wi;1; : : : ; wi;n�1) =f0(y1; : : : ; yn�1) nYj=1 gj(w1;jx1yj ; : : : ; wk�1;jxk�1yj ) (12)where yj = kXi=1 wijxi; 1 � j � n � 1 (13)win = 1� n�1Xj=1 wij; 1 � i � kand where xk and yn are de�ned by Eq. 11. Thissymmetric representation of Eq. 9 will be used in thederivation of its solution.We assume that all functions mentioned in Eq. 9 orig-inated from pdfs and thus are (Lebesgue) integrablein their domain. We shall now show that this assump-tion implies that each set of functions that solves Eq. 9consists of functions for which any �nite-order partialderivative exists for every point in their domain. Theimportance of this technical claim is that in order to�nd all positive integrable functions that satisfy Eq. 9,it is permissible to take any derivative at any point inthe domain because it exists.By setting zij = 1=k, for all i and j, in Equa-tion 9 we get that f0(y1; : : : ; yn�1) is proportionalto Qki=1 fi(y1; : : : ; yn�1). Similarly, by setting wij =1=n in Eq. 12, g0(x1; : : : ; xk�1) is proportional toQnj=1 gj(x1; : : : ; xk�1). Thus if we prove that each gj,j = 1; : : : ; n, has any-order derivative, then so doesg0. Furthermore, any property that we prove aboutgj, j = 1; : : : ; n, holds true for fi, i = 1; : : : ; k, due tothe symmetric representation of Eq. 9 given by Eq. 12.Since all functions are positive, we can take the loga-rithm of Eq. 9. Since all functions are integrable andpositive then so are their logarithms. Let now j0 bean index such that 1 � j0 � n. We take a logarithmof Eq. 9 and integrate the resulting equation wrt 2all variables except for the variables zij0 , 1 � i < k.Consequently, we obtain,ĝj0(z1;j0 ; : : : ; zk�1;j0 ) = M + ZDj1 : : :ZDjn ZDy [ĝ0(x1;: : : ; xk�1) + kXi=1 f̂i(zi1y1xi ; : : : ; zi;n�1yn�1xi )]dZj0dY (14)where ĥ(x) stands for lnh(x), M is a constant, Y =(y1; : : : ; yn�1), Zj0 is a vector containing all variables2with respect to

zij except those where j = j0, Dj is the domain of gj,and Dy the domain of f0.Since, the right hand-side of Eq. 14 is integrable, itfollows that gj0 is continuous for every 1 � j0 � n.Hence, g0 is continuous as well. Thus, due to the sym-metric functional equation (Eq. 12), fi are also contin-uous functions. Having now continuous functions onthe right hand-side of Eq. 14, it follows that gj0 has a�rst derivative wrt each of its arguments. Thus, dueto Eq. 12, each fi also has a �rst derivative wrt each ofits arguments. Consequently, by Eq. 14, it follows thatgj0 has a second derivative wrt each of its arguments.Repeating this argument yields the desired conclusionthat all positive integrable functions that solve Equa-tion 9 have any partial derivative at any point in theirdomain.3The Binary SolutionWe shall now �nd all positive integrable solutions ofEq. 9 when k = n = 2. This derivation is di�erent fromthe general derivation which is given in the followingsections, however, the basic method of repeatedly dif-ferentiating the functional equation and subsequentlysolving the resulting di�erential equations is similar.When n = k = 2, the functional equation can be writ-ten as follows:f0(y)g1(z)g2(w) = g0(x)f1(yzx )f2(y(1 � z)1� x ) (15)where x = yz + (1� y)w (16)Let f̂ 0i(t) = ddt ln fi(t) (17)and ĝ0i(t) = ddt ln gi(t) (18)Taking the logarithm and then a derivative once wrty, once wrt z and once wrt w of Eq. 15 yields thefollowing three equations,f̂ 00(y) � (z �w)ĝ00(x) = zwx2 f̂ 01(yzx )+(1� z)(1� w)(1� x)2 f̂ 02(y(1 � z)1� x ) (19)ĝ01(z)� yĝ00(x) = yw(1 � y)x2 f̂ 01(yzx )�(1�w)(1� y)y(1� x)2 f̂ 02(y(1 � z)1� x ) (20)ĝ02(w)� (1� y)ĝ00(x) = �yz(1 � y)x2 f̂ 01(yzx )+y(1 � z)(1� y)(1� x)2 f̂ 02(y(1 � z)1� x ) (21)3Note that, by de�nition, a pdf does not include a deltafunction. Otherwise it is called a generalized pdf (gpdf,[De70]). An integral of a gpdf need not be continuous.



Solving f̂ 01(yzx ) and f̂ 02(y(1�z)1�x ) from Eqs. 20 and 21yields,y(1 � y)(w � z)x2 f̂ 01(yzx ) = � (1� y)(1 � w)ĝ00(x)+(1� z)ĝ01(z) � y(1 � z)ĝ00(x) + (1� w)ĝ02(w)(22)y(1 � y)(w � z)(1� x)2 f̂ 02(y(1 � z)1� x ) = zĝ01(z)� yzĝ00(x) +wĝ02(w)� (1 � y)wĝ00(x) (23)Now plugging Eqs. 22 and 23 into Eq. 19 and collectingall the terms involving ĝ00(x), ĝ01(z), ĝ02(w) and f̂ 00(y),yields,h(y; z; w)ĝ00(x) = z(1� z)ĝ01(z) + w(1�w)ĝ02(w)� y(1 � y)(w � z)f̂ 00(y) (24)whereh(y; z; w) = y(1 � y)(w � z)2 + yz(1 � z)+ (1 � y)(1 � w)wTaking a derivative wrt z of Eq. 24 yields,hz(y; z; w)ĝ00(x) + yh(y; z; w)ĝ000 (x) = (1� 2z)ĝ01(z)+ z(1� z)ĝ001 (z) + y(1 � y)f̂ 00(y) (25)where hz is the partial derivative of h wrt z, given by,hz(y; z; w) = �2y(1 � y)(w � z) + y(1 � 2z)Similarly, taking a derivative wrt w of Eq. 24 yields,hw(y; z; w)ĝ00(x) + (1� y)h(y; z; w)ĝ000 (x) =(1� 2w)ĝ02(w) + w(1�w)ĝ002 (w)� y(1 � y)f̂ 00(y) (26)where hw is the partial derivative of h wrt w, given by,hw(y; z; w)ĝ00(x) = 2y(1� y)(w � z) + (1� y)(1 � 2w)Eqs. 25 and 26 together with(1 � y)hz(y; z; w)� yhw(y; z; w) � 0yield(1� 2w)ĝ02(w) +w(1� w)ĝ002 (w) = (1� y)f̂ 00(y)+ 1� yy [(1� 2z)ĝ01(z) + z(1� z)ĝ001 (z)] (27)Since w does not appear in the right hand side of thisequation, we get,(1� 2w)ĝ02(w) + w(1�w)ĝ002 (w) = c1 (28)where c1 is an arbitrary constant. Eq. 28 is a �rstorder linear di�erential equation the general solutionof which is given by,ĝ02(w) = bw(1�w) � c12 1� 2ww(1�w)

where b is an arbitrary constant and bw(1�w) is thehomogeneous solution. Thus,ĝ02(w) = �w � �1�wwhere � and � are arbitrary constants de�ned by � =b� c12 and � = �(b + 3c12 ). Hence, using R �=w dw =lnw�, we get g2(w) = cw�(1� w)� where c is a thirdarbitrary constant.From Eq. 27 we also get,(1� 2z)ĝ01(z) + z(1 � z)ĝ001 (z) = c1y1� y + yf̂ 00(y)Hence both sides are equal to a constant, say c2. Con-sequently, f̂ 00(y) = c2y � c11� yand ĝ01(z) = �0z � �01� zConsequently, f0(y), g1(z) and g2(w) all have theDirichlet functional form and each function dependson three constants. Due to the symmetric representa-tion of Eq. 9 given by Eq. 12, we conclude that g0, f1,and f2 are Dirichlet as well.Preliminary LemmasWe now provide several lemmas that are needed forthe derivation of the general solution of Eq. 9.Lemma 3 The general solution of the following par-tial di�erential equation for f(x1; : : : ; xn),f + xifxi + xjfxj = 0 (29)in the domain (0;1)m, is given by,f(x1; : : : ; xn) = 1xih(xixj ; x1; : : : ; xi�1; xi+1; : : : ;xj�1; xj+1; : : : ; xn) (30)or, equivalently, byf(x1; : : : ; xn) = 1xj g(xixj ; x1; : : : ; xi�1; xi+1; : : : ;xj�1; xj+1; : : : ; xn) (31)where h and g are arbitrary di�erentiable functionshaving n� 1 arguments.Proof: Let s = xi and t = xixj . Thus, fxi = fs + tsft,fxj = � t2s ft. Hence, after a change of variables, thedi�erential equation becomesf + sfs = 0and therefore,f = 1sh(t; x1; : : : ; xi�1; xi+1; : : : ; xj�1; xj+1; : : : ; xn)By changing the roles of xi and xj in this derivation,we get the other form of f . 2



Lemma 4 The general solution of the following par-tial di�erential equation for f(x1; : : : ; xn),fxi � fxj = �xi + �xj (32)is given byf(x1; : : : ; xn) = � lnxi � � lnxj + h(xi + xj ; x1;: : : ; xi�1; xi+1; : : : ; xj�1; xj+1; : : : ; xn) (33)where h is an arbitrary di�erentiable function havingn� 1 arguments.Proof: Let s = xi + xj and t = xi � xj. Thus, fxi =fs+ft, fxj = fs�ft. Hence, after a change of variables,the di�erential equation becomesft = �s + t + �s � tIntegrating wrt t and changing back to the originalvariables yields the desired solution. 2Lemma 5 Let f(x1; : : : ; xn) be a twice-di�erentiablefunction. If for all 1 � i < j � n,f(x1; : : : ; xn) = ai lnxi + aj lnxj + fij(xi + xj; x1; : : : ;xi�1; xi+1; : : : ; xj�1; xj+1; : : : ; xn)where fij are arbitrary twice di�erentiable functionshaving n� 1 arguments, thenf(x1; : : : ; xn) = g( nXi=1 xi) + nXi=1 ai lnxi (34)where g is an arbitrary twice-di�erentiable function.Proof: We shall prove the following stronger claim.For every 2 � l � n, and for every permutation of theindices of x1; : : : ; xn,f(x1; : : : ; xn) = hl( lXi=1 xi; xl+1; : : : ; xn) + lXi=1 ai lnxi(35)where hl is an arbitrary twice di�erentiable function.The function hl depends on the permutation, althoughthis fact is not re
ected in our notation. The base casel = 2 is assumed by the lemma and the case l = n isneeded to be proven.By the induction hypothesis we assume Eq. 35 and forthe permutation(1; : : : ; n)! (l; 1; : : : ; l � 1; l+ 1; : : : ; n)we also assume (by the induction hypothesis),f(x1; : : : ; xn) = gl(xl; xl+1 + l�1Xi=1 xi; xl+2; : : : ; xn)+ l�1Xi=1 bi lnxi + bl+1 lnxl+1 (36)

Let x =Pl�1i=1 xi, ci = bi � ai and x = (xl+2; : : : ; xn).From Eqs. 35 and 36 we get,hl(xl + x; xl+1; x) = gl(xl; xl+1 + x; x)+l�1Xi=1 ci lnxi � al lnxl + bl+1 lnxl+1 (37)Set xi = 1=2(l � 1), i = 1; : : : ; l � 1. Thus, x = 1=2and Eq. 37 yields,hl(xl + 1=2; xl+1; x) = gl(xl; xl+1 + 1=2; x)+l�1Xi=1 ci ln(1=2(l � 1)) � al lnxl + bl+1 lnxl+1 (38)Plugging Eq. 38 into Eq. 37 and letting~gl(xl; xl+1 + x; x) � gl(xl; xl+1 + x; x)� al lnxl (39)yields,~gl(xl + x� 1=2; xl+1 + 1=2; x) = ~gl(xl; xl+1 + x; x)+l�1Xi=1 ci lnxi � l�1Xi=1 ci ln(2(l � 1)) (40)By taking a derivative wrt xj , 1 � j � l � 1 of Eq. 40we get,~gl(xl + x� 1=2; xl+1 + 1=2; x)1 =cj=xj + ~gl(xl; xl+1 + x; x)2 (41)where the indices 1 and 2 indicate the argument of ~glwrt which a derivative is taken. Similarly by takingthe derivatives wrt xl we get,~gl(xl + x� 1=2; xl+1 + 1=2; x)1 = ~gl(xl; xl+1 + x; x)1(42)Consequently,~gl(xl; xl+1+ x; x)1� ~gl(xl; xl+1+ x; x)2 = cj=xj (43)for j = 1; : : : ; l � 1.we now show that cj = 0. If l > 2, then set j = j1 andj = j2, 1 � j1 < j2 � l� 1, in Eq. 43 and subtract thetwo equations. Consequently, cj1=xj1 = cj2=xj2 andtherefore cj1 = cj2 = 0. If l = 2, then, x = x1 andEq. 43 becomes~gl(x2; x3 + x1; x)1 � ~gl(x2; x3 + x1; x)2 = c1=x1 (44)Let u = x1 + x3, w = x1 � x3 and rewrite the lastequation,~gl(x2; u; x)1 � ~gl(x2; u; x)2 = 2c1u+ w (45)Since the left hand side is not a function of w we havec1 = 0.Now let s = xl + (x + xl+1), t = xl � (x + xl+1) andrewrite the di�erential equation (Eq. 43) by changingvariables to s; t and x. Since cj = 0, we get,@@t [~gl(s; t; x)] = 0 (46)



Thus, ~gl(s; t; x) = i(s; x) where i is a function of just sand x. Consequently, by switching back to the originalvariables, we get,f(x1; : : : ; xn) = l+1Xi=1 ai lnxi + i( l+1Xi=1 xi; xl+2; : : : ; xn)(47)Since this equation can be derived for any permutationof the indices of xi, the induction is completed. 25 The General SolutionWe now solve Eq. 9 for any n and k. First we assumeboth n and k are strictly greater than 2.We use the following notations:gl(t1; : : : ; tk�1)i = @@ti lngl(t1; : : : ; tk�1) (48)gl(t1; : : : ; tk�1)ij = @@ti @@tj lngl(t1; : : : ; tk�1)fl(t1; : : : ; tn�1)i = @@ti lnfl(t1; : : : ; tn�1)fl(t1; : : : ; tn�1)ij = @@ti @@tj lnfl(t1; : : : ; tn�1)Also we use the following notations:X = (x1; : : : ; xk�1); Zj = (z1;j; : : : ; zk�1;j); (49)Y = (y1; : : : ; yn�1); Wi = ( zi1y1xi ; : : : ; zi;n�1yn�1xi )For example, gj(Zj) stands for gj(z1;j ; : : : ; zk�1;j).By taking the logarithm and then a derivative wrt zij(1 � i � k � 1; 1 � j � n� 1) of Eq. 9, we get,gj(Zj)i = yj "n�1Xl=1 fi(Wi)l ��zilylx2i �+ 1xi fi(Wi)j#+ (50)yj "n�1Xl=1 fk(Wk)l �zklylx2k � � 1xk fk(Wk)j#+ yjg0(X)iBy setting i = i1 and i = i2, 1 � i1 < i2 � k�1 (k � 3)in Eq. 50, subtracting the resulting two equations, anddividing by yj , we get,1yj [gj(Zj)i1 � gj(Zj)i2 ] = [g0(X)i1 � g0(X)i2 ]+n�1Xl=1 �fi2(Wi2)l �zi2lylx2i2 �� fi1(Wi1 )l �zi1 lylx2i1 ��+ 1xi1 fi1 (Wi1)j � 1xi2 fi2 (Wi2)j (51)Taking now the logarithm and then a derivative wrtzin (1 � i � k � 1) of Eq. 9 yields,gn(Zn)i = yng0(X)i + yn "n�1Xl=1 fi(Wi)l ��zilylx2i �#+

yn "n�1Xl=1 fk(Wk)l �zklylx2k �# (52)Similarly, by setting i = i1 and i = i2, 1 � i1 < i2 �k�1 in Eq. 52, subtracting the resulting two equations,and dividing by yn, we get,1yn [gn(Zn)i1 � gn(Zn)i2 ] = g0(X)i1 � g0(X)i2+ (53)n�1Xl=1 �fi2(Wi2 )l �zi2 lylx2i2 �� fi1 (Wi1)l �zi1lylx2i1 ��Subtracting Eq. 53 from Eq. 51 and setting j = j1,yields,gj1(Zj1)i1 � gj1(Zj1)i2yj1 � gn(Zn)i1 � gn(Zn)i2yn =fi1(Wi1 )j1xi1 � fi2(Wi2 )j1xi2 (54)where 1 � i1 < i2 � k � 1; 1 � j1 � n� 1.Now we take a derivative wrt zi1j1 of Eq. 54 and obtain,1yj1 [gj1(Zj1)i1i1 � gj1(Zj1)i2i1 ] = �yj1x2i1 fi1 (Wi1)j1 (55)+ yj1xi1 n�1Xl=1 fi1 (Wi1)j1l ��zi1lylx2i1 �+ yj1x2i1 fi1 (Wi1)j1j1Similarly, we take a derivative wrt zi1n of Eq. 54 andobtain,� 1yn [gn(Zn)i1i1 � gn(Zn)i2i1 ] = � ynx2i1 fi1(Wi1 )j1+ynxi1 n�1Xl=1 fi1(Wi1 )j1l ��zi1 lylx2i1 � (56)Eqs. 55 and 56 yield,1y2j1 [gj1(Zj1 )i1i1 � gj1(Zj1 )i2i1 ] + 1y2n [gn(Zn)i1i1� gn(Zn)i2i1 ] = 1x2i1 fi1(Wi1)j1j1 (57)Now, we take a derivative wrt zi1j2 of Eq. 54 where1 � j2 � n� 1, j2 6= j1 (n � 3), and obtain,0 = �yj2x2i1 fi1 (Wi1)j1 + yj2xi1 n�1Xl=1 fi1 (Wi1)j1l ��zi1lylx2i1 �+ yj2x2i1 fi1(Wi1 )j1j2 (58)Eqs. 56 and 58 yield (j1 6= j2),1y2n [gn(Zn)i1i1 � gn(Zn)i2i1 ] = 1x2i1 fi1(Wi1)j1j2 (59)



Putting Eqs. 57 and 59 into Eq. 58 and recalling (fromEq. 10) that zi1nyn = xi1 � n�1Xl=1 zi1lylwe get,1xi1 fi1(Wi1)j1 = �zi1j1yj1 [gj1(Zj1)i1i1 � gj1(Zj1)i2i1 ]+ zi1nyn [gn(Zn)i1i1 � gn(Zn)i2i1 ] (60)Similarly, we derive an analogue to Eq. 55 by takinga derivative wrt zi2j1 (instead of wrt zi1j1) of Eq. 54,follow the same steps up to Eq. 60, and get,1xi2 fi2(Wi2)j1 = �zi2j1yj1 [gj1(Zj1)i1i2 � gj1(Zj1)i2i2 ]+ zi2nyn [gn(Zn)i1i2 � gn(Zn)i2i2 ] (61)Plugging Eqs. 60 and 61 into Eq. 54 and collectingall terms involving yn in one side and all terms notinvolving yn on the other side implies that each side isequal to a constant, say c, namely,1yj [gj(Zj)i1 � gj(Zj)i2 ] + zi1jyj [gj(Zj)i1i1 � gj(Zj)i2i1 ]+zi2jyj [gj(Zj)i1i2 � gj(Zj)i2i2 ] = c (62)where 1 � j � n.This equation holds for every value of yj and thereforec = 0. Thus we obtain,[gj(Zj)i1 � gj(Zj)i2 ] + zi1j [gj(Zj)i1i1 � gj(Zj)i2i1 ]+ zi2j [gj(Zj)i1i2 � gj(Zj)i2i2 ] = 0 (63)Let h(Zj) = gj(Zj)i1 � gj(Zj)i2 . Thus Eq. 63 can bewritten as follows,h+ zi1j @h@zi1j + zi2j @h@zi2j = 0 (64)Lemma 3 provides the general solution for h and thus,h(Zj) = gj(Zj)i1 � gj(Zj)i2 = 1zi1j ~gj(zi1jzi2j ; Zi1i2;j)(65)where Zi1i2;j stands for(z1j ; : : : ; zi1�1;j; zi1+1;j; : : : ; zi2�1;j; zi2+1;j ; : : : ; zk�1;j)and where ~gj is an arbitrary function having one ar-gument less than gj, or also by Lemma 3,gj(Zj)i1 � gj(Zj)i2 = 1zi2j ~gj(zi1jzi2j ; Zi1i2;j) (66)

where again ~gj is an arbitrary function having one ar-gument less than gj . Similarly, since fi and gj play asymmetric role in Eq. 9 as shown by Eq. 12 and hencehave the same form, we getfi(Wi)j1 �fi(Wi)j2 = xizij1yj1 ~fi(zij1yj1zij2yj2 ;Wj1j2;i) (67)where Wj1j2;i stands for(zi1y1xi ; : : : ; zi;j1�1yj1�1xi ; zi;j1+1yj1+1xi ; : : : ;zi;j2�1yj2�1xi ; zi;j2+1yj2+1xi ; : : : ; zinynxi )or also, we have,fi(Wi)j1 �fi(Wi)j2 = xizij2yj2 ~fi(zij1yj1zij2yj2 ;Wj1j2;i) (68)Now, by setting j = j1 and j = j2 in Eq. 54 andsubtracting the resulting equations, we get,gj1(Zj1)i1 � gj1 (Zj1)i2yj1 � gj2(Zj2)i1 � gj2 (Zj2)i2yj2 = (69)fi1(Wi1)j1 � fi1(Wi1 )j2xi1 � fi2(Wi2 )j1 � fi2(Wi2)j2xi2Plugging Eqs. 65 through 68 into Eq. 69 yields,~gj1 ( zi1j1zi2j1 ; Zi1i2;j1)zi1j1yj1 � ~gj2 ( zi1j2zi2j2 ; Zi1i2;j2)zi2j2yj2 = (70)~fi1( zi1j1 yj1zi1j2 yj2 ;Wj1j2;i1 )zi1j1yj1 � ~fi2( zi2j1yj1zi2j2yj2 ;Wj1j2;i2 )zi2j2yj2Note that the variables in Zi1i2;j1 do not appear else-where in this equation. Therefore, ~gj1 is only a func-tion of its �rst argument. Similarly, ~gj2 , ~fi1 and ~fi2are only functions of their �rst argument. Thus Eq. 70can be rewritten as follows,1zi1j1yj1 ~~gj1(zi1j1zi2j1 ) � 1zi2j2yj2 ~~gj2(zi1j2zi2j2 ) = (71)1zi1j1yj1 ~~f i1(zi1j1yj1zi1j2yj2 )� 1zi2j2yj2 ~~f i2(zi2j1yj1zi2j2yj2 )Let, x = zi1j1yj1 , y = zi2j1yj1 , z = zi1j2yj2 , and w =zi2j2yj2 in Eq. 71. Then,1x �~~gj1(xy )� ~~f i1(xz )� = 1w h~~gj2( zw ) � ~~f i2( yw )i (72)By taking a derivative wrt y of Eq. 72, we get,~~g0j1(xy )y2 = ~~f 0i2( yw )w2 (73)



Setting y = w, we see that ~~g0j1(t) = �j1 and ~~gj1(t) =�j1t + �j1 where �j1 and �j1 are constants. Pluggingthis result into Eq. 65 yields,gj(Zj)i1 � gj(Zj)i2 = �zi1j + �zi2j (74)where 1 � i1 < i2 � k � 1.Eq. 74 is a �rst-order partial di�erential equation thegeneral solution of which is given by Lemma 4. Con-sequently, due to Eq. 48, we get,gj(t1; : : : ; tk�1) = t�i1ji1 t�i2ji2 gj(ti1 + ti2 ; t1; : : : ;ti1�1; ti1+1; : : : ; ti2�1; ti2+1; : : : ; tk�1) (75)Now due to Lemma 5, we have,gj(t1; : : : ; tk�1) = "k�1Yi=1 t�iji #Gj(k�1Xi=1 ti) (76)Similarly,fi(t1; : : : ; tn�1) = 24n�1Yj=1 t�ijj 35Fi(n�1Xj=1 tj) (77)which is obtained by repeating the derivation startingat Eq. 12 rather then at Eq. 9. Note that we have al-most derived the Dirichlet functional form. It remainsto derive the form of the functions Fi and Gj .In Eq. 9 let z1j = z2j = � � � = zkj for 1 � j � n. Thus,according to Eq. 10, zij = xi. Consequently, we get,f0(y1; : : : ; yn�1) nYj=1 gj(x1; : : : ; xk�1) =g0(x1; : : : ; xk�1) kYi=1 fi(y1; : : : ; yn�1) (78)Eqs. 9 and 78 yield,nYj=1 gj(z1;j; : : : ; zk�1;n)gj(x1; : : : ; xk�1) = kYi=1 fi( zi1y1xi ; : : : ; zi;n�1yn�1xi )fi(y1; : : : ; yn�1) (79)Plugging Eqs. 76 and 77 into Eq. 79, we get,24 nYj=1 k�1Yi=1(zijxi )�ij3524 nYj=1 Gj(Pk�1i=1 zij)Gj(Pk�1i=1 xi) 35 =24 kYi=1 n�1Yj=1(zijxi )�ij35" kYi=1 Fi(Pn�1j=1 zijyjxi )Fi(Pn�1j=1 yj) # (80)Thus, using zkj = 1�Pk�1i=1 zij (Eq. 10),24n�1Yj=1 k�1Yi=1(zijxi )cij3524 nYj=1 ~Gj(Pk�1i=1 zij)~Gj(Pk�1i=1 xi) 35 =kYi=1 ~Fi(Pn�1j=1 zijyjxi )~Fi(Pn�1j=1 yj) (81)

where for 1 � i � k � 1 and 1 � j � n � 1, cij =�ij � �ij,~Fi(t) = (1� t)��inFi(t) ~Gj(t) = (1� t)��kjGj(t)and where ~Fk(t) = Fk(t) and ~Gn(t) = Gn(t). We willshow that ~Fi(t), i = 1; : : : ; k � 1, are constants. Con-sequently, due to Eq. 77, fi has a Dirichlet functionalform. That the function fk also has a Dirichlet func-tional form can be obtained by choosing z1j as a de-pendent variable de�ned by z1j = 1�Pki=2 zij insteadof zkj as de�ned by Eq. 10 and repeating the samearguments. By symmetric arguments each gj also hasa Dirichlet functional form.Let yj = 1n , for all j, 1 � j � n and zij = 1k for all iand j, 1 � i � k, 1 � j � n� 1. Hence, the only freevariables remaining in Eq. 81 are zin where 1 � i � k�1. Note that xi =Pnj=1 zijyj = n�1kn + 1nzin, 1 � i �k � 1, and so ~Gj(Pk�1i=1 xi) is a function of Pk�1i=1 zin.Also ~Gj(Pk�1i=1 zij) is a constant for 1 � j � n � 1and a function of Pk�1i=1 zin for j = n. Consequently,Eq. 81 becomes,f(k�1Xi=1 zin) = k�1Yi=1 ~Fi( cc+ dzin ) �c+ dzinc �ai (82)where c = n�1kn , d = 1n and ai = Pn�1j=1 cij. Notethat zkn = 1 �Pk�1i=1 zin and so the k-th term on theright hand side of Eq. 81 is absorbed, along with someconstants, into the de�nition of f in Eq. 82.Let ti = cc+dzin ; zin = cd 1�titi . Taking the logarithmof Eq. 82, we get,f̂( cd k�1Xi=1 1� titi ) = k�1Xi=1 ln t�aii ~Fi(ti) (83)Taking a derivative wrt ti1 , 1 � i1 � k � 1, we get,� cdt2i1 f̂ 0( cd k�1Xi=1 1� titi ) = hln t�ai1i1 ~Fi1(ti1 )i0 (84)Thus, f̂ 0( cd Pk�1i=1 1�titi ) must be a constant. Hence, byintegrating Eq. 84,~Fi(t) = citaieKt ; 1 � i � k � 1 (85)where K is a constant not depending on i.To complete the derivation we substitute Eq. 85 intoEq. 81, let yj = 1n , for 1 � j � n and zij = 1k ex-cept zi1, 1 � i � k � 1 which remain free variables.Consequently, we getg(k�1Xi=1 zi1) = k�1Yi=1 (zi1 +w0)aizci1i1 eKPk�1i=1 1zi1+w0



where w0 = n�2k . Therefore, K = 0, ai = 0, and ~Fi isa constant as claimed.Thus,fi(t1; : : : ; tn�1) = ki24n�1Yj=1 t�jj 35 (1� n�1Xj=1 tj)�k (86)gj(t1; : : : ; tk�1) = cj "k�1Yi=1 t�ii # (1� k�1Xi=1 ti)�k (87)We now comment on how the derivation changes whenn = 2 and k � 3. The case n � 3 and k = 2 follows aswell due to the symmetric functional equation (Equa-tion 12).Note that up to Eq. 57 the derivation is valid whenn = 2. Furthermore, note that the sum in Eq. 56consists now of one term where l = j1 = 1. Thus,Eq. 56 and Eq. 57 yield, using xi = zij1yj1 + zinyn(n=2, j1 = 1),fi1 (Wi1)j1xi1 = zi1nyn [gn(Zn)i1i1 � gn(Zn)i2i1 ]�zi1j1yj1 [gj1(Zj1)i1i1 � gj1(Zj1)i2i1 ] (88)Similarly,fi2 (Wi2)j1xi2 = zi2nyn [gn(Zn)i1i2 � gn(Zn)i2i2 ]�zi2j1yj1 [gj1(Zj1)i1i2 � gj1(Zj1)i2i2 ] (89)which is obtained by taking a derivative wrt zi2j1 ofEq. 54 (instead of wrt zi1j1) and repeating the deriva-tion up to Eq. 57.Plugging Eqs. 88 and 89 into Eq. 54 and collectingall terms involving yn in one side and all terms notinvolving yn on the other side implies that each sideis equal to a constant, say c, namely, we obtain thepartial di�erential equation for gj(Zj), 1 � j � n,given by Eq. 62. Consequently, as given by Eq. 65 andbecause n = 2,gj1(Zj1)i1 � gj1(Zj1)i2 = 1zi1j1 ĝj1(zi1j1zi2j1 ) (90)and, gj2(Zj2)i1 � gj2(Zj2)i2 = 1zi2j2 ĝj2(zi1j2zi2j2 ) (91)Also, when n = 2, we have xi = zij1yj1 + zinyn, andhence, 1xi1 fi1(Wi1 )j1 = 1xi1 fi1(zi1j1yj1xi1 )j1= 1zi1j1yj1 f̂i1(zi1j1yj1zi1nyn ) (92)

1xi2 fi2(Wi2 )j1 = 1xi2 fi2(zi2j1yj1xi2 )j1= 1zi2j1yj1 f̂i2(zi2j1yj1zi2nyn ) (93)Plugging Eqs. 90 and 93 into Eq. 54 yields,1zi1j1yj1 ĝj1(zi1j1zi2j1 )� 1zi2nyn ĝn(zi1nzi2n ) = (94)1zi1j1yj1 f̂i1(zi1j1yj1zi1nyn ) � 1zi2nyn f̂i2(zi2j1yj1zi2nyn )This equation parallels Eq. 71 where (j2 is replaced byn) and can be solved in the same way. Thus Eq. 76 isobtained. Eq. 77, on the other hand, needs no proofwhen n = 2 because an arbitrary function f(x) de�nedon (0; 1) can always be written as f(x) = x�g(x) whereg(x) = x��f(x). The rest of the derivation followsclosely the previous section.The Joint DistributionWe have so far shown that, under the assumptionsmade by Theorem 2, fI(�I�) and fJji(�Jji) are Dirich-let. Similarly, fJ (��J ) and fIjj(�Ijj) have been shownto be Dirichlet as well. We now show that if fI , fJji,fJ and fIjj are all Dirichlet, then the joint distributionfU (f�ijg) must also be a Dirichlet.We can write,fJI (��J ; �Ij1; : : : ; �Ijk) = fJ (��J ) nYj=1 fIjj(�Ijj)= c kYj=1 ��j�1�j kYj=1 nYi=1 ��ijj�1ijjBut fIJ (�I�; �Jj1; : : : ; �Jjk) can be expressed using fJIby two applications of the Jacobian given by Eq. 3.Thus we get,fIJ (�I�; �Jj1; : : : ; �Jjk) / " kYi=1 �n�1i� #24 nYj=1 �k�1�j 35�124 kYj=1 ��j�1�j kYj=1 nYi=1��jji�i���j ��ijj�135 (95)where ��j = Pi �i��jji. Since fIJ can be expressed,due to local and global independence, as a product offI , fJj1; : : : ; fIjn each of which has been shown to bea Dirichlet, it follows from Eq. 95 that the exponentcoe�cients for ��j , 1 � j � n, must vanish. Conse-quently, fU (f�ijg), which is obtained from Eq. 95 bymultiplying with fQki=1 �n�1i� g�1 and using the rela-tionship �ij = �jji�i�, is Dirichlet.


