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Abstract
Agents learning how to act in new environments
can benefit from input from more experienced
agents or humans. This paper studies interactive
teaching strategies for identifying when a student
can benefit from teacher-advice in a reinforcement
learning framework. In student-teacher learning,
a teacher agent can advise the student on which
action to take. Prior work has considered heuris-
tics for the teacher to choose advising opportuni-
ties. While these approaches effectively accelerate
agent training, they assume that the teacher con-
stantly monitors the student. This assumption may
not be satisfied with human teachers, as people in-
cur cognitive costs of monitoring and might not al-
ways pay attention. We propose strategies for a
teacher and a student to jointly identify advising
opportunities so that the teacher is not required to
constantly monitor the student. Experimental re-
sults show that these approaches reduce the amount
of attention required from the teacher compared to
teacher-initiated strategies, while maintaining sim-
ilar learning gains. The empirical evaluation also
investigates the effect of the information communi-
cated to the teacher and the quality of the student’s
initial policy on teaching outcomes.

1 Introduction
When agents are face the task of learning how to act in a new
environment, they can benefit from the input of more expe-
rienced agents and humans. Multiple lines of work have fo-
cused on incorporating different types of input to agent learn-
ing. Learning from demonstration approaches aim at infer-
ring a policy from expert demonstrations [Argall et al., 2009;
Abbeel and Ng, 2004; Chernova and Veloso, 2007]. In
reward shaping, an agent learns from positive or negative
signals provided by an expert [Knox and Stone, 2010;
Loftin et al., 2015]. In action critiquing, an agent practices
by interacting with the environment and an expert evaluates
its actions at the end of each session [Judah et al., 2010].

We focus on a paradigm for giving feedback to an agent in
real time, called student-teacher training. In this framework,
an experienced “teacher” agent helps accelerate the “student”

agent’s learning by providing advice on which action to take
next [Clouse, 1996; Torrey and Taylor, 2013]. The student
updates its policy based on reward signals from the environ-
ment as in typical reinforcement learning, but its exploration
is guided by the teacher’s advice.

Prior work has considered two modes of advice-giving in
this framework: student-initiated [Clouse, 1996] and teacher-
initiated [Torrey and Taylor, 2013]. Torrey and Taylor [2013]
considered a setting with a limited advice budget and devel-
oped heuristics that guide the teacher’s choice of advising
opportunities. They demonstrated significant learning gains
when using these heuristics in empirical studies. While the
amount of advice that the teacher can provide was limited,
their formulation assumed that the student’s current state is
always communicated to the teacher, and that the teacher
continuously monitors the student’s decisions until the ad-
vice budget runs out. These assumptions have significant
drawbacks. For human teachers, constantly paying atten-
tion diminishes the value of automation, imposes cognitive
costs [Miller et al., 2015] and can be simply unrealistic. Even
if the teacher is a computer agent, transmitting the student’s
every state to the teacher can have a prohibitive communica-
tion cost.

In this paper, we propose interactive student-teacher train-
ing, in which the student and the teacher jointly decide when
advice should be given. In these jointly-initiated teach-
ing strategies, the student determines whether to ask for the
teacher’s attention, and the teacher, if asked to pay attention
to the student’s state, decides whether to use this opportu-
nity to give advice, given a limited advice budget. We begin
by comparing the teacher-initiated and student-initiated ap-
proaches experimentally, showing that heuristics for teacher-
initiated training are more effective at improving the stu-
dent agent’s policy than student-initiated ones, but they re-
quire more teacher attention. Then we demonstrate that the
jointly-initiated teaching strategies can reduce the amount of
attention required of the teacher compared to teacher-initiated
strategies, while maintaining similar learning gains. Thus,
our work integrates the teacher-initiated and student-initiated
approaches, alleviating their disadvantages.

Collaborative approaches for assisting agents are partic-
ularly important for semi-autonomous agents [Zilberstein,
2015] (e.g., self-driving cars), as such agents will have long-
term interactions with people and will have opportunities to



continuously improve their policies based on these interac-
tions. Therefore, in addition to comparing the effectiveness
of different interactive training strategies, we investigate the
effect on learning performance of factors that may vary across
agent-human settings. In particular, our empirical evaluations
analyze the effect of the information communicated to the
teacher and the quality of the initial policy of the student on
teaching outcomes.

The contributions of the paper are threefold. First, it ex-
tends prior work on the teacher-student reinforcement learn-
ing framework by considering both communication and at-
tention requirements, motivated by settings in which a per-
son will assist agents’ learning. Second, it proposes jointly-
initiated advising approaches to reduce attention demands for
the teacher. Third, it empirically evaluates the proposed ap-
proaches in the Pac-Man domain, and explores the effect
of various aspects of teaching strategies on student learning
gains and teacher attention requirements.

2 Related Work
Our paper builds and expands on prior work studying the
student-teacher reinforcement learning framework [Clouse,
1996; Torrey and Taylor, 2013], discussed in Section 3.

Chernova & Veloso [2007] proposed a confidence-based
approach in which a learning agent asks for demonstrations
when it is uncertain of its actions. In their approach, in
contrast to the teacher-student framework, the agent only
learns from the expert demonstration without receiving a sig-
nal from the environment. Judah et al. [2014] proposed a
framework for active imitation learning, in which an agent
can query an expert for its policy for a given state. They also
assumed that the learning agent does not receive a reward sig-
nal from the environment. Furthermore, they assumed that
the agent can simulate trajectories and does not query for
demonstration during execution. Rosenstein & Barto [2004]
proposed a supervised actor-critic RL framework in which
a supervisor’s action is integrated with a learning agent’s ac-
tion. In contrast to our work, they assume a continuous action
space. Griffith et al. [2013] proposed a Bayesian approach for
integrating human feedback on the correctness of actions to
shape an agent’s policy. Rosman and Ramamoorthy [2014]
developed methods for deciding when to advise an agent, but
assume teachers have access to a knowledge base of common
agent trajectories.

Our motivation for aiming to reduce the attention required
from the teacher is rooted in prior research on human-agent
interaction and human attention. These works have devel-
oped methods for detecting human attention and for incor-
porating it into agent decision making, taking into consid-
eration the limited attention resources available to people
as well as the costs of interruptions [Horvitz et al., 1999;
2003]. Adjustable autonomy approaches take into account
the user’s focus of attention when deciding whether to act au-
tonomously or transfer autonomy to the user [Tambe et al.,
2002; Goodrich et al., 2001]. Models of human attention
are also key in developing approaches for supporting humans
supervising autonomous systems [Cummings and Mitchell,
2008; Fong et al., 2002].

3 Student-Teacher Reinforcement Learning
The student-teacher framework [Clouse, 1996] includes two
agents: a student and a teacher. We assume that the teacher
has already established a fixed policy for acting in the en-
vironment, denoted πteacher, whereas the student uses a re-
inforcement learning algorithm to learn its policy, denoted
πstudent. At any state s, the teacher can give advice to the
student by sharing πteacher(s). This formulation requires
that the teacher and the student share the same action space
but does not assume they share the same state representation.
When the student receives advice from the teacher, it takes
the suggested action. That action is then treated as any other
action chosen by the student during the learning period, and
Q-values are updated using the same learning algorithm.

Similarly to Torrey & Taylor [2013], we specify a lim-
ited advice budget for the teacher, but in contrast, we do not
assume constant monitoring of the student by the teacher.
Rather than specifying an attention budget, we consider the
attention required of the teacher as an additional metric by
which we evaluate the different teaching strategies. We con-
sider two different metrics for attention: (1) the number of
states in which the teacher had to assess the student’s state (to
decide whether to give advice), and (2) the overall duration
of the teaching period (i.e., the last time step in which the
teacher had to assess the student’s state).

Instead of fixing an attention budget, we choose to ana-
lyze the amount and duration required by training strategies,
because considerations about attention vary among different
settings. For example, if a person is helping an autonomous
car to improve its policy, the overall duration of the teaching
period does not matter because the person is always present
when the car drives. However, the person might not pay at-
tention to the road at all times and therefore there is a cost as-
sociated with monitoring the car’s actions to decide whether
to intervene. Moreover, if teaching in this setting requires
the human to take control over the car, then providing advice
incurs an additional cost beyond monitoring the agent’s be-
havior (i.e., deciding whether to intervene requires less effort
than actually intervening). Thus, in this setting, we would
like to minimize the number of states in which we require the
teacher’s attention as well as the number of times the teacher
is required to give advice. In contrast, if an expert is brought
to a lab to help train a robot, teaching is done during a ded-
icated time period in which the teacher watches a robot stu-
dent. Here, minimizing the overall duration of the teaching
period will be more important than minimizing the number
of states in which attention is required.

3.1 Teacher-Initiated Advising
Torrey & Taylor [2013] proposed several heuristics for the
teacher to decide when to give advice, using the notion of
state importance. Intuitively, a state is considered important
if taking a wrong action in that state can lead to a significant
decrease in future rewards, as determined by the teacher’s Q-
values. Formally, the importance of a state, denoted I(s), is
defined as:

I(s) = max
a

Qteacher
(s,a) −min

a
Qteacher

(s,a) (1)



Three variations of this heuristic were suggested: (1) Ad-
vise Important: giving advice when I(s) > tti (where tti is a
predetermined threshold); (2) Correct Important: giving ad-
vice if I(s) > tti and πstudent(s) 6= πteacher(s). This heuris-
tic assumes that the teacher has access to the student’s chosen
action for the current state; (3) Predictive Advising: giving
advice if I(s) > tti and the teacher predicts that the stu-
dent will take a sub-optimal action. This approach assumes
that the teacher does not know the student’s intended action
and instead develops a predictive model of the students’ ac-
tions over time. We do not include Predictive Advising in
our study to avoid the assumption that a person would de-
velop a predictive model of the students’ actions. Moreover,
even with agent teachers, the ability to predict an action will
greatly depend on the size of the action space.

We also evaluate the Early Advising baseline heuristics
used by Torrey & Taylor. Using the Early Advising heuristic,
the teacher gives advice in all states until the entire advice
budget is spent. Similarly, with Early Correcting, the teacher
advises the student in any state in which πstudent(s) 6=
πteacher(s) until exhausting the advice budget (as Correct
Important, this heuristic assumes that the student’s intended
action is communicated to the teacher).

3.2 Student-Initiated Advising
We consider several heuristics for the student agent to deter-
mine when to ask the teacher for advice. Similarly to cor-
rect important, the Ask Important heuristic uses the notion
of state-importance to decide whether the student should ask
for advice. It uses the student’s Q-values when computing
Equation 1 and asks for advice when I(s) > tsi, where tsi is
a threshold set for the student agent.

The Ask Uncertain heuristic [Clouse, 1996] also considers
Q-values differences (Equation 1) to decide whether to ask
for advice, but differs from Ask Important in that it asks for
advice when the difference is smaller than a given threshold
tunc (Equation 2). Intuitively, low Q-value difference signals
that the student is uncertain about which action to take. This
heuristic asks for advice when:

max
a

Qstudent
(s,a) −min

a
Qstudent

(s,a) < tunc, (2)

where tunc is the given student’s threshold for uncertainty.
Chernova & Veloso [Chernova and Veloso, 2007] used the

distance from a state to its previously visited nearest-neighbor
state as one measure of confidence that is based on the agent’s
familiarity with the state. We implement this approach in the
Ask Unfamiliar heuristic. In our settings states are described
by a feature vector and we use Euclidean distance between
feature vectors to determine the nearest neighbor. The student
then asks for advice when:

distance(s,NN(s)) > tunf , (3)
where NN(s) is nearest neighbor of state s.

3.3 Jointly-Initiated Advising
The student-initiated and teacher-initiated advising ap-
proaches both have shortcomings. The teacher-initiated ap-
proach requires the teacher to always pay attention. On the

other hand, the advising decisions of the student are likely to
be weak since they are guided by the student’s noisy Q-value
estimates. We design jointly-initiated advising approaches to
address these shortcomings by having the right division of
tasks between the teacher and the student. These approaches
do not require the teacher to pay continuous attention while
still utilizing the more informed signal of the teacher about
whether advice is beneficial in a given state.

In jointly-initiated advising, the student decides whether to
ask for the teacher’s attention based on one of the student-
initiated approaches for asking for advice. Then, the teacher
decides whether to provide advice based on one of the
teacher-initiated advising approaches. We denote a jointly-
initiated heuristic by [X–Y ], where X is a student heuris-
tic for asking the teacher’s attention and Y is a teacher
heuristic for determining whether to give advice in the cur-
rent state. For instance, [Ask Important–Correct Important]
means that the student asks for the teacher’s attention when
I(s)student > tsi. The teacher will then assess the state and
will give advice if I(s)teacher > tti.

Once the teacher decides to give advice, it will continue
monitoring the student’s actions until advice is no longer
needed, and will later resume monitoring only when the stu-
dent asks for the teacher’s attention next1. The motivation for
this approach is that once the teacher is already paying atten-
tion, it will be better able to judge whether additional advice
is required in consequent states, until the student takes the
right course of action. In addition, it requires less context-
switching of the teacher.

4 Empirical Evaluation
Our experiments have four objectives: (1) Comparing
student-initiated and teacher-initiated strategies: we as-
sess the relative strengths and weaknesses of the existing ap-
proaches; (2) Evaluating the proposed jointly-initiated ap-
proaches: we compare the performance of the joint heuristics
to that of the best-performing prior heuristics, as determined
by the first experiment; (3) Exploring the effect of the stu-
dent’s initial policy quality on performance: in real-world
settings, autonomous agents will likely start with some pre-
programmed basic policy rather than learn “from scratch”.
Therefore, we evaluate the benefits of the teaching sessions
when varying the quality of the student’s initial policy. The
quality of the initial policy is varied in two ways: by varying
the length of the student’s independent training (without ac-
cess to teacher advice) prior to the teaching session, and by
pre-training the student in limited settings that do not include
some important features of the game, so that the student can-
not learn certain skills; (4) Exploring the effect of sharing
the student’s intended action with the teacher: while shar-
ing the student’s intended action can reduce the use of the
teacher’s advice budget, sharing the student’s action might be
infeasible in some domains, and also incurs additional com-
munication costs. Therefore, we explore the extent to which
sharing the intended student action benefits learning.

1We evaluated the student-initiated approaches using this contin-
ued monitoring, but it did not lead to significant differences.



Figure 1: The Pac-Man Game.

4.1 Experimental Setup
We used the Pac-Man vs. Ghosts League competition [Rohlf-
shagen and Lucas, 2011] as our experimental domain. Fig-
ure 1 shows the game maze used in our experiments. This
game configuration includes two types of food pellets: reg-
ular pellets (small dots) are worth 10 points each and power
pellets (larger dots) are worth 50 points each. In addition,
after eating a power pellet, ghosts become edible for a lim-
ited time period. Pac-Man receives 200 points for each eaten
ghost. A game episode ends when Pac-Man is eaten by a
ghost, or after 2000 time steps. Ghosts chase Pac-Man with
80% probability and otherwise move randomly. In each state,
Pac-Man has at most four moves (right, left, up or down).

Due to the large size of the state space, we use a high-
level feature representation for state-action pairs. Specif-
ically, we use the 7-feature representation from Torrey &
Taylor’s [2013] implementation. Q-values are defined as a
weighted function of the feature values fi(s, a):

Q(s, a) = ω0 +
∑
i

ωi · fi(s, a) (4)

The student agent employed the Sarsa(λ) algorithm to learn
the weights in Equation 4. We used the same parameter
configuration as Torrey & Taylor [2013]: ε = 0.05, α =
0.001, γ = 0.999, λ = 0.9. The teacher agent was trained
with the same learning configuration until its performance
converged. Table 1 summarizes the heuristics for teacher-
initiated and student-initiated advising strategies studied in
our experiments, together with the thresholds we used for
each of them. The thresholds were determined empirically.

4.2 Evaluation Metrics
We evaluate the student’s learning rate by assessing the stu-
dent’s performance at different time points during training.
Specifically, in each trial, we paused training after every
100 game episodes and evaluated the student’s policy at that
time point by averaging 30 evaluation episodes (in which
the student uses its current policy without exploring or up-
dating its Q-values). Because trials have high variance de-
pending on the student’s eploration, we generate a learning
curve by aggregating 30 separate trials. For example,Figure 2
(left) shows the learning curves comparing the performance
of teacher-initiated and student-initiated approaches. The x-
axis represents training episodes, and y-axis values show the
average episode reward at that point in the training session.

For the teacher, cumulative attention is evaluated by aver-
aging the number of states in which the teacher was asked to
monitor the student. We assume that the teacher completely
stops monitoring once the advice budget is fully used. Cu-
mulative attention curves are generated by averaging the total
number of states in which the teacher’s attention was requried
after every 100 game episodes, averaging these values over
30 trials. The left plot of Figure 2 shows a cumulative atten-
tion curve. As in the learning curve, the x-axis corresponds
to training episodes. The y-axis values show the number of
states in which the teacher’s attention was required up to a
given time point.

The overall attention duration required from the teacher is
the average number of states it takes to use the entire advice
budget. This metric can also be assessed by looking at the x-
value of the point in which the cumulative attention (y-value)
flattens in the cumulative attention curves. For example, in
Figure 2 (right), when using the correct important heuris-
tic, the overall duration of required attention is 90 episodes,
while early correcting only requires an attention duration of
10 episodes as the advice budget gets used quickly.

To assess the statistical significance of differences in av-
erage rewards and cumulative attention, we ran paired t-tests
comparing the averages after each 100 training episodes.

Heuristic Initiator Threshold Shared
Action

Early Correcting teacher None Yes
Early Advising teacher None No
Correct Important teacher 200 Yes
Advise Important teacher 200 No
Ask Important student 50 Yes
Ask Uncertain student 30 Yes
Ask Unfamiliar student Avg. distance to nearest

neighbor
Yes

Table 1: Student-initiated and teacher-initiated heurisitcs.

4.3 Teacher Vs. Student Heuristics
Figure 2 (left) shows the student’s learning rate when using
heuristics for teacher-initiated and student-initiated advising.
When using the teacher-initiated approaches, the teacher con-
stantly monitors the state of the student until the advice bud-
get runs out. When student-initiated advising approaches are
used, the teacher only monitors the student when it is asked to
advise. In all cases, the student’s intended action is available
to the teacher when giving advice.

Substantially and signficantly higher learning gains were
obtained when using the teacher-initiated Correct Important
heuristic compared to all other heuristics (p < 10−16). This
can be seen in Figure 2 (left). For example, after 200 train-
ing episodes with the teacher, an average reward of 3055.64 is
obtained when using Correct Important, compared to an aver-
age reward of 2688.03 when using the next best heuristic. All
other heuristics led to higher learning rates compared to the
no advice (green dashed line) condition (p < 10−10). There
were no statistically significant differences between any other
pairs of advising strategies.

The higher learning gains obtained when using teacher-
initiated advising are expected; the teacher has more knowl-
edge than the student about the domain and has a good policy



for making decisions in it, which allows it to choose effec-
tive teaching opportunities. Consider the game state shown in
Figure 1 as an illustrative example. Intuitively, this is an im-
portant state: if Pac-Man (the student) makes a wrong move,
it might be eaten by a ghost; if, however, it proceeds towards
the power pellet, it will have an opportunity to earn a high
reward for eating a ghost. The teacher, which already knows
the environment, can identify that this state is important based
on its Q-values, while the student might not yet have enough
information to come to this conclusion.

While the Correct Important heuristic results in the high-
est learning gains, it requires significantly more teacher at-
tention than the other approaches. This can be seen in Fig-
ure 2 (right), which shows the average cumulative attention
required of the teacher; i.e., the total number of states in
which teacher’s attention was required up to a given episode.
Teacher attention is required in significantly more states when
using Correct Important compared to all other heuristics
(72382.06 states compared to only 6358.86 states for Ask
Unfamiliar, which is the most attention-demanding student-
initiated heuristic, p < 0.0001). In addition, the overall du-
ration of teacher’s attention (i.e., number of episodes until
the advice budget is fully used) is larger for Correct Impor-
tant (90 episodes compared to less than 40 episodes required
when using any of the other heuristics).

4.4 Jointly-Initiated Teaching Strategies
The results reported so far show that the teacher-initiated
advising strategies outperform the student-initiated ones in
terms of learning gains, but require more attention. In this
subsection, we present results from an evaluation of the
jointly-initiated teaching strategies, which aim to reduce the
attention required from the teacher while maintaining the
benefits of student-initiated advising. We thus compare their
performance with that of the top performing teacher-initiated
teaching strategy, Correct Important.

As Figure 3 (left) shows, when using the heuristic [Ask
Important–Correct Important], the student obtains similar re-
wards to those obtained when using Correct Important. The
rewards at any given time point were on average slightly
higher when using [Ask Important–Correct Important], but
while this difference was statistically significant (p = 0.008),
it was not substantial (average difference of 18.5 points). Fig-
ure 3 (right) shows that the [Ask Important–Correct Impor-
tant] heuristic required the teacher’s attention in fewer states
(64,711.47 states compared to 72,382.07 states). This dif-
ference was statistically significant (p < 10−5), and substan-
tial. However, the overall duration of required teacher’s atten-
tion when using [Ask Important–Correct Important] is 140
episodes (indicated by the x value corresponding to the max-
imal total attention), compared to 50 episodes when using
the Correct Important heuristic. That is, while the jointly-
initiated teaching strategy requires the teacher’s attention in
fewer states, the duration of the training session, and thus
teacher’s needed attention span, is longer.

To ensure that the performance is achieved as a result of
the student’s choice of states in which to ask for advice, we
also evaluate a random baseline where the student asks for
the teacher’s attention with 0.5 probability (the average rate

of asking for advice by the Ask Important heuristic until the
advice budget runs out). As shown in Figure 3, this ran-
dom baseline (Ask Random–Correct Important], dashed pur-
ple) does not perform as well as [Ask Important–Correct Im-
portant]. Moreover, it requires significantly more cumulative
teacher attention, as well as a longer teaching period (both
attention and learning gains differences were statistically sig-
nificant, p < 10−5). This shows that while the student’s per-
ception of importance is not as accurate as that of the teacher,
it is still useful for identifying advising opportunities.

The strength of the [Ask Important–Correct Important]
heuristic is its recall for important states. While the student
heuristic Ask Important has many false positives when try-
ing to identify important states due to the students’ inaccurate
Q-values, combining it with the teacher’s Correct Important
heuristic, which assesses whether the state is truly important,
mitigates this weakness.

The other jointly-initiated teaching strategies, [Ask
Uncertain–Correct Important] and [Ask Unfamiliar–Correct
Important], lead to some improvement in learning rate com-
pared to the No Advice baseline, but perform significantly
worse than Ask Random and require more cumulative atten-
tion, because they rarely capture important states. That is,
they suffer from a high false negative rate when trying to
identify important states, and therefore when the teacher uses
Correct Important in combination with these approaches, it
typically decides not to give advice (as the state is not im-
portant). This is evident by the long duration it takes until the
advice budget runs out when using these heuristics (Figure 3).

[Ask Uncertain–Correct Important] suffers from a higher
false negative rate because in its essence, Ask Uncertain cap-
tures states with a small Q-value range rather than those with
a high one. While in some of these states the student might
be uncertain of its actions, it might also mean that none of
the actions will lead to significantly decreased performance.
[Ask Unfamiliar–Correct Important] also suffers from possi-
bly missing important states and using the advice when its im-
pact is smaller, because unfamiliar states might not be impor-
tant ones. In addition, appropriately identifying unfamiliar
states likely requires more sophisticated domain-dependent
similarity methods.

4.5 The Effect of Student’s Initial Policy
The quality of the students initial policy may affect the effec-
tiveness of different advising strategies. To gain insights into
this relationship, we experimented with student agents that
differ in the quality of their initial policies.

We observe similar trends and relative performance of the
different teaching strategies when varying the length of the
student’s independent training prior to the teaching session.
As the quality of the initial policy of the student improves
(i.e., the student’s initial policy is based on more indepen-
dent learning episodes, in the same game settings), the per-
formance of the jointly-initiated and student-initiated teach-
ing strategies that are based on state importance can better
identify important states in which the teacher’s attention is
required. However, in general, the overall benefit of advising
the student decreases, as there is less room for improvement
of higher-quality initial policies.



Figure 2: Average reward (left) and average attention (right) obtained by student-initiated and teacher-initiated approaches. The
student was trained for 100 episodes prior to teaching, and actions were shared with teacher.

Figure 3: Average reward (left) and cumulative attention (right) obtained by jointly-initiated and teacher-initiated advising. The
student was trained for 100 episodes prior to teaching, and actions were shared with teacher.

Figure 4: Average reward (left) and cumulative attention (right) obtained by jointly-initiated and teacher-initiated advising. The
student was trained for 300 episodes prior to teaching.

Figure 5: Average reward (left) and cumulative attention (right) obtained by jointly-initiated and teacher-initiated advising. The
student trained for 150 episodes prior to teaching in game without power pellets, and actions were shared with teacher.



Figure 6: Average reward (left) and cumulative attention (right) obtained by jointly-initiated and teacher-initiated advising
when the action is shared vs. when it is not shared. The student was trained for 100 episodes prior to teaching.

Figure 4 shows the performance of the jointly-initiated ap-
proaches and the Correct Important heuristic when the stu-
dent’s initial policy was established after 300 episodes of
individual training. While the overall trends are similar to
those obtained when the initial policy was determined after
only 100 episodes (Figure 3), the reduction in the required
teacher attention when using [Ask Important–Correct Impor-
tant] compared to that required when using Correct Impor-
tant increases when the student starts with a better initial pol-
icy. For example, when the student was independently trained
for 100 episodes, advising based on [Ask Important–Correct
Important] required attention in 7670.6 fewer states than ad-
vising based on Correct Important; the difference in required
attention increased to 92162.6 states if the student was trained
for 300 episodes independently. In addition, when the stu-
dent had longer independent training, the overall attention du-
ration when using [Ask Important–Correct Important]) was
only 10 episodes longer than when using Correct Important
(compared to 50 episode gap when the independent training
only lasts 100 episodes).

Teacher advice is especially beneficial when the student
learns its initial policy in a limited setting that does not al-
low the student to explore the complete state space. Fig-
ure 5 shows the performance of the different teaching strate-
gies when applied to a student that developed an initial pol-
icy in settings without power pellets. Without any advising
(green bottom line), the student’s policy does not improve,
as it does not manage to learn about the positive rewards of
eating power pellets and consequently does not learn to eat
ghosts. Since the student has already established low weights
for features that correspond to the possibility of eating power
pellets, without guidance it is not able to learn this new skill.
However, with teaching, it quickly improves its policy.

While [Ask Important–Correct Important] is still the best
performing heuristic for jointly-initiated advising, the [Ask
Unfamiliar–Correct Important] heuristic does relatively bet-
ter compared to settings in which the student was trained on
the same game instance prior to teaching. Although it is out-
performed by the [Ask Uncertain, Correct Important] heuris-
tic in terms of student performance (after 400 episodes), it
requires significantly less teacher attention. The relative per-
formance improvement for the Ask Unfamiliar approach for
getting the teacher’s attention can be explained by the fact that
states that involve high proximity to power pellets may appear
less familiar (as they were not included in the initial indepen-
dent training), and also correspond to important states.

4.6 Sharing the Student’s Intended Action
Correct Important and [Ask Important–Correct Important]
both assume that the intended action is shared with the
teacher so that the teacher can correct the student if the state is
considered important and the student’s intended action is sub-
optimal. In contrast, Advise Important and [Ask Important–
Advise Important] give advice when the state is considered
important, regardless of the student’s intended action. As
Figure 6 (left) shows, sharing the intended action signifi-
cantly improves performance for all heuristics as it allows
the teacher to save the teaching budget to prevent student
mistakes. However, it also requires more attention from the
teacher (right figure). The effect of sharing the action is sim-
ilar for the teacher-initiated and jointly-initiated approaches.

5 Conclusion and Future Work
This paper investigates interactive teaching strategies in a
student-teacher learning framework. We show that using a
joint decision-making approach, the amount of attention re-
quired from the teacher can be reduced compared to teacher-
based approaches, while providing similar learning benefits.

Our empirical evaluation used the Pac-Man game, which
is an example of a dynamic domain where making mis-
takes in some states is particularly harmful (e.g., being eaten
by a ghost). Real-world dynamic settings such as semi-
autonomous driving will also likely have these types of im-
portant states (e.g., causing an accident). However, the im-
portance heuristic will likely not generalize well to domains
where “unrecoverable” mistakes are rare (e.g., mapping a new
territory, where each action can be immediately reversed). In
such settings, unfamiliarity- and uncertainty-based heuristics
are likely to be more useful.

There are several directions for future work. Methods for
generalizing the teacher’s advice beyond a specific state could
further accelerate learning. For instance, the student knows
the teacher decided not could try to learn a model of im-
portant states based on the teacher’s responses to advice re-
quests. From the human-agent interaction perspective, we
plan to study people’s attention while interacting with semi-
autonomous systems and incorporate attention models into
the student’s strategies for asking for advice. As AI systems
continue seeking input from humans in critical domains such
as driving, we see value in developing approaches that reason
about considerations specific to humans and benefit from the
complementary abilities of humans and machines.
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