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Abstract :

A large class of classical lattice models, describing the coexistence of a finite num-

ber of stable states at low temperatures, is considered. The dependence of the finite

volume magnetization Mper (h, L), in cubes of size Ld under periodic boundary

conditions, on the external field h is analyzed. For the case where two phases coex-

ist at the infinite volume transition point ht, we prove that, independently on the

details of the model, the finite volume magnetization per lattice site behaves like

Mper (ht) + M tanh
(
M Ld (h− ht)

)
,

with Mper(h) denoting the infinite volume magnetization and

M = 1
2

[
Mper(ht + 0) −Mper (ht − 0)

]
. Introducing the finite size transition point

hm(L) as the point where the finite volume susceptibility attains the maximum, we

show that, in the case of asymmetric field driven transitions, its shift is ht−hm(L) =

O(L−2d) in contrast to claims in the literature. Starting from the obvious observation

that the number of stable phases has a local maximum at the transition point, we

propose a new way of determining the point ht from finite size data with a shift

that is exponentially small in L. Finally, the finite size effects are discussed also in

the case where more than two phases coexist.
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1. Introduction

The behaviour of lattice systems at first-order transitions for finite lattices has

been recently intensively studied [1-5]. The discontinuity that appears in the ther-

modynamic limit is smoothed for finite volumes. The widely accepted view is that

the nature of this smoothing does not depend on the details of the model. For sym-

metrical models, like the Ising model, with the symmetry h ↔ −h with respect

to the ordering filed h, the finite size effects respect this symmetry. In fact, one

expects that the magnetization Mper under periodic boundary conditions in a cube

of size L behaves like

Mper (h, L) ∼ M tanh (M · hLd) , (1.1)

where M is the (infinite volume) spontaneous magnetization and d is the dimension

of the lattice (the inverse temperature β is included into h ). This dependence

follows already from the rough low temperature approximation of the partition func-

tion

Zper (h,L) ∼ ehM Ld

+ e−hM Ld

. (1.2)

There is a certain controversy in the literature once the models without such a sym-

metry are considered. It concerns both, asymmetric field driven transitions as well as

the temperature driven transitions for the Potts model. Different versions of the for-

mula (1.1) were obtained assuming different ansätze [4, 5] on equilibrium probability

distribution PL (ψ) of the corresponding order parameter.

Our aim in this paper is not only to resolve this controversy, but in general, to

put the theory of finite size effects on rigorous footings. The theory presented here

starts from the observation due to Borgs and Imbrie [6] that the partition function

(under periodic boundary conditions) of a model that describes the coexistence of N
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phases, q = 1, . . . , N , is well approximated1 by

Zper (L, h) ∼=
N∑
q=1

e−f ′
q Ld

. (1.3)

Here f ′q is some sort of ”metastable free energy” of the phase q. It equals the

equilibrium free energy f of the considered model whenever q is a stable phase;

otherwise f ′q > f and the phase q is exponentially damped in (1.3). As an

implication, one can show that

lim
L→∞

Zper (h,L)

e−β f Ld = N (h) , (1.4)

where N(h) denotes the number of stable phases at the particular temperature and

for the particular value of the (generalized) magnetic field h.

The main idea of the present work is to substantiate the finite size behaviour (like

that in (1.1)) by showing that the functions f ′q can be replaced by sufficiently smooth

functions (for our purposes it is convenient to consider four times differentiable func-

tions) and by carefully estimating the involved errors. Considering the generalized

magnetization

Mper (h,L) =
1

Ld

d log Zper (h, L)

d h
, (1.5)

we can approximate it from (1.3) by

Mper (h,L) =

N∑
q=1

Pq (h) · Mq (h), (1.6)

with Mq = −
d f ′q
d h

and Pq =
e−f ′

q Ld

N∑
m=1

e−f ′
m Ld

.

1This result as well as the results of the present paper are valid for a large class of lattice models

at low temperatures that can be rewritten in terms of contours with small activity.
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Expanding now Pq and Mq around the point h(0) of coexistence of all phases, we

get the finite size effects in the case of the multiple phase coexistence. To our knowl-

edge, the closed formula for the finite size behaviour around the point of coexistence

of more than two phases has not been considered before in the literature (with a

possible exception of the Potts models, where, however, all the ordered phases are

linked by a symmetry).

In the particular case of coexistence of two phases we get for Mper (h,L), also in a

nonsymmetric case, a formula that resembles (1.1). The (infinite volume) coexistence

point ht may be shifted due to finite size effects. One can imagine several different

ways how to locate the point ht from (say, Monte Carlo) data for a finite cube.

An obvious possibility is to consider the point hm(L) where the finite volume

susceptibility χper (h,L) is maximal. We prove that this point is shifted by a term

proportional to L−2d with respect to ht (the shift predicted in [5] is proportional

to L−d). It turns out that a more natural and also more accurate estimate can be

gained by considering a finite size approximation N(h,L) of the number of phases

N(h) as given by (1.4). Observing that the number of phases has a local maximum

at the coexistence point ht (acutally, it abruptly jumps from N(h) = 1 for h ̸= ht

to N(ht) = 2), we define ht(L) as the point where the function N(h,L) attains

the maximum. It can be shown that it is, in fact, the point where

Mper (h,L) = Mper (h, 2L), (1.7)

and that its shift with respect to the infinite volume value ht is exponentially small

in dependence on L.

Before summarizing the content of the paper we stress two points. First, in the

case of asymmetric first order transitions it is not essential whether it is field driven

or temperature driven. Thus, the parameter h may be actually replaced by β

and the methods of the present work can be used also for e.g. the Potts model [7].

Secondly, the class of models that can be treated contains not only standard lattice
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models with finite numbers of spin states, but covers also first order transitions for

some models with ”continuous spin” like P (φ)2-models (both, on a lattice and a

continuous space-time) [8], or lattice Higgs U(n) models with large n [9].

We start in Section 2 by introducing the class of models to be studied. Then

we show how to introduce the smooth functions f ′q. Some proofs are delegated to

the Appendix. Section 3 is devoted to a detailed discussion of finite size effects in

the case of coexistence of two phases and to the evaluation of shifts of several finite

volume transition points. The proofs are collected in Section 4. The general case

of multiphase coexistence is studied in Section 5.

Acknowledgements: The authors would like to thank the Department of Mathe-

matics at ETH, the Department of Mathematical Physics at Charles University, and

the Institute of Theoretical Physics at Freie Universität Berlin, for hospitality that

made this collaboration possible.
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2. Contour models, truncated partition functions,

stable and unstable phases

In this section we introduce a class of models describing the systems we want to

analyze. Following [10], [6] and [11] we then introduce certain truncated contour

models, that on one side can be analysed by convergent cluster expansions and on

the other side agree with the original model for stable boundary conditions. The

truncated partition functions and their free energies will play an inportant role in the

analysis of this paper.

2.1. Definition of the model

We start with the definition of the partition function, Zq(V ), in a region V with

boundary condition q ∈ Q = {1, 2, . . . , N}. The index q labels the possible “ground

states” of the system, and V is a finite union of unit cubes in Rd, with d ≥ 2. We

use the notation V q to indicate boundary conditions q on V , and to each ground

state q ∈ Q we associate a ”ground state energy” eq ∈ R. Zq(V ) will be defined as a

sum over contours Y in V , so we begin by defining these objects.

A contour is a pair (Y, q(·)) where Y is a connected union of closed unit cubes and

q(·) is an assignment of labels q(F ) ∈ Q to the boundaries F of the components

C of Y c = Rd\Y . If q(·) = q on the external boundary component of Y we

call Y a q-contour and we sometimes emphasize this by a superscript q on Y . To

simplify formulae, we use the symbols Y or Y q to denote the pair (Y, q(·)) as well

as the region Y . We use IntmY to denote the union of all finite components C

of Y c for which q(∂C) = m, and write Int Y = ∪N
m=1 IntmY , V (Y ) = Int Y ∪ Y .

Finally, each contour Y has a translation-invariant activity ρ(Y ) ∈ R satisfying

the following bound for some large τ :

|ρ(Y q)| ≤ e−(τ+e0)|Y q| . (2.1)

Here |Y q| denotes the volume of Y q and e0 is defined as the energy of the lowest
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groundstate,

e0 = min
q
eq . (2.2)

An allowed configuration of our system is a collection, {Yα}, of nonoverlapping2

contours with compatible boundary labels. The compatibility is determined by the

requirement that any connected component of V \ ∪α Yα has constant boundary

conditions. In addition, we require that the distance of Yα and ∂V q is greater than

or equal one for all contours Yα. If the complement V c of V is not connected, we do

not allow contours whose interior intersects V c. Given a collection of contours, we

finally attach energy densities to the regions occupied by each phase of the model. A

connected component of V \∪α Yα that has boundary condition m is considered to

be part of Rm, the region “in the m-th phase.” Thus we have partitioned V \∪α Yα

as ∪m Rm. Associating the energy density em with the region Rm, we get the

expression for the partition function:

Zq(V ) =
∑
{Yα}

∏
α

ρ(Yα)

N∏
m=1

e−em|Rm| . (2.3)

The connection between this partition function and the Peierls contour picture of spin

systems is clear — we have just replaced sites with cubes and thickened contours to

include neighboring cubes.

The magnetic fields are introduced as real parameters {hi} on which the activities

ρ and the energies eq may depend. There should be at least N−1 such parameters,

and we need a degeneracy-breaking condition. Namely, we suppose that the matrix

E =

(
d

dhi
(eq − eN )

)
q,i=1,... ,N−1

(2.4)

is nonsingular. We further assume that ρ and eq are C4 functions of h =

2Since contours were defined as union of closed unit cubes, this condition is equivalent to the

condition that dist(Yα, Yβ) ≥ 1 for all α ̸= β.
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(h1, . . . , hN−1) satisfying the bounds

∣∣∣∣dkeqdhk

∣∣∣∣ ≤ Ck , (2.5)

∣∣∣∣dkρ(Y )

dhk

∣∣∣∣ ≤ Ck e
−(τ+e0)|Y | , and (2.6)

∥E−1∥∞ ≡ max
i

∑
q

|(E−1)iq| ≤ const <∞ , (2.7)

where the constants are independent of τ and k : {1, · · · , N − 1} → {0, 1, · · · } is a

multi-index of order |k| ≡
∑
ki between

3 1 and 4. We also assume that

eq(h = 0) = eq̃(h = 0) for all q, q̃ ∈ Q . (2.8)

For many purposes we need a second expression for Zq(V ) which eliminates the

compatibility of boundary conditions on contours. To this end we first sum in (2.3)

over all sets {Yα} with a fixed collection of external contours (those that are not

contained in Int Yα for any α). For each external contour Y q (external contours in

V q must of course have boundary condition q) this resummation produces a factor

Zm(IntmY
q). This yields the expression

Zq(V ) =
∑

{Y q
α}ext

∏
α

[
ρ(Y q

α )
∏
m

Zm(IntmY
q
α )e

−eq|Ext|

]
, (2.9)

where the sum runs over sets {Y q
α}ext of mutually external contours, i.e., Yα∪Int Yα

and Yα′ ∪ Int Yα′ do not overlap for α′ ̸= α. Also, we have denoted Ext =

V \ ∪α (Yα ∪ IntmY
q
α ). Assuming that Zq(IntmY

q
α ) ̸= 0, we divide each Zm by the

corresponding Zq and multiply it back again in the form (2.9). Iterating the same

3The reason why we take the derivatives up to namely 4th order here is that eventually we will

use such a condition to evaluate the location of the maximum of the susceptibility, see Sect. 4.



10

procedure on the terms Zq(IntmY
q
α ), we eventually get

Zq(V ) = e−eq|V |
∑
{Y q

α}

∏
α

[
ρ(Y q

α ) e
eq|Y q

α |
∏
m

Zm(IntmY
q
α )

Zq(IntmY
q
α )

]

≡ e−eq|V |
∑
{Y q

α}

∏
α

K(Y q
α ) .

(2.10)

The only conditions on the collections {Y q
α} are that the contours do not overlap

and all have outer boundary q. The expression (2.10) is useful for stable q (defined

below) while (2.9) is better for unstable q in view of possible zeros of Zq(IntmY
q
α ).

Remark i): For the Ising models defined in Section 1, N = 2. The parameter τ

can be chosen as O(β), and the magnetic field H of these models is related to the

magnetic field defined in this section by h = β H.

2.2. Truncated partition functions, stable and unstable phases

We are going to define truncated contour activities, K ′(Y q), and the corresponding

partition functions,

Z ′
q(V ) = e−eq|V |

∑
{Y q

α}

∏
α

K ′(Y q
α ) . (2.11)

in such a way that

i) logZ ′
q(V ), and the corresponding (infinite volume) free energy, f ′q, can be analysed

by a convergent cluster expansion.

ii) Z ′
q(V ) = Zq(V ) if f ′q = f ≡ min

m∈Q
f ′m, so that the truncated model is identical

to the original model if f ′q = f (following [10], we call these q ”stable”).

A possible choice, essentially identical to that of [6], would be the definition K ′(Y ) =

K(Y ) if |K(Y )| ≤ e−(τ−8d)|Y | and K ′(Y ) = 0 otherwise. This definition leads to

truncated partition functions obeying the above conditions i) and ii), but the cor-

responding free energies f ′q will not be continuous functions of the magnetic fields

h. While this was of no importance in the context of reference [BI], it would be
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inconvenient for us. We therefore prefer a different definition, motivated by [H et

al.].

We proced by induction. Assuming that K ′(Y ) has allready been defined for all

contours Y with diamY < n, n ∈ N, and that it obeys a bound

|K ′(Y )| ≤ ϵ|Y | (2.12)

for some small ϵ the truncated partition functions Z ′
m(V ) are defined for all q and

all volumes V with diam V ≤ n. Their logarithm can be controlled by a convergent

cluster expansion and Z ′
m(V ) ̸= 0 for all m ∈ Q. We then define K ′(Y q) for

q-contours of diameter n by

K ′(Y q) = χ′(Yq)ρ(Y
q)eeq|Y

q|
∏
m

Zm(IntmY
q)

Z ′
q(IntmY

q)
, (2.13a)

χ′(Yq) =
∏
m

χ( log |Z ′
q(V (Yq))| − log |Z ′

m(V (Yq))|+ α|Yq| ) , (2.13b)

where α will be chosen later and χ is a smoothed characteristic function. We assume

that χ has been defined in such a way that χ is a C4 function that obeys the conditions

0 ≤ χ(x) ≤ 1 , (2.14a)

χ(x) = 0 if x ≤ −1 and χ(x) = 1 if x ≥ 1 , (2.14b)

0 ≤ d

dx
χ(x) ≤ 1 , and (2.14c)

∣∣∣∣ dkdxkχ(x)
∣∣∣∣ ≤ C̃k ∀|k| ≤ 4 , (2.14d)

where k is a multi-index k : {1, · · · , N} → {0, 1, · · · } and the constants C̃k depend

only on k.
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As the final element of the construction of K ′, we have to establish the bound

(2.12) for diam Y = n. We defer the proof, together with the proof of the following

Lemma 2.1, to the appendix. We use f ′q to denote the free energy corresponding to

the partition function Z ′
q,

f ′q = − lim
V→Zd

1

|V |
logZ ′

q(V ) , (2.15)

and f , aq are defined by

f = min
m

f ′m , (2.16)

aq = f ′q − f . (2.17)

Lemma 2.1 Assume that |ρ(Y q)| ≤ e−(τ+e0)|Y q| for all possible q-contours Y q.

Then there exists a constant τ0 (depending only on d and N) such that, for τ ≥ τ0

and 0 ≤ α − 3 ≤ τ − τ0, the contour activities K ′(Y ) are well defined for all Y

and obey (2.12) with ϵ = e−(τ−2d−2−α). In addition, the following statements hold

for τ ≥ τ0 and 0 ≤ α− 3 ≤ τ − τ0:

i) |Zq(V )| ≤ e−f |V |+|∂V |.

ii) If aq diamY
q ≤ α− 2 , then K(Y q) = K ′(Y q).

iii) If aq diamV ≤ α− 2 , then Zq(V ) = Z ′
q(V ).

Remarks:

ii) Due to the bound (2.12), the partition fuction Z ′
q(V ) can be analysed by a

convergent cluster expansion, and

∣∣ logZ ′
q(V ) + f ′q|V |

∣∣ ≤ O(ϵ)|∂V | (2.18)

|f ′q − eq| ≤ O(ϵ) . (2.19)

iii) Due to Lemma 2.1 iii), Zq(V ) and Z ′
q(V ) are equal if aq = 0. One therefore

says that q is stable if aq = 0.
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We finally turn to the continuity properties of Zq and Z ′
q. As a finite sum of C4

functions, Zq(V ) is a C4 function of h. The following lemma gives a bound on the

derivative of Zq(V ).

Lemma 2.2: Assume that τ > τ0. Then

∣∣∣∣ dkdhk [
Zq(V ) eeq|V |

]∣∣∣∣ ≤ O(e−τ )|V ||k|e(eq−f)|V |+|∂V |

for all multi-indices k of order 1 ≤ |k| ≤ 4.

Lemma 2.3: There are constants τ0 and K < ∞ such that, for τ > τ0 and 0 ≤

α− 3 ≤ τ − τ0 K ′(Y q) and logZ ′
q(V ) are C4 functions of h, and

∣∣∣∣ dkdhkK ′(Y q)

∣∣∣∣ ≤ (K ϵ)|Y
q| ,

for all multi-indices k of order |k| ≤ 4.

Proof: The proofs of these lemmas are given in Appendix A.

Remarks:

iv) By Lemma 2.3, sq = f ′q − eq is a C4 function of h and

∣∣∣∣ ddhi (f ′q − eq)

∣∣∣∣ ≤ O(ϵ) . (2.20)

Using the a priori assumption (2.7) we conclude that

F =

(
d

dhi
(f ′q − f ′N )

)
q,i=1,... ,N−1

(2.21)

obeys a bound of the form (2.7) as well, with a slightly larger constant on the right

hand side; combined with the inverse function theorem, one immedeately obtains

the existence of a point ht for which all aq are zero, i.e., all b.c. are stable;

more generally one may construct differentiable curves hq(t) going out of ht, on
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which only q is unstable, surfaces hqq̄(t, s) on which q, q̄ are unstable, etc. A

possible parametrisation of these curves, surfaces, etc., is given by am(hq(t)) = δmq t,

am(hqq̄(t, s)) = δmq t+ δmq̄ s, · · · .

v) In the literature, one often assumes a bound of the form (2.1) with e0 replaced

by eq. As one may see from (2.5), (2.7) and (2.8), such a bound will usually hold

only in a neighborhood of diameter O(τ) of h = 0. Outside this neighborhood, one

then has to distiguish betweeen states q, for which eq − e0 ≤ O(τ), and those for

which eq − e0 > O(τ); the notion of a contour is then redefined in such a way that

regions corresponding to a ground state q with eq − e0 > O(τ) are part of a contour.

Our procedure avoids this procedure of redefining contours.

vi) For the rest of this paper we chose α = τ/2. As a consequence

∣∣∣∣ dkdhkK ′(Y q)

∣∣∣∣ ≤ e−(τ/4)|Y q| ,

for all multiindices k of order |k| ≤ 4; and K ′(Y q) = K(Y q) if aq diamY
q ≤ τ/4.
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3. Coexistence of Two Phases

In this section we state our results for the finite volume magnetization with periodic

boundary conditions. We consider models defined on a d-dimensional torus T with

sides of length L in each direction, whose partition function can be written as

Zper (T ) =
∑
{Yα}

∏
m

e−em|Rm|
∏
α

ρ (Yα) . (3.1)

Contours are again pairs (Y, q ( · )), where Y is a connected union of closed unit cubes

in T and q ( · ) is an assignment of q (F ) ∈ Q to the boundaries F of the components

C of Y c = T\Y . And Rm is again the union of all components of T \ ∪
α
Yα which

have the boundary condition m. For contours Y with

diam Y ≤ L/3 , (3.2)

we call them small in this section, it is clear which component of T\Y is the exterior,

ExtY , of Y ; and IntY = T\(Y ∪ExtY ) may be decomposed in the same way as

before: IntY = ∪
m

Intm Y .

We will assume, that the activities, ρ (Y ), of the small contours are the same as

those introduced in Section 2 (in particular, ρ (Y ) is translation-invariant, and does

not depend on L, as long as L ≥ 3 diam Y ). We don’t need any special properties

of the activity, ρ, for large contours, apart from the condition that

| ρ (Y ) | ≤ e− (τ + e0)|Y | (3.3a)

and ∣∣∣∣ dk

d hk
ρ (Y )

∣∣∣∣ ≤ Ck e
− (τ + e0)|Y | . (3.3b)

Now, we restrict ourselves to the case of two ground states, Q = {−1,+1}. We

assume the bounds (2.1), (2.5), (2.6) and (2.7) for some large τ , and denote by ht
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the magnetic field corresponding to the coexistence point, see remark iv) of Section

2. We suppose also that signs have been chosen in such a way that

d

dh
(e+ − e−) < 0 (3.4)

so that + is stable for h ≥ ht and − is stable for h ≤ ht. We introduce further the

infinite volume magnetizations,

M±(h) = lim
V→Zd

1

|V |
d

dh
log Z±(V ) , (3.5)

where Z± (V ) are the partition functions introduced in the last section, and the finite

volume magnetization with periodic boundary conditions,

Mper (h,L) =
1

Ld

d

dh
log Zper (T ) . (3.6)

Note that M+(h) can be analyzed by a convergent cluster expansion if h ≥ ht, while

for M−(h) we have a convergent cluster expansion if h ≤ ht.

Remark i) : As a finite sum of C4 functions, Zper(T ) is a C
4 function. Therefore

Mper(h,L) is well defined as long as Zper (T ) ̸= 0.

The following lemma, togehter with Theorem 3.2 below, is proven in Section 4.

Lemma 3.1 : For τ > τ0, where τ0 < ∞ is a constant that depends only on d, the

following statements are true:

i ) Mper(h, L) is well defined for all L ∈ N.

ii) The limit Mper(h) = lim
L→∞

Mper(h, L) exists and

Mper (h) =


M−(h) for h < ht
1
2

(
M−(h) + M+(h)

)
for h = ht

M+(h) for h > ht
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Remark ii) : Lemma 3.1 is an immediate generalization of a theorem proven in [6],

which states that the quantity

Zper (h, L) e
f(h)Ld

goes to the number N(h) of stable phases4 as L → ∞ (we use f(h) to denote the

free energy).

We now turn to the finite volume behaviour of Mper (h,L). We introduce the

susceptibilities

χ± =
dM± (h)

dh

∣∣∣∣
h=ht ± 0

, (3.8)

and the constants

M0 =
M+ (ht) + M− (ht)

2
, (3.9a)

M =
M+ (ht) − M− (ht)

2
. (3.9b)

Note that M0 = 0 and χ+ = χ− for a system with +/− symmetry.

Theorem 3.2 : There exist constants τ0 <∞, K0,K1 <∞, and b0 > 0 such that

the following statements are true for τ > τ0.

i)
∣∣Mper (h,L) − Mper (h)

∣∣ ≤ e− b0τL + K0 e
− b0|h−ht|Ld

(3.10)

ii) Mper (h,L) = M0 +
χ+ + χ−

2
(h − ht) +

(
M +

χ+ − χ−

2
(h − ht)

)
×

× tanh

{
Ld

(
M(h − ht) +

χ+ − χ−

4
(h − ht)

2
)}

+ R (h,L),
(3.11a)

4For the models with two ground states considered in this section N(h) is one for h ̸= ht and

two for h = ht.
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with an error R(h,L) bounded by

| R(h,L) | ≤ e− b0τL + K1|h − ht|2 . (3.11b)

Remarks :

iii) Both bounds, (3.10) and (3.11), of Theorem 3.2 are true for all h. The bound

(3.10), however, is better if | h − ht | is large, whereas (3.11) is better if | h − ht |

is small. The overlap, where both of them are non-trivial, is the region L−d ≪

| h− ht |≪ 1.

iv) For a system with +/− symmetry, ht = 0, M0 = 0 and χ+ = χ− = χ; therefore

Theorem 3.2 implies that

Mper (h,L) = χh + M tanh (M hLd) + 0 (h2) + 0 (e− b0 τ L). (3.12)

We finally discuss the shift of the coexistence point ht due to finite size effects.

Since the order parameters have no discontinuities in finite volumes, there are several

possible definitions of the coexistence point for finite L. We consider the point hm (L)

where the finite volume susceptibility

χper (h,L) =
dMper (h,L)

dh
(3.13)

is maximal, the point h0 (L) where Mper (h,L) = M0, and the point ht (L) where

the finite volume approximation

N (h,L) =

[
Zper (h,L)

2d

Zper (h, 2L)

] 1

2d − 1

(3.14)

to the number N (h) of stable phases (see remark ii) after Lemma 3.1) is maximal.

Since the function Mper (h) − M0 may have additional zeros as h → ±∞ in the

abstract context considered here, one must restrict h to a certain neighborhood of ht

to ensure that h0 (L) is well defined.
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Theorem 3.3 : There are constants δ > 0 and L0 < ∞, such that the following

statements are true for L > L0 and τ > τ0 .

i) There is exactly one point hm (L) such that

χper (hm (L), L) > χper (h,L) for all h ̸= hm (L) ;

and

hm (L) = ht +
3 (χ+ − χ−)

4M3 L2d
+ 0 (L−3d) . (3.15)

ii) There is exactly one point h0 (L) in the internal [ht − δ, ht + δ] such that

Mper (h0 (L), L) = M0; and

| h0 (L) − ht | ≤ 0 (e−b τ L) . (3.16)

iii) There is exactly one point ht (L) such that

N (ht (L), L) > N (h, L) for all h ̸= ht (L) ;

and

| ht (L) − ht | ≤ 0(e− b τ L) . (3.17)

Remarks :

iv) The fact that hm (L) contains no corrections of order 0(L−d) is a peculiarity

of the coexistence of two states. If h0 is a point where more than two phases coexist,

hm(L) may be shifted by an amount 0(L−d), see Section 5.

v) The theorem shows that h0(L) and ht(L) are much better approximations for ht

than hm(L). Since M0 is not known a priori, and since the definition of h0(L) is less

obvious for systems with more than two ground states, we propose to use ht(L) for
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a numerical determination of the coexistence point. Note that it is not necessary to

calculate the partition function itself to determine ht(L), because the local maxima

of N(h,L) correspond to the points h for which Mper(h,L) = Mper(h, 2L).

vi) Some time ago, Binder and Landau developed a heuristic theory of finite size

scaling at first order phase transitions, assuming that the probability distribution

pL(·) of the finite volume magnetization is well approximated by a sum of two Gaus-

sians. The relative height of these Gaussians was chosen in such a way that the

area under both peaks of pL is equal for h = ht [4]. Binder and Landau derived

a formula for Mper(h, L) (formula (25) of [4]), which is exactly our formula (3.11a),

except for the error term, which cannot be systematically estimated in their theory.

Later on, Binder et al. ”corrected” this theory, assuming now that for h = ht both

peaks of pL(·) have equal height, and predicting a shift hm(L) − ht = 0(L−d) if

χ+ ̸= χ− [5]. As we know from [6], see also Theorem 4.1, Section 4, this assumption

is unreasonable, because at h = ht both phases contribute to Zper(h,L) with equal

weight e− f(h)Ld

, except for exponentially small errors. And this corresponds to equal

”areas”, not equal heights. This explains the discrepancy between their formulas and

ours.
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4. Proof of Lemma 3.1,

Theorem 3.2 and Theorem 3.3

All results of section 3 are based on the following Theorem 4.1. Since the proof

of the theorem does not depend on the fact that there are only two ground states, we

formulate it for the general system with N ground states, Q = {1, . . . N}. M i
per(h,L)

is defined by

M i
per(h, L) =

∂

∂hi
log Zper(T ) . (4.1)

Theorem 4.1 : There are constants τ0 < ∞, b0 > 0, depending only on N and d,

such that the following statements are true for τ > τ0:

i)
∣∣ Zper(T ) −

∑
q∈Q

e− f ′
qL

d ∣∣ ≤ e− fLd − b0τL . (4.2)

ii) Let

Pq =

[ ∑
m∈Q

e− f ′
mLd

]−1

e− f ′
qL

d

. (4.3a)

Then ∣∣∣∣∣ dk

dhk

M i
per(h,L) −

∑
q∈Q

(
−
∂f ′q
∂hi

)
Pq

 ∣∣∣∣∣ ≤ e− boτL (4.3b)

for all multi-indices k : {1, . . . , N − 1} → {0, 1, 2, . . . } of order |k| ≤ 3.

Remarks .

i) Theorem 4.1 is a generalization of Theorem 5.1 of [6], see also [12], Theorem 5.1

and Theorem 5.5. Note that the sum over q in (4.2) and (4.3) goes over all q ∈ Q,

whereas the theorems of [6] and [12] are stated for the corresponding sums over stable

q’s.

ii) It follows from Theorem 4.1 i) and the fact that f = min
q

f ′q, that

Zper(T ) ≥ e− fLd

(1 − e− b0τL)
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so that Zper(T ) ̸= 0 and M i
per(h,L) is well defined for τ > τ0. On the other hand

lim
L→∞

M i
per(h,L) =

1

N(h)

∑
q:f ′

q=f

(
−
∂f ′q
∂hi

)

by Theorem 4.1 ii); N(h) is the number of stable states. For Q = {+, −}, there is

only one magnetic field h, and

−
df ′+(h)

dh
= M+(h) provided h ≤ ht .

while

−
df ′−(h)

dh
= M−(h) provided h ≤ ht ,

Therefore Lemma 3.1 follows immediately from Theorem 4.1 i) and ii).

Proof of Theorem 4.1 :

The first step in the proof is a decomposition of Zper(T )

Zper(T ) = ZBig(T ) + Zres(T ) (4.4)

where Zres(T ) is obtained from Zper(T ) by restricting the sum in (3.1) to a sum

over sets {Yα} such that diamY ≤ L/ 3 for all contours Y ∈ {Yα} . Zres(T ) is

decomposed further as

Zres(T ) =
∑
q∈Q

Zres
q (T ) (4.5)

where a set {Yα} contributes to Zres
q (T ) if its external contours are q contours (if {Yα}

contains no external contours, |Rm| = δqm Ld for some q ∈ Q; the corresponding

term e− eqL
d

then contributes to Zres
q (T ) ).

Since each configuration contributing to ZBig(T ) contains at least one contour of

size bigger than L/3,

| ZBig(T ) | ≤ e− fLd

e− b1τL (4.6a)
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for some b1 > 0 depending on N and d; see section 5 of [6] for the details of the proof.

In a similar way, ∣∣∣∣ dk

dhk
ZBig (T )

∣∣∣∣ ≤ e− fLd

e− b1τL , (4.6b)

for all multi-indices k of order |k| ≤ 4.

We now turn to the properties of Zres
q (T ). Recalling that the constant α of section

2 was chosen as α = τ/2, (see remark vi) of Section 2) let us assume for a moment

that

aq(h)L ≤ τ/4 . (4.7)

Then all q-contours in T (which has diameter L) have small activities by Lemma

2.1 ii) and (2.12) (see also remark vi) of Section 2) . Therefore Zres
q (T ) can be

analyzed by a convergent cluster expansion. Comparing the expansion for log Zres
q (T )

whith the expansion for f ′q one obtains the bounds

∣∣ log Zres
q (T ) + f ′q L

d
∣∣ ≤ e− b2τL, (4.8a)

∣∣∣∣ dk

dhk

(
log Zres

q (T ) + f ′q L
d

) ∣∣∣∣ ≤ e− b2τL, (4.8b)

where b2 > 0 depends on d and N and k is again a multi-index of order |k| ≤ 4.

On the other hand, for aq ̸= 0,

| Zres
q (T ) | efL

d

≤

≤ exp
{
e− b2τL

}
max

{
e−

aq
2 Ld

, e− τb3L
d−1 }

(4.9a)

where b3 > 0 again depends only on d and L. The physical origin of the bound (4.9)

is clear: If q is unstable, one either pays for the higher energy of the unstable phase,

or for the formation of a large contour which brings the system into a stable phase.
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The detailed proof is given in [6], section 5; see also Appendix A, remark i). In a

similar way

∣∣∣∣ dk

dhk
Zres
q (T )

∣∣∣∣ efL
d

≤

≤ C (|k|) (2Ld)|k| exp
{
e− b2τL

}
max

{
e−

aq
2 Ld

, e− τb3L
d−1}

(4.9b)

where C (|k|) is the constant defined in (A.14) and |k| ≤ 4.

We therefore bound

∣∣ Zres
q (T ) efL

d ∣∣ ≤ exp
{
e− b2τL

}
e− τLd−1 min {1/8,b3} ≤

≤ e− b4τL
d−1

and ∣∣∣∣ dk

dhk
Zres
q (T )

∣∣∣∣ efL
d

≤ e− b4τL
d−1

provided τ is large enough, |k| ≤ 4 and aq(h)L > τ/4. On the other hand

∣∣ e− f ′
qL

d ∣∣ ≤ e− fLd

e− b4τL
d−1∣∣∣∣ dk

dhk
e− f ′

qL
d

∣∣∣∣ ≤ e− fLd

e− b4τL
d−1

if aq(h)L > τ/4. Therefore

∣∣ Zres
q (T ) − e− f ′

qL
d ∣∣ ≤ e− fLd

e− b5τL
d−1

(4.10a)∣∣∣∣ dk

dhk
(
Zres
q (T ) − e− f ′

qL
d) ∣∣∣∣ ≤ e− fLd

e− b5τL
d−1

(4.10b)

if aq L > τ/4 and |k| ≤ 4. Combining the bounds (4.6), (4.8) and (4.10) we obtain

the theorem for some constant b0 > 0 depending on d and N .



25

We now turn to the proof of Theorem 3.2. If N = 2, the bound (4.3b) can be

rewritten as follows: We rewrite

f ′+ =
1

2
(f ′+ + f ′−) +

1

2
(f ′+ − f ′−)

f ′− =
1

2
(f ′+ + f ′−) − 1

2
(f ′+ − f ′−)

and use the definition of the hyperbolic tangent to get

∣∣∣∣ dk

dhk

[
Mper(h,L) − 1

2

d(f ′+(h) + f ′−(h))

dh
−

− 1

2

d(f ′+(h) − f ′−(h))

dh
tanh

{1
2

(
f ′+(h) − f ′−(h)

)
Ld

}] ∣∣∣∣ ≤
≤ e− b0τL,

(4.11)

provided |k| ≤ 3.

On the other hand

1

2

(
df ′−(h) − df ′+(h)

dh

)
≥ b (4.12a)

for some constant b > 0, see remark iv), section 2. Since f−(h) = f+(h) for h = h0,

it follows that

1

2

∣∣f ′+(h) − f ′−(h)
∣∣ ≥ b|h− h0| . (4.12b)

Combined with (4.11), the fact that | tanh x − signx| ≤ e− |x|, and the bound

∣∣∣∣ df ′q(h)dh

∣∣∣∣ ≤ C1 + 0(e− τ/4) ≤ 2C1 ,

where C1 is the constant from (2.5), we conclude that

|Mper(h, L) − lim
L→∞

Mper(h, L)| ≤ 2 e− b0τL + 2C1 e
− b|h−h0|Ld

.

This proves Theorem 3.2 i).
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Theorem 3.2 ii) follows from (4.11) by a Taylor expansion around h0. Using the

fact that f ′+(h0) = f ′−(h0) and

df ′q(h)

dh

∣∣∣∣
h=h0

= Mq(h0) = M0 + qM ,

d2 f ′q(h)

dh2

∣∣∣∣
h=h0

= χq =
χ+ + χ−

2
+ q

χ+ − χ−

2
,

where q = ±1, we expand

1

2

(
f ′+(h) − f ′−(h)

)
= (h− h0)M + (h− h0)

2 χ+ − χ−

4
+ 0

(
(h− h0)

3
)
, (4.13a)

1

2

d(f ′+(h) − f ′−(h))

dh
= M + (h− h0)

χ+ − χ−

2
+ 0

(
(h− h0)

2
)
, (4.13b)

1

2

d(f ′+(h) + f ′−(h))

dh
= M0 + (h− h0)

χ+ + χ−

2
+ 0

(
(h− h0)

2
)
. (4.13c)

Theorem 3.2 ii) follows from (4.13) and the bound

∣∣∣∣ tanh{Ld

2

(
f ′+(h) − f ′−(h)

)}
−

− tanh

{
Ld

(
M(h− h0) +

χ+ − χ−

4
(h− h0)

2

)} ∣∣∣∣ ≤

≤ K2|h− h0|2 (4.14)

where K2 <∞ is a constant that does not depend on L. Thus Theorem 3.2 is proven

once the bound (4.14) is established.

We use (4.13a) together with the mean value theorem of differential calculus to

bound the left hand side of (4.14) by

C Ld|h− h0|3

cosh2
{
γ Ld

(
M(h− h0)

)
+ χ+−χ−

4 (h− h0)2 + (1− γ) Ld

2

(
f ′+(h) − f ′−(h)

)}
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where C <∞ does not depend on h or L and γ is a number between 0 and 1 (which

does depend on h and L). We now use (4.12) and (4.13a) to bound the absolute

value of the argument of the hyperbolic cosine from below by

Ld(b|h− h0| − K|h− h0|3)

where K < ∞ does not depend on h or L. For K|h − h0|2 < b/2, the inequality

(4.14) then follows from the observation that

C Ld(h− h0)

cosh2( 12L
d b|h− h0|)

≤ 2C

b
.

For K|h− h0|2 > b/2, the bound (4.14) is trivial (choose K2 = 4K/b).

We are left with the proof of Theorem 3.3. In a first step we assume that -

|h− ht| ≥ BLd, where B is a constant to be fixed later, and show that

N (h,L) < N (ht, L), (4.15)

χper(h,L) < χper(ht, L), (4.16)

and

|Mper(h, L) − M0 |> 0 (4.17)

provided |h − ht| ≥ BL− d and L ≥ L0(B). In the second step we show that

Mper(·, L) − M0 and the derivatives of N and χper have one and only one zero in

the internal [ht − BL−d, ht + BL−d], and that these zeros obey the bounds (3.15)

through (3.17).

We start from Theorem 4.2 i), which will be used in the form

∣∣∣∣ Zper (T ) e
f(h)Ld

− 1 − e−Ld|f ′
+(h)− f ′

−(h)|
∣∣∣∣ ≤ e− b0τL .
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As a consequence∣∣∣∣ N(h,L) −
[
(1 + e−F )n

(1 + e−nF )

]1/(n−1) ∣∣∣∣ ≤ 0 (e− b0τL) .

where we used F to denote the quantity Ld|f ′+(h) − f ′−(h)| and n to denote the

number 2d. Since (1 + e−x)n / (1 + e−nx) is a monotonic function of x and

F = Ld | f ′+(h) − f ′−(h) | ≥ 2Bb

provided |h− ht| ≥ BL− d (we used (4.12) in the last inequality), we have

N (ht, L) − N (h,L) ≥

≥ 2 − 0(e− τ b0 L) − N (h,L) ≥

≥ 2 − 0(e− τ b0 L) −
(
(1 + e− 2Bb)n

1 + e− 2Bbn

)1/(n−1)

.

We conclude that N(ht, L) > N(h,L) provided |h− ht| ≥ BL−d and L ≥ L1(B).

On the other hand,∣∣∣∣ χper(h, L) − Ld

4

(
df ′+(h)

dh
−

df ′−(h)

dh

)2

cosh−2

{
Ld

2

(
f ′+(h) − f ′−(h)

)} ∣∣∣∣ ≤

≤ 4C2 + e− b0τL ≤ 1 + 4C2

by the bound (4.11) and the fact that∣∣∣∣ dkf ′q(h)dhk

∣∣∣∣ ≤ Ck + 0(e− τ/4) ≤ 2Ck . (4.18)

(Ck is the constant from (2.5)). Now, we distinguish two cases: Either |h − ht| ≥

B̃ L−d for some large constant B̃; then

χper(ht, L) − χper(h,L) ≥

≥ M2 Ld − C2
1 L

d

16
cosh−2 {b B̃} − 8C2 − 2 ≥

≥ M2 Ld

2
− 8C1 − 2
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where we used the bound (4.18) to estimate df ′q(h)/dh. Or BL−d ≤ |h − ht| ≤

B̃ L−d; then

1

2

∣∣∣∣ df ′+(h)dh
−

df ′−(h)

dh

∣∣∣∣ = |M | + 0(h) ≥ |M | − 0(L−d) ,

which implies that

χper(ht, L) − χper(h,L) ≥

≥ M2 Ld (1− cosh−2 {bB}) − 4C1 − 1 − 0(1) .

In both cases χper(ht, L) − χper(h, L) > 0 provided L is chosen large enough.

Finally, by the bounds (4.11) and (4.12), and by the fact that

∣∣∣∣ df ′q(h)dh
− Mq

∣∣∣∣ ≤ K|h− ht|

for some constant K <∞,

|Mper(h, L) − M0 | ≥

≥ M tanh

{
Ld

2

(
f ′+(h) − f ′−(h)

)}
− e− b0τL − K|h− ht| ≥

≥ M tanh {bB} − e− b0τL − K|h− ht| ,

provided |h − ht| ≥ BL−d. We conclude that there is a constant δ > 0, such that

Mper(h,L) − M0 ̸= 0 for all h in the range

BL−d ≤ |h− ht| ≤ δ ,

provided L is chosen large enough. This concludes the proof of (4.15) through (4.17).

At this point the proof of Theorem 3.3 is an easy exercise. We start with the

proof of i). We will show that χper(·, L) has only one local maximum in the interval

[ht −BL−d, ht +BL−d], and that this maximum obeys the bound (3.15).



30

We start from (4.11). Calculating the derivatives with respect to h (for k = 2),

and using the fact that

d2(f ′+(h) − f ′−(h)

dh2

∣∣∣∣
h=ht

= χ+ − χ−

we obtain that

∣∣∣∣ dχper(h,L)

dh

∣∣∣∣
h−ht

− 3LdM
χ+ − χ−

2

∣∣∣∣ ≤

≤ 1

2

∣∣∣∣ d3(f ′+(h) + f ′−(h)

dh3

∣∣∣∣
h=ht

+ e− τb0L ≤ 2C3 + 1 (4.19)

(we used (4.18) in the last step). On the other hand, by the bound (4.11) and the

fact that

1

2

d
(
f ′+(h) − f ′−(h)

)
dh

= M + 0(L−d) ,

provided |h− ht| ≤ BL−d, we have

d2 χper(h,L)

dh2
= − 2

(
1

2

d
(
f ′+(h) − f ′−(h)

)
dh

)4

L3d 1 − 3 tanh2 F

cosh2 F
+ 0(L2d) =

= − 2M4 L3d 1 − 3 tanh2 F

cosh2 F
+ 0(L2d) (4.20)

where we use F to denote the quantity 1
2

(
f ′+(h) − f ′−(h)

)
Ld. We recall that |F | ≤

C1|h − ht| ≤ BC1 provided |h − ht| ≤ BL−d. Choosing B small enough and L

large, we obtain that

d2 χper(h, L)

dh2
≤ −M4 L3d

in the interval [ht −BL−d, ht + BLd]. Together with the bound (4.19), this proves

that dχper(h,L) / dh has only one zero hm(L) in the internal [ht−BL−d, ht +BLd],

and that hm(L) − ht = 0(L−2d). For |h−ht| ≤ 0(L−2d), however, the bound (4.20)

implies that

d2 χper(h,L)

d2 h2
= − 2M4 L3d + 0(L2d) .
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Combining this bound with the bound (4.19) we obtain the bound (3.15).

The proof of ii) proceeds in a similar way. We note that

∣∣Mper(ht, L) − M0

∣∣ ≤ e− b0 τ L (4.21)

and that ∣∣∣∣ dMper(h,L)

dh
− LdM2 cosh−2 F

∣∣∣∣ ≤ const., (4.22)

provided |h − ht| ≤ BL−d (the proof of (4.21) and (4.22) is completely analogous

to the proof of (4.19) and (4.20)). Since |F | ≤ BC1 we obtain that

dMper(h,L)

dh
≥ LdMd

2
cosh−2 (BC1) > 0

provided L is large and |h− ht| ≤ BL−d. We conclude that Mper(h,L) − M0 has a

unique zero h0(L) in the interval [ht − BL−d, ht + BL−d], and that h0(L) obeys

the bound (3.16).

To prove the last statement of Theorem 3.3, we note that the local maxima of

N(h,L) are the points for which

Mper(h, 2L) − Mper(h,L) = 0 .

On the other hand

∣∣Mper(ht, 2L) − Mper(ht, L)
∣∣ ≤ 2e− b0τL (4.23)

and

∣∣∣∣ d

dh

[
Mper(h, 2L)−Mper(h,L)

]
− LdM2

[
2d cosh−2(2d F )− cosh−2 F

] ∣∣∣∣ ≤ const ,

(4.24)
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provided |h−ht| ≤ BL−d. Choosing B small enough (which implies that F is small)

and L large, we obtain that

d

dh

[
Mper(h, 2L) − Mper(h,L)

]
≥ Ld L2 Ld−1 cosh−2 (2dBC1) > 0

in the interval [ht−BL−d, ht+BL
−d]. Together with the bound (4.23), this implies

statement iii).
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5. General case of multiple phase coexistence

Let us recall that choosing a value of the field parameters h = {hi} ∈ RN−1 , the

stable phases q are characterized by vanishing of the parameter aq = f ′q−f . We use

Q(h) to denote the set of labels of stable phases, Q(h) = {q ∈ Q ; aq(h) = 0}, and

N(h) to denote their number, N(h) = | Q(h) | . Recall also that in (4.1) we defined

M i
per(h,L) =

1

Ld

∂

∂hi
log Zper (T )

and let us denote

M i
q(h) = −

∂f ′q
∂hi

for every5 q ∈ Q .

In the Remark ii) after Theorem 4.1 we actually proved a generalization of Lemma

3.1:

Lemma 5.1 There exists a constant τ0 depending only on d such that, whenever

τ ≥ τ0 , the magnetization M i
per(h,L) is well defined for all L ∈ N and

M i
per(h) = lim

L→∞
M i

per(h,L) =
1

N(h)

∑
q∈Q(h)

M i
q(h). (5.1)

To evaluate the speed of convergence in (5.1) we have to bound from below the

parameter aq(h) for all unstable phases q . To this end we introduce the distance

dq(h) from h to the region where q is stable,

dq(h) = dist(h, {h | aq(h) = 0}). (5.2)

Lemma 5.2 There exist constants τ0 < ∞ and M > 0 such that, for τ > τ0

and any q unstable for a given value of h one has

aq(h) ≥ M dq(h) . (5.3)

5If q is stable, Mq(h) is just the ”magnetization” of the phase q ; however, it is defined for
unstable q as well and it is, in fact, a C3 − continuation of the magnetization into the unstable

regions.
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Proof: Let us consider, for every h̄ in the ball B(h) of the radius dq(h) around

the point h , the vector

v(h̄) = F−1 u ,

where F = F (h̄) is the matrix (2.21) and u is the vector with components

um = δmq . Recalling that the norm ∥F−1∥ satisfies a bound of the form (2.7) (cf.

Remark iv) after Lemma 2.3) and taking 0 < M < 1
∥F−1∥ , we get

d

dλ
(f ′q − f ′s) (h̄ + λv(h̄))

∣∣∣∣
λ=0

= (F v (h̄))q − (F v (h̄))s = 1 ≥ M · ∥v(h̄)∥ (5.4)

for every s ̸= q . Hence, there exists a smooth path C of length at least dq(h)

, starting at h and ending at a point h̃ ∈ B(h) , such that everywhere along the

path the derivative of f ′q − f ′s satisfies the bound (5.4). Choosing now s stable at

h̃ and observing that aq(h̃) = f ′q(h̃) − f ′s(h̃) ≥ 0 , we have

aq(h) ≥ f ′q(h) − f ′s(h) =

∫
C

∂(f ′q − f ′s)

∂ h
ds + f ′q(h̃) − f ′s(h̃)

≥ M

∫
C

ds + aq(h̃) ≥ dq(h) ·M .

�

Denoting now d(h) the minimum of distances dq(h) over unstable phases q ,

d(h) = min
q∈Q\Q(h)

dq(h) ,

we prove:

Theorem 5.3 There exist constants τ0,K0 < ∞ and b0 > 0 such that for τ > τ0

one has

∣∣M i
per(h,L) − M i

per(h)
∣∣ ≤ e−b0τL + K0 e

−M
2 d(h)Ld

. (5.4)
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Proof: Taking into account the bound (4.3b) and the equality (5.1), we estimate:

∣∣M i
per(h,L) − M i

per(h)
∣∣ ≤∣∣ ∑

q∈Q

PqM
i
q(h) − 1

N(h)

∑
q∈Q(h)

M i
q(h)

∣∣ + e−b0τL ≤

≤
∑

q∈Q(h)

∣∣M i
q(h)

∣∣ ·
[

1

N(h)
− 1

N(h) +
∑

m∈Q\Q(h)

e−(f ′
m−f)Ld

]
+

+
∑

q∈Q\Q(h)

∣∣M i
q(h)

∣∣ e−(f ′
q−f)Ld

N(h) +
∑

m∈Q\Q(h)

e−(fm−f)Ld + e−b0τL

The needed bound follows taking into account that N(h) ≥ 1 and

e−(f ′
q−f)Ld

≤ e−M d(h)Ld

due to Lemma 5.2.

�

The bound (5.4) is, in analogy with Theorem 3.2 i), useful whenever the parameter

h takes on values with large d(h). This means far away from the curves (or surfaces)

where some of the phases that are unstable at h turn into a stable one. In particular,

far from the value h(0) , where all N phases coexist, (aq(h
(0)) = 0 for all q ∈ Q).

Next, we describe the behaviour of M i
per(h, L) in a close neighbourhood of h(0).

To this end, we start from the formulas (4.3) that express M i
per(h,L) in terms of

M i
q(h) and f iq(h) and expand them in (h − h(0)). To simplify the notation, we

introduce universal functions Pq(η) , that replace the tangens hyperbolicus from

Theorem 3.2. ii). For η ∈ RN , we define

Pq(η) =
e−ηq∑N

m=1 e
−ηm

.

Using also χij
q to denote the susceptibilities, χij

q (h) =
∂2fq

∂hi∂hj
, we evaluate

M i
per(h,L) in (essentially) the first and second orders in the distance ∥h − h(0)∥

of h from the point h(0) of full coexistence. The crux of the statement are the bounds

on the errors.
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Theorem 5.4 There exist constants τ0,K1,K2 < ∞ and b0 > 0 such that

i )

M i
per(h,L) =

∑
q

M i
q(h

(0))Pq(η̄) + R1(h,L) ,

where η̄ is the vector with components

η̄m = Ld
∑
j

M j
m(h(0))(hj − h

(0)
j ) ,

and

ii)

M i
per(h,L) =

∑
q

[
M i

q(h
(0)) +

∑
j

χij
q (h

(0))(hj − h
(0)
j )

]
Pq(η) + R2(h,L) ,

where η is the vector with components

ηm = Ld
(∑

j

M j
m(h(0))(h− h

(0)
j ) +

1

2

∑
i,j

χij
m(h(0))(hi − h

(0)
i )(hj − h

(0)
j )

)
.

The errors R1, R2 satisfy, for τ > τ0 , the bounds

| R1(h,L) | ≤ e−b0τL + K1 ∥h−h(0)∥min
{∥h− h(0)∥

d̃(h)
, 1+∥h−h(0)∥Ld

}
, (5.5 i)

and

| R2(h,L) | ≤ e−b0τL +K2 ∥h−h(0)∥2 min
{∥h− h(0)∥

d̃(h)
, 1+∥h−h(0)∥Ld

}
, (5.5 ii)

where

d̃(h) = dist
(
h, {h̄ ∈ RN

∣∣∣ N(h) ≥ 2}
)
.

We note that d̃(h) = d(h) if N(h) = 1 , whereas it vanishes on the curves (and

surfaces) of phase coexistence. The bounds (5.5) are weaker than the corresponding
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bounds in theorem 3.2; in the region ∥h− h(0)∥ >> L−d they become useless if h

approaches the phase coexistence regions. However, changing the definition of Pq

in these regions, one can evaluate the finite volume behaviour of Mper(h,L) on the

surfaces and lines of coexistence as well.

Proposition 5.5 Theorem 5.4 remains valid if the functions Pq(η) , and similarly

Pq(η̄) , are replaced by the functions P
Q(h)
q (η) which are obtained from Pq(η) by

substituting

η0 =
1

N(h)

∑
m∈Q(h)

ηm

for ηq whenever q is stable. After these replacements, the bounds (5.5 i) and

(5.5 ii) can be strengthened to

| R1(h,L) | ≤ e−boτL + K1∥h− h(0)∥ min
{∥h− h(0)∥

d(h)
, 1 + ∥h− h(0)∥Ld

}
,

and

| R2(h,L) | ≤ e−b0τL + K1∥h− h(0)∥2 min
{∥h− h(0)∥

d(h)
, 1 + ∥h− h(0)∥Ld

}
.

Before proceeding to the proof of the above statements, we illustrate them by

applying them to a model that is simple, yet it captures main features of a general

case. Namely, we consider the Blume-Capel model [13] with the Hamiltonian

H =
1

2

∑
<a,b>

(Sa − Sb)
2 − h1

∑
a

S2
a − h2

∑
a

Sa ,

where the spin takes on three values, Sa = ± 1, 0 . There are three translation

invariant ground states with specific energies

e0 = 0 , e+ = −h1 − h2 , and e− = −h1 + h2 .
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a) b)

Fig. 1

The phase diagram of the Blume-Capel model at low (b) and zero (a) temperature.

With the help of Pirogov-Sinai theory, it can be shown [14,15] that the phase diagram

at low temperatures (Fig. 1b) is a small perturbation of the phase diagram at zero

temperature (Fig. 1a).

Notice that the +,− symmetry is conserved at nonvanishing temperatures. In

Fig. 2 we indicated several straight lines, along which we shall analyse, say, the

formula i) with the error bound (5.5 i).

Considering first the dependence on a parameter h along the line l1 we get

M i
per(h,L) =

=
∑

q=0,±1

M i
q(h

(0))

exp

[
2∑

j=1

M j
q (h

(0))(hj − h
(0)
j )Ld

]
∑

m=0,±1
exp

[
2∑

j=1

M j
m(h(0))(hj − h

(0)
j )Ld

] +

+ O(∥h− h(0)∥) .

The error is of the order ∥h−h(0)∥ since for h on l1 one has d̃(h) ≥ α ∥h−h(0)∥

with a fixed α > 0 .

Along the straight line l2 (the tangent at h(0) with respect to the curve of 0,−
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Fig. 2

phase coexistence) the bound (5.5 i) fails. The reason is that d̃(h) vanishes quicker

than ∥h− h(0)∥2 as h→ h(0).

Also along the line l3 the bound (5.5 i) fails since d̃(h) goes to zero when crossing

the coexistence curve while ∥h − h(0)∥ stays bounded from below. But here we

actually have the coexistence of only two phases, + and 0 , and one should rather

apply Theorem 3.2 replacing h(0) by the intersection of l3 with the coexistence curve

of + and 0 phases.

An interesting case is that of the line l4 (the axis h2 = 0). Here, one phase

(the phase 0) is stable for h1 < h
(0)
1 , two phases (+ and − ) are stable for

h1 > h
(0)
1 , and all three of them coexist at h1 = h

(0)
1 . Observing that then d(h) =

∥h−h(0)∥ ≡ | h1−h(0)1 | and setting M̄ i = 1
2

[
1
2 (M

i
+(h

(0)) + M i
−(h

(0))) + M i
0(h

(0))
]

and ∆i = M i
0(h

(0)) − M̄ i , we get

M i
per(h,L) = M̄ i−∆i tanh

(
∆1 · (h1−h(0)1 )Ld + log

√
2
)
+ 0

(
| h1−h(0)1 |

)
. (5.7)
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Notice that this formula has the same structure as (3.11 a), except for the additional

term log
√
2 in the argument of the hyperbolic tangens. A direct extension to a

situation with n phases coexisting along a line (say l4) yields the formula

M i
per(h,L) = M̄ i −∆i tanh∆1· (h1−h(0)1 ) ·Ld + log

√
n) + 0

(
| h1−h(0)1 |

)
. (5.8)

The term log
√
n can be traced down to the fact that n + 1 phases coexist at

h(0) ; n of them being stable for h1 > h
(0)
1 and the remaining one for h1 < h

(0)
1 .

One would thus expect a similar behaviour also for the n− states Potts model that

reminds this extension. Indeed, an analog of (5.8) can be proven for Eper(β, L) , the

mean energy of the Potts model under periodic boundary conditions [7].

Proof of Theorem 5.4 and Proposition 3.5

We start with the proof of Theorem 5.4. According to 4.3b) it is sufficient to evaluate

the expression ∑
q∈Q

M i
q(h)Pq(ζ)

with ζ = {f ′m(h)Ld}m∈Q . Expanding M i
m(h) and f ′m(h) around h(0) , we have

∣∣M i
m(h) − M i

m(h(0)) −
∑
j

χij
m(h(0))(hj − h

(0)
j )

∣∣ ≤ M1 · ∥h− h(0)∥2 (5.10)

and

∣∣ f ′m(h) − f ′m(h(0)) −
∑
i

M i
m(h(0))(hi − h

(0)
i ) −

−
∑
i,j

χi,j
m (h(0))(hi − h

(0)
i )(hj − h

(0)
j )

∣∣ ≤ M2 ∥h− h(0)∥3 ,
(5.11)

where the constantsM1,M2 do not depend on h according to (2.5) and (2.20). Taking

into account (5.10) and once more (2.5) and (2.20) we see that to prove (5.5 i) and

(5.5 ii) it is enough to show that

∣∣ Pq(ξ) − Pq(η̄)
∣∣ ≤ O(∥h− h(0)∥2) min {Ld, d̃(h)−1} (5.12 i)
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and

∣∣ Pq(ζ) − Pq(η)
∣∣ ≤ O(∥h− h(0)∥3) min {Ld, d(h)−1} . (5.12 ii)

(Recall that η̄ arises from η by omitting the quadratic terms in h− h(0) .

Rewriting Pq(ζ) as

Pq(ζ) =
e−(ζq−ζq0 )∑
m e−(ζm−ζq0 )

where q0 is chosen in such a way that q0 is stable at h , we see that it is enough

to estimate

e−(ζq−ζq0 ) − e−(ηq−ηq0 )

for all q ̸= q0 in order to prove (5.12 ii). Bounding

∣∣ e(ζq−ζq0 ) − eηq−ηq0

∣∣
≤

[
| ζq − ηq | + | ζq0 − ηq0 |

]
max

{
e(ζq−ζq0 ) , e−(ηq−ηq0

)
}

≤ 2M2∥h− h(0)∥3 Ld max
{
e−(ζq−ζq0 ) , e−(ηq−ηq0 )

}
,

we conclude that

| Pq(ζ) − Pq(η) | ≤

≤ 0(∥h− h(0)∥3)Ld max
m̸=q0

max
{
e−(ζq−ζq0 ) , e−(ηq−ηq0 )

}
. (5.13)

We now distinguish two cases. Either

∥h− h(0)∥3 ≥ C d̃(h)

for some constant C to be chosen in a moment; then we use (5.13) and the trivial
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bound | Pq | ≤ 1 to estimate

| Pq(ζ) − Pq(η) | ≤

≤ min
{
2, Ld 0(∥h− h(0)∥3)

}
≤ min

{2∥h− h(0)∥3

Cd̃(h)
, Ld 0(∥h− h(0)∥3)

}
.

Or ∥h− h(0)∥3 < Cd(h) and we bound

ζq − ζq0 = dq ≥ Md̃(h) ,

ηq − ηq0 ≥ ζq − ζq0 − M2∥h− h(0)∥3 Ld ≥

≥ (M2 − C)d̃(h)Ld , (5.14)

chosing 0 < C < M2 , and using the fact that e−x ≤ min {1, 1x} , we then may

use the bound (5.13) to obtain (5.12 ii). The bound (5.12 i) is obtained in a similar

way. In order to prove Proposition 5.5, we observe that

ζq = ζ0 ≡ min
m

ζm

if q is stable. It is therefore enough to prove the bounds (5.12 i) and (5.12 ii) (with

Pq replaced by P
Q(h)
q ) for all q ∈ {0} ∪ Q\Q(h) . Rewriting

PQ(h)
q (ζ) =

e−(ζq−ζ0)

| Q(h) | +
∑

m∈Q\Q(h)

e−(ζm−ζ0)

and replacing the lower bound (5.14) by the bound

ζq − ζ0 ≥ M d(h)

we then may proceed exactly as in the proof of theorem 5.4.

�
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Appendix: Proof of Lemma 2.1, 2.2 and 2.3

In this appendix we prove Lemma 2.1, Lemma 2.2 and Lemma 2.3. Since our

results do not depend on the fact that eq and ρ(Y ) are real, we allow for complex

ground state energies and activities in this appendix. We require the bounds (2.1),

(2.5), and (2.6) with (2.2) and (2.4) replaced by

e0 = min
q

Re eq , (2.2′)

E =

(
∂

∂hi
Re(eq − eN )

)
q,i=1,... ,N−1

, (2.4′)

and generalise the definitions (2.16) and (2.17) to the complex situation by putting

f = min
m

Re fm , (2.16′)

aq = Re fq − f . (2.17′)

The definitions of Zq, K
′(Y ) and Z ′

q are the same as before.

We start with the proof of (2.12), assuming that is has allready been proven for

all contours of diameter less than n. We introduce an auxiliary contour model with

activities

K(n)(Y q) =

{
K ′(Y q) if diamY q < n

0 otherwise.

Denoting the corresponding free energy by f
(n)
q , we define

f
(n)
0 = min

m
Re f (n)m , (A.1)

a(n)q = Re f (n)q − f
(n)
0 . (A.2)

Since f
(n)
q and logZ ′

q(V ) can be controlled by convergent cluster expansions due to

the inductive assumption,

∣∣∣ logZ ′
q(V ) + f (n)q |V |

∣∣∣ ≤ O(ϵ)|∂V | , (A.3a)
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for all volumes V with diamV ≤ n, and

∣∣∣f (n)q − eq

∣∣∣ ≤ O(ϵ) . (A.3b)

Here ϵ is the constant

ϵ = e−(τ−α−2d−2) . (A.4)

We now assume inductively that

|K ′(Y )| ≤ ϵ|Y | , (A.5)

for all contours Y with diamY < n, and

|Zq(V )| ≤ e|∂V |−f
(n)
0 |V | (A.6)

for all q and all volumes V with diamV ≤ n.

Using the inductive assumption (A.6) and the bound (A.3), we bound, for

diamY q = n,

|K ′(Y q)| ≤ χ′(Y q)e(Re eq−e0−τ)|Y q|ea
(n)
q |IntYq|

∏
m

e(1+O(ϵ)|∂IntmY q|

≤ χ′(Y q) ea
(n)
q |IntY q|e(Re eq−e0+2d+O(ϵ)−τ)|Y q|

where we used the bound

∑
m

|∂IntmY q| ≤ |∂Y | ≤ 2d |Y | . (A.7)

Since χ′(Y q) = 0 unless

Re (logZ ′
q(V (Y q))− logZ ′

m(V (Y q))) ≥ −α|Y q| − 1 ,
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which, by the bounds (A.3) and the fact that |V (Y q)| = |IntY q|+ |Y q|, implies that

(Re eq − e0)|Y q|+ a(n)q |IntY q| ≤ (α+ 1 +O(ϵ))|Y q| ,

we finally obtain the desired bound

K ′(Y q) ≤ e−(τ−α−2d−1−O(ϵ))|Y q| ≤ ϵ|Y
q| .

Lemma A.1: Assume that diamY q ≤ n and that a
(n)
q diamY q ≤ α− 2. Then

χ′(Y q) = 1

Proof: Using (A.3) and the definition of a
(n)
q we bound

log |Z ′
q(V (Y q))| − log |Z ′

m(V (Y q))|+ α|Y q| ≥ (α−O(ϵ)) |Y q| − a(n)q |V (Y q)| .

Combined with the bound a
(n)
q |V (Y q)| ≤ a

(n)
q diamY q |Y q| ≤ (α− 2)|Y q| , and the

property (2.14b) of χ we obtain the lemma.

Lemma A.2: Assume that diamV ≤ n and that a
(n)
q diamY q ≤ α− 2. Then

Zq(V ) = Z ′
q(V ) (A.8)

Proof: For diamV ≤ 2, the statement is obvious. Assume that (A.8) has been

proven for all V with diamV ≤ m− 1, m ≤ n. Taking into account Lemma A.1 we

infer that K ′(Y q) = K(Y q) for all q-contours Y q with diamY q ≤ m. Using (2.9)

and the definition of K(Y q) we conclude that for all volumes with diamV ≤ m,

Zq(V ) =
∑

{Y q
α}ext

Zq(Int) e
−eq|V \Int|

∏
α

K(Y q
α )

=
∑

{Y q
α}ext

Z ′
q(Int) e

−eq|V \Int|
∏
α

K ′(Y q
α )

= Z ′
q(V ) ,
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where Int denotes the set ∪αIntY
q
α . Thus the lemma is proven by induction.

Lemma A.3: Assume that diamV ≤ n+ 1. Then

|Zq(V )| ≤ e−f
(n)
0 |V |+|∂V | for all q ∈ Q .

Proof: We define a contour Y q to be small, if a
(n)
q diamY q ≤ α − 2 and use the

relation (2.9) to rewrite Zq(V ) in the following way: write a set {Y q
α} of external

q-contours in V as {Xq
α} ∪ {Zq

α} where {Zq
α} denotes the small contours in {Y q

α}

and {Xq
α} the large contours in {Y q

α}. Note that for fixed Xq
α’s, the sum over {Zq

α}

goes over all sets of mutually external small contours in Ext = V \
∪

α(Xα∪ Int Xα).

Thus, resumming the small contours and using the relation (2.9) for a second time,

Zq(V ) =
∑

{Xq
α}ext

Zsmall
q (Ext)

∏
α

[
ρ(Xq

α)
∏
m

Zm(IntmX
q
α)

]
, (A.9)

where the sum goes over sets of mutually external large contours in V and Zsmall
q (Ext)

is obtained from Zq(Ext) by dropping all large external q-contours.

By Lemma A.1 through A.2, K(Y q) = K ′(Y q) if Y q is small. Therefore the parti-

tion function Zsmall
q (Ext) is equal to the corresponding truncated partition function,

which can be controlled by convergent cluster expansions. It follows that

∣∣Zsmall
q (Ext)

∣∣ ≤ e−Re fsmall
q |Ext|+O(ϵ)|∂Ext| , (A.10)

where f small
q is the free energy of the contour model with activities

Ksmall(Y q) =

{
K ′(Y q) if diamY q ≤ n and Y q is small ,

0 otherwise.

On the other hand,

|Zm(IntmX
q
α)| ≤ e−f

(n)
0 |IntmXq

α|+|∂IntmXq
α| (A.11)
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due to the inductive assumption (A.6). Combining (A.10) and (A.11) with the a

priory bound on ρ and the bound |f (n)0 − e0| ≤ O(ϵ) we find that

|Zq(V )| ≤
∑

{Xα
q }ext

e−Refsmall
q |Ext|−f

(n)
0 |V \Ext| e|∂Int|+O(ϵ)|∂Ext|

∏
α

e−(τ−O(ϵ))|Xq
α| .

Using (A.7) to bound O(ϵ)|∂ Ext|+ |∂ Int| ≤ O(ϵ)(|∂V |+
∑

α |∂Xq
α|) + |∂ Int| by

O(ϵ)|∂V |+ 4d
∑

α |Xq
α| we get

|Zq(V )| ≤ e−f
(n)
0 |V |+O(ϵ)|∂V |

∑
{Xα

q }ext

e−Re(fsmall
q −f

(n)
0 )|Ext|

∏
α

e−(τ−4d−1)|Xq
α| .

At this point we extract a factor

max
{Xα

q }ext

exp

{
−a

(n)
q

2
|Ext| − τ

2

∑
α
|Xα|

}
≤ max

W⊂V
exp

{
−a

(n)
q

2
|V \W | − τ

4d
|∂W |

}

and bound the remaining sum as in [BI], Section 2 (see also [Z], Section 2). We get

the estimate

|Zq(V )| ≤ e−f
(n)
0 |V |+|∂V | max

W⊂V
exp

{
−a

(n)
q

2
|V \W | − τ

4d
|∂W |

}
. (A.12)

Bounding the last factor by one we obtain the lemma.

This completes the inductive proof of (2.12). On the other hand, f = lim
n→∞

f
(n)
0

and aq = lim
n→∞

a(n)q . Therefore Lemma 2.1 follows from Lemma A.1 through A.3 by

taking the limit n→ ∞.

We now turn to the proof of Lemma 2.2, which we will proof in the form

∣∣∣∣( k∏
i=1

d

dhp(i)

)[
Zq(V ) eeq|V |

] ∣∣∣∣ ≤ const e−τ C(k) (4e2d|V |)k e(eq−f)|V |+|∂V | , (A.13)

where k = 1, · · · , 4, p : {1, · · · , k} → {1, · · · , N − 1}, and

C(k) = max
k1,··· ,kk≥0

Σki=k

k∏
i=1

Cki . (A.14)
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Cki are the constants from (2.5) and (2.6), C0 = 1 and the constant const in (A.13)

does not depend on k and V .

By the definition (2.3) of Zq(V )

[
Zq(V ) eeq|V |

]
=

∑
{Yα}

∏
α

ρ(Yα)e
eq|Yα|

∏
x∈V \∪Yα

eeq−e(x) (A.15)

where e(x) = em if x ∈ Rm. A derivative d/dhp(i) now either acts on a factor eeq−e(x)

or on a factor ρ(Yα)e
eq|Yα|. We fix all contours Y which are differentiated or which

contain a point x in their interior such that eeq−e(x) is differentiated, as well as all

contours Y ′ such that there is a contour Y ⊂ IntY ′ which is differentiated, and

resum all other contours. We then use Lemma 2.1 i) to bound the resulting partition

functions, and the bounds (2.5) and (2.6) to bound the derivatives of ρ and eq. As a

result, we obtain the estimate

∣∣∣∣( k∏
i=1

d

dhp(i)

)[
Zq(V ) eeq|V |

] ∣∣∣∣ ≤ C(k) 2k eeq|V |
∑

x1,··· ,xk∈V

∑
{Yα}

′

e
−f |V \∪Yα\{x1,··· ,xk}|+|∂V |+

k∑
i=1

2d+
∑
α
|∂Yα| k∏

i=1

e−e(xi)
∏
α

e−(τ+eo)|Yα| ,

where the sum
∑′

goes over all sets {Yα} for which each Yα either contains or

surrounds a point xi. Note that a term for which xi ∈ Yα comes from a term where

ρ(Yα)e
eq|Yα| was differentiated with respect to hp(i), while the terms for which xi lies

in V \ ∪Yα come from those terms where eeq−e(xi) was differentiated with respect to

hp(i). We now extract a factor C(k) (2e2d)k e(eq−f)|V |+|∂V | from the right hand side

of the above inequality and bound the remaining sum as follows

∑
{Yα}

′ k∏
i=1

ef−e(xi)
∏
α

e−(τ+eo−f)|Yα|+|∂Yα| ≤
∑
{Yα}

′
ekO(ϵ)

∏
α

e−(τ−O(ϵ)−2d)|Yα|

≤
k∏

i=1

eO(ϵ)
∑
{Yα}

(i) ∏
α

e−(τ−O(ϵ)−2d)|Yα| ≤ ekO(ϵ) (1 +O(e−τ ))k ≤ 2k ,
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where the sum
∑(i)

goes over sets {Yα} of contours Y such that xi ∈ Y ∪ IntY for all

Y ∈ {Yα}. Finally, we note that the expansion of the left hand side of (A.13) contains

at least one contour because the term without any contour in (A.15) becomes zero

when differentiated. Thus, a factor const e−τ can be extracted from the sum over

contours without destroing the remaining estimates. This concludes the proof of

(A.13).

We are left with the proof of Lemma 2.3. Proceeding by induction we assume that

the lemma has allready been proven for diamY q ≤ n − 1 and diamV ≤ n. For

diamY q = n, we rewrite

K ′(Y q) = ρ(Y q) eeq|Y
q|
∏
m

Zm(IntmY
q)e−logZ′

q(IntmY q) χm(Y q) , (A.17)

with

χm(Y q) = χ(Re logZ ′
q(V (Y q))− Re logZ ′

m(V (Y q)) + α|Y q|) (A.18)

By the inductive assumption, Lemma 2.2 and the fact that χ is a C4function, K ′(Y q)

is a C4 function for diamY q = n.

One may now use the inductive assumptions and the fact that (logZ ′
m(V )−em|V |)

can be analysed by a convergent cluster expansion to bound6

∣∣∣∣ dkdhk logZ ′
m(V )

∣∣∣∣ ≤ (Ck +O(ϵ))|V | ≤ 2Ck|V | , (A.19)

provided diamV ≤ n. Using the properties of the function χ, one obtains the bound

∣∣∣∣ dkdhk χm(Y q)

∣∣∣∣ ≤ const |V (Y q)||k| , (A.20)

with a constant that depends on N and on k. On the other hand

∣∣∣∣ dkdhk [
ρ(Y q) eeq|Y

q|
] ∣∣∣∣ ≤ const (1 + |Y q|)|k| e(Re eq−e0−τ)|Y q| . (A.21)

6see remark iii) below.
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and ∣∣∣∣ dkdhk e−logZq(IntY
q)

∣∣∣∣ ≤ const |IntY q|keRefq |IntY q|+O(ϵ)|Y q| . (A.21)

We then use (A.17) to rewrite the derivatives of K ′(Y q), and (A.20) through (A.22)

together with Lemma 2.1 and Lemma 2.2 to bound the resulting terms. We obtain

the bound∣∣∣∣ dkdhkK ′(Y q)

∣∣∣∣ ≤ const [ 1 + |Y q|+ |IntY q| ]|k| eaq|IntY q|+(Re eq−e0+2d+O(ϵ)−τ)|Y q|

≤ const
[
1 + |Y q|+ 2d|Y q|2

]4
eaq|IntY q|+(Re eq−e0+2d+O(ϵ)−τ)|Y q|

≤ eaq|IntY q|+(Re eq−e0+const−τ)|Y q| ≤ (Kϵ)|Y
q| , (A.23)

where we used the fact that χ′(Y q) =
∏
χm(Y q) and all its derivatives are zero if

aq|IntY q|+ (Re eq − e0)|Y q| > (α+ 1 +O(ϵ))|Y q|.

We finally have to show that logZ ′
q(V ) is a C4 function of h for diamV =

n + 1. Since logZ ′
q(V ) can be analysed by a convergent cluster expansion involving

only contours Y q of diameter less or equal n, this property of logZ ′
q(V ) follows

immedeately from the fact that K ′(Y q) is C4 for diamY q ≤ n and the fact that

the cluster expansion for dklogZq(V ) / dhk converges uniformly in h by the bound

(A.23)7

Remarks:

i) For aq ̸= 0, the bound i) of Lemma 2.1 can be sharpened as follows: Taking

the limit n → ∞ of (A.12), and bounding |∂W | from below with the help of the

isoperimetric inequality, we estimate

|Zq(V )| ≤ e−f |V |+|∂V | max
W⊂V

exp
{
−aq

2
|V \W | − τK|W |d/(d−1)

}
,

where K > 0 is a constant which depends only on the dimension d. The maximum

is obtained for either W = V or W = ∅; therefore

|Zq(V )| ≤ e−f |V |+|∂V | max
{
e−

aq
2 |V | , e−τK|V |d/(d−1)

}
. (A.24)

7The argument is the same as that one leading to (A.19), see remark iii) below.
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This is the announced improvement of Lemma 2.1 i).

ii) In a similar way, one may improve the bounds on the derivatives of Zq(V ),

using equation (A.9) and the fact that the derivatives of Zsmall
q can be controlled by

a convergent cluster expansion. One obtains the bound

∣∣∣∣dkZq(V )

dhk

∣∣∣∣ ≤ C(|k|) (2|V |)|k| e−f |V |+|∂V | max
{
e−

aq
2 |V | , e−τK|V |d/(d−1)

}
. (A.25)

iii) In standard polymer expansions (see e.g. [15]), the partition function

(logZ ′
m(V )− em|V |) is expressed as a sum over terms of the form

ϕc(Y
m
1 , · · · , Y m

n )

n∏
i=1

K ′(Y m
i ) ,

with coefficients ϕc (not depending on h) satisfying suitable bounds. These bounds

are sufficient to ensure not only (A.19) for k = 0, but, differentiating explicitely this

sum and taking into account the inductive bounds on derivatives for K ′, also for

k > 0.
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