
Code-Carrying Authorization

Sergio Maffeis2,3, Martı́n Abadi1,2, Cédric Fournet1, and Andrew D. Gordon1

1 Microsoft Research
2 University of California, Santa Cruz

3 Imperial College London

Abstract. In authorization, there is often a wish to shift the burden of proof to
those making requests, since they may have more resources and more specific
knowledge to construct the required proofs. We introduce an extreme instance of
this approach, which we call Code-Carrying Authorization (CCA). With CCA,
access-control decisions can partly be delegated to untrusted code obtained at
run-time. The dynamic verification of this code ensures the safety of authorization
decisions. We define and study this approach in the setting of a higher-order spi
calculus. The type system of this calculus provides the needed support for static
and dynamic verification.

1 Introduction

The generation, transmission, and checking of evidence plays a central role in autho-
rization. The evidence may include, for instance, certificates of memberships in groups,
delegation assertions, and bindings of keys to principals. Typically, the checking is done
dynamically, that is, at run-time, in reference monitors. When a reference monitor con-
siders a request from a principal, it evaluates the evidence supplied by the principal
in the context of a local policy and other information. It is also possible—and indeed
attractive—to perform some of the checking statically, at the time of definition of a sys-
tem. This static checking may rely on logical reasoning or on type systems, and may
guarantee that enforcement of a policy is done thoroughly and correctly.

A growing body of research explores the idea that the evidence may include or may
be organized as a logical proof [17,4,15,9,20]. For instance, in the special case of proof-
carrying code (PCC), the proofs guarantee code safety, and the requests are typically
for running a piece of code [17]. In another example, the clients of a web server may
present proofs that their requests should be granted [5]. This idea provides a princi-
pled approach to authorization. It also provides an approach to auditing in which the
proofs that motivate access-control decisions can be logged and analyzed [20]. While
the burden of proof generation shifts to the principal that makes a request, the proof
need not be trusted, so the reference monitor still needs to verify the proof. Dynamic
proof verification may fail; accordingly, any static checking needs to accommodate this
possibility.

Thus arises the question of how to reconcile static checking with proof-carrying and
dynamic verification. As an interesting specific instance of this question, one may won-
der how to incorporate dynamic verification in the existing typed spi calculus for autho-
rization of Fournet et al. [12]. In that calculus, a static type system guarantees the safe

enforcement of an authorization policy. It does not include proofs as first-class objects,
nor the possibility of dynamic verification. One might think about adding proofs and
proof-checking as primitives to this calculus, in order to support dynamic verification
and authorization. While that idea may seem “natural”, to our surprise we discovered
that a more general idea is both technically cleaner and more powerful in supporting
interesting authorization scenarios. With “Proof-Carrying Authorization” (PCA) [4] in
mind, we call this idea “Code-Carrying Authorization” (CCA).

CCA consists in passing not proofs but pieces of code that perform run-time verifi-
cation. These pieces of code are essentially fragments of a reference monitor. They are
themselves checked dynamically, since in general they are not trusted. Analogously, the
Open Verifier project [8] has started to explore a generalization of PCC in which mobile
code is accompanied by untrusted verifiers.

Following the Curry-Howard isomorphism, one may view proofs as programs. Still,
with PCA [4], those programs are only checked, not executed. With CCA, programs
are executed as well, though in a controlled way. No additional language for proofs is
needed; we can use arbitrary code, subject to dynamic typing. Thus, in comparison with
PCA, CCA allows a more open-ended, flexible notion of evidence without requiring the
introduction of special syntax.

In the present paper, we explore dynamic verification and authorization in the con-
text of a typed spi calculus. Technically, this calculus is a higher-order spi calculus [3]
with dynamic typing. Both the higher-order features and the dynamic typing rely on
fairly standard constructs [19,2], though with some new technical complications and
new applications. In particular, the dynamic typing can require theorem proving. The
calculus includes only shared-key cryptography; further cryptographic primitives might
be added as in later work by Fournet et al. [13]. Optionally, the calculus also includes
first-class proof hints, which can alleviate or eliminate the theorem-proving task at the
reference monitor. We prove results that establish the safety of authorization decisions
with respect to policies. (The full version of this paper [16] contains detailed proofs.)

We exploit this calculus in a range of small but challenging examples. These exam-
ples illustrate some of the advantages of dynamic verification and of CCA in particular.
For instance, in some of the examples, a server can enforce a rich authorization policy
while having only simple, generic code; clients provide more detailed code for run-time
access control. Such examples are beyond the scope of previous systems.

In addition to the research on PCA and on types for authorization cited above, our
work is related to a broad range of applications of process calculi to security. These
include, for instance, distributed pi calculi with trust relations and mobile code [18,14].
Interestingly, some of these calculi support remote attestation and dynamic subtyping
checks (however, with rather different goals and type structures, and no typecase) [10].

2 A Spi Calculus with Dynamic Verification

In this section we review the calculus for authorization on which we build [12], and
discuss our extensions for dynamic verification.

Authorization Logics. Our approach is parametric in the choice of an authorization
logic used as a policy language. The only constraint on the logic is that it be monotonic

and closed under substitution (see [16]). For example, Datalog [7], Binder [11], and
CDD [1] are valid authorization logics. In the rest of the paper, we use Datalog as an
authorization logic, and write S |= C when policy S entails the clause C. Informally,
entailment means that access requests that depend on C should be granted according
to S.

Our running example is based on an electronic conference reviewing system. The
conference server contains a policy that controls the access to the database of paper
reviews. This policy expresses authorization facts such as PCMember(alice), which
means “Alice has been appointed as a member of the program committee of the confer-
ence”, or authorization rules such as

Review(U,ID,R) :− PCMember(U),Opinion(U,ID,R)

which means “if a committee member holds a certain opinion on any paper, she can
submit a review for that paper”. Capitalized variables such as U , ID, and R are bound
logical variables. Lower-case identifiers (such as alice above), together with any other
values of the process language, are uninterpreted logical atoms.

Process Syntax and Semantics. The core language consists of an asynchronous spi
calculus where parallel processes can send messages to each other on named channels.
For example, we may write:

out a(M) | in a(x);P → P{M/x}

The symbol → represents a computation step. On the left of →, we have a parallel
composition of a process that sends a message (actually M) on the channel a and a
process that receives a message (represented by the formal parameter x) on a and then
executes P; on the right is the result, in which the formal parameter is replaced with the
actual message.

Messages include channel names, cryptographic keys, pairs, and encryptions. We
assume that encryption preserves the integrity of the payload. There are operations for
decomposing and matching pairs and for decrypting messages. For example,

decrypt {M}k as {y}k;Q → Q{M/y}

represents the only way to “open” the encryption {M}k to retrieve M.
Two special constructs have no effects on the semantics of programs, but are anno-

tations that connect the authorization policy to the protocol code: statements and expec-
tations. A statement, such as SentOn(a,b), should be manually inserted in the code in
order to record that, at a particular execution point, the clause SentOn(a,b) is regarded
as true. An expectation, such as expect GoodParam(x), should label program points
where the clause GoodParam(x) must hold for the run-time value of x. For example,
the following code is safe with respect to the policy GoodParam(X) :−SentOn(a,X):

(out a(b) | SentOn(a,b)) | in a(x);(expect GoodParam(x) | out c(x))

To this core language, we add a new kind of message (x:T)P that represents the
process P parametrized by x of type T , and operations to spawn such processes and to
check the type of messages dynamically. The formal syntax of messages and processes
is as follows:

Syntax for Messages and Processes:

a,b,c,k,x,y,z name
M,N ::= message

x name
{M}N authenticated encryption of M with key N
(M,N) message pair
(x:T)P code P parametric in x
ok token conveying logical effects (see Section 3)

P,Q,R ::= process
out M(N) asynchronous output of N to channel M
in M(x:T);P input of x from channel M (x has scope P)
!in M(x:T);P replicated input
new x:T ;P fresh generation of name x (x has scope P)
P | Q parallel composition of P and Q
0 null process
decrypt M as {y:T}N;P bind y to decryption of M with key N (y has scope P)
split M as (x:T,y:U);P solve (x,y) = M (x has scope U and P; y has scope P)
match M as (N,y:U);P solve (N,y) = M (y has scope P)
spawn M with N spawn M instantiated with N
typecase M of x:T ;P typecheck M at type T (x has scope P)
C statement of clause C
expect C expectation that clause C is derivable

Notations: (x̃:T̃) 4= (x1:T1, . . . ,xn:Tn) and new x̃:T̃ ;P 4= new x1:T1; . . .new xn:Tn;P
Let S = {C1, . . . ,Cn}. We write S | P for C1 | . . . |Cn | P.

For notational convenience, we may omit type annotations, especially for Un types.
Both spawn and typecase are standard constructs. However, in combination they

turn out to be very useful for our purposes. For example, a verifier process can accept
untrusted messages from the network, check that they are well-typed as processes with
input of type T , and then send the code out to the network once again on an untrusted
channel, wrapped in an encryption meant to signify that the contents are now guaranteed
to be type-safe:

in unCode(x); typecase x of y:Pr(T);out tsCode({y}k)

A code user can accept such encrypted code packages, and run the code passing it a
parameter M of the correct type T without further checking:

in tsCode(x);decrypt x as {y}k;spawn y with M

As usual in the pi calculus, we define the formal semantics of the calculus by a set
of structural congruence rules (see [16]) that describe what terms should be considered
syntactically equivalent, and a set of reduction rules (displayed below) that describe how
processes evolve. Most of these reduction axioms are standard. Rule (Red Typecase)
requires some typing environment E in which the check E `M : T can be performed. In
order to define such environments, we parametrize the reduction relation by an initial
environment (which can also be chosen as ∅ if necessary). Rule (Red Res) dynamically
adds the names defined by restriction contexts to the current typing environment, and

Rules for Reduction: P →E P′

out a(M) | in a(x:T);P →E P{M/x} (Red Comm)
out a(M) | !in a(x:T);P →E P{M/x} | !in a(x:T);P (Red !Comm)
decrypt {M}k as {y:T}k;P →E P{M/y} (Red Decrypt)
split (M,N) as (x:T,y:U);P →E P{M,N/x,y} (Red Split)
match (M,N) as (M,y:U);P →E P{N/y} (Red Match)

spawn (x)P with M →E P{M/x} (Red Spawn)
E ` M : T ⇒ typecase M of y:T ;P →E P{M/y} (Red Typecase)

P →E,env(Q)x̃ P′ ⇒ P | Q →E P′ | Q (where {x̃}∩ fn(P,Q) = ∅) (Red Par)
P →E,x:T P′ ⇒ new x:T ;P →E new x:T ;P′ (Red Res)
P ≡ Q,Q →E Q′,Q′ ≡ P′ ⇒ P →E P′ (Red Struct)

Notation: P →∗≡
E P′ is P ≡ P′ or P →∗

E P′.

rule (Red Par) adds the new clauses and names (env(Q)x̃) defined by parallel contexts.
The technical reasons for these definitions, which should become apparent in Section 3,
are illustrated in the following small example. Consider the reduction step:

new a:T ;(typecase a of y:T ;P)→∅ new a:T ;P{a/y}

By (Red Res), this reduction takes place if typecase a of y:T ;P →a:T P{a/y}, and this
is a valid instance of (Red Typecase) since the typing environment is now a:T , and
a:T ` a : T is clearly a valid typing judgment.

These rules allow a typecase process typecase M of y:T ;P to reduce provided the
message M can be typechecked in an environment E that collects clauses and names
defined in any parallel context. In an implementation, it may be impractical to collect the
full environment, because, for example, E takes the form E ′,E ′′ where the clauses and
names of E ′ are local, while those in E ′′ are distributed across remote machines. Still,
it is fine for an implementation to typecheck the message in the local environment E ′,
because, by a standard weakening lemma, if E ′ ` M : T then also E ′,E ′′ ` M : T . Such
an implementation would not admit reduction steps that depend on implicit knowledge
of remote clauses and names. This is not a problem in our theory, as we are concerned
with safety properties; in practice, we can convey knowledge of remote clauses and
names by explicit use of cryptography, as in the examples in later sections.

For brevity, we use derived notations for tuples and pattern-matching, and omit type
annotations when they are not necessary. The tuple (M1,M2, . . . ,Mn) abbreviates the
nested pairs (M1,(M2, . . . ,Mn)). We write tuple M as (N1, . . . ,Nn);P to pattern-match
a tuple, where M is a tuple, and each Ni is an atomic pattern (either a variable pattern x,
or a constant pattern =M, where M is a message to be matched). For each variable, we
introduce a split, and for each constant a match. For example, for a fresh z we have

tuple (a,b,c) as (x,=b,y);P 4=
split (a,(b,c)) as (x,z);match z as (b,z);split (z,z) as (y,z);P

We also allow pattern-matching in conjunction with input and decryption processes.

Safety. Relying on the operational semantics, we give a formal definition of safety
(much as in [12]). This notion makes precise the intuitive relation between assump-

tions, expectations, and program execution. The idea is that a process is safe if when-
ever during an execution the statement expect C is reached (i.e., it appears at the top
level, possibly inside some nested name restrictions) the environment has accumulated
enough rules and facts to entail C.

It is also important to know when a process is safe even if it is executed in parallel
with a malicious opponent. Following a common approach, we model the opponent as
an arbitrary untyped process, with no statements or expectations.

Safety, Opponents and Robust Safety:

A process P is safe for E if and only if whenever P →∗≡
E new x̃:T̃ ;(expect C | P′), we have

P′ ≡ new ỹ:Ũ ;(S | P′′) and S∪ clauses(E) |= C with ({ỹ}∩ fn(C)) = ∅ = ({x̃, ỹ}∩dom(E)).
A process O is an opponent if and only if it contains no statement or expectation, and every type
annotation is Un.
A process P is robustly safe for E if and only if for any opponent O, P | O is safe for E, x̃:Ũn,
where x̃ are the free names of O not in the domain of E.

For example, the process P = out b(a) | in b(x);expect A(x) is safe for A(a), but not ro-
bustly safe, as an opponent that replaces a with c can lead to an unsatisfied expectation:
in b(x);out b(c) | P →∗

A(a) expect A(c).

3 A Type System for Robust Safety

We present a dependent type system that statically guarantees safety and robust safety.
We extend the system of [12] with a type constructor Pr(T) for process code parametric
in T , and rules for the spawn and typecase constructs. Most of the rules in this section
(including those for new constructs) are largely standard rules adapted to the present
context. We are pleased by how much advantageous reuse has been possible.

We prove that typability with respect to an environment E entails safety for E and,
if all the types in E are Un (“untrusted”), also robust safety.

Types and Environments. Type Un is inhabited by any message that may come or go
to the opponent, like for example a ciphertext that can be considered untrusted until
it is decrypted. Upon decryption, one may reason that the contents were created by
a principal that knows the encryption key. Types Ch(T) and Key(T) are inhabited by
secure channels or secret keys for communicating or encrypting messages of type T . A
dependent type (x:T,U) is inhabited by the pairs (M,N) where M has type T , and N
has type U{M/x}. Type Ok(S) is inhabited only by the token ok, and is used to attach
effects to the payload of channels and keys. When a variable in the environment has
type Ok(S), it is safe to assume that S holds.

Syntax for Types:

T,U ::= Un | Ch(T) | Key(T) | (x:T,U) | Pr(T) |Ok(S)

T is generative iff T is of the form Un, Ch(U), or Key(U), for some U .
Notation: (x1:T1, . . . ,xn:Tn,Tn+1)

4= (x1:T1, . . . ,(xn:Tn,Tn+1))

For example, the type declaration kra : Key(id:Un,r:Un,Ok(Opinion(alice, id,r))) says
that kra is a key for encrypting a tuple like (paper,text,ok) where paper and text are
untrusted values and the ok token indicates that the key conveys the logical effect
Opinion(alice,paper,text).

Typing environments are lists of name bindings and clauses. We write dom(E) for
the set of names defined (i.e., appearing to the left of a binding “:”) in environment E.
We write env(P) for the top-level clauses of process P, with suitable name bindings for
any top-level restrictions, and clauses(E) for the clauses contained at the top level and
inside the top-level Ok types of E. We use a standard notion E ` � of well-formedness
for environments (see [16]).

Syntax for Environments, and Functions: env(P), clauses(E)

E ::= ∅ | E,x:T | E,C Notation: E(x) = T if E = E ′,x:T,E ′′

clauses(∅) = ∅ clauses(E,x:T) = clauses(E) (if T 6= Ok(S))
clauses(E,C) = clauses(E)∪{C} clauses(E,x:Ok(S)) = clauses(E)∪S

env(P | Q)x̃,ỹ = env(P)x̃,env(Q)ỹ (where {x̃, ỹ}∩ fn(P | Q) = ∅)
env(new x:T ;P)x,x̃ = x:T,env(P)x̃ (where {x̃}∩ fn(P) = ∅)
env(C)∅ = C env(P)∅ = ∅ (otherwise)
Convention: env(P) 4= env(P)x̃ for some distinct x̃ such that env(P)x̃ is defined.

Typing Rules. For each message constructor there are two typing rules, one to give it
an informative type, and one to give it type Un. Rules of the second kind are useful to
show that any opponent process can be typed.

Rule (Msg Encrypt) shows that an encryption under a trusted key does not need
to be trusted, in the sense that it can be sent to an opponent. Rules (Msg Proc) and
(Msg Proc Un) invoke the typing relation for processes in an environment that assumes
respectively type T or type Un for the process parameter x. Rule (Msg Ok) is typical of
this typed approach to verification: in order for an ok token to convey the effects S, it
must be the case that the clauses contained in the environment (which include the policy
and all the facts consequently accumulated by Ok types) entail each of the clauses in S.

Rules for Messages: E ` M : T

(Msg x)
E ` � x ∈ dom(E)

E ` x : E(x)

(Msg Encrypt)
E ` M : T E ` N : Key(T)

E ` {M}N : Un

(Msg Encrypt Un)
E ` M : Un E ` N : Un

E ` {M}N : Un

(Msg Pair)
E ` M : T E ` N : U{M/x}

E ` (M,N) : (x:T,U)

(Msg Pair Un)
E ` M : Un E ` N : Un

E ` (M,N) : Un

(Msg Ok Un)
E ` �

E ` ok : Un

(Msg Proc)
E,x:T ` P

E ` (x:T)P : Pr(T)

(Msg Proc Un)
E,x:Un ` P

E ` (x:Un)P : Un

(Msg Ok)
E,S ` � clauses(E) |= C ∀C ∈ S

E ` ok : Ok(S)

Rule (Proc Res) requires to type P in an environment with the additional binding x:T .
Correspondingly, the reduction rule (Red Res) assumes the binding in the run-time envi-
ronment of its premise. Rule (Proc Par) collects the effects of process Q to typecheck P,

and vice versa. Similarly, the premise of (Red Par) assumes env(Q) in the environment
of its premise. Rule (Proc Expect) requires an expected clause to be entailed by the
environment, much in the same way as (Msg Ok). Rule (Proc Typecase) is somewhat
subtle. It corresponds to an Un rule if we pick U and T to be Un. Moreover, the type U
is not related a priori to the type T . In typical examples, the rule allows us to check a
message M received at type Un and bind a variable y of some more useful type T to this
message if the check succeeds. The remaining rules come in pairs, with one rule that
assumes informative types and one that assumes Un types. Most of them are straight-
forward. For example, (Proc Output) says that a message of type T can be sent on a
channel of type Ch(T), and (Proc Decrypt) says that the variable y that represents the
payload of a ciphertext of type Un decrypted with a key of type Key(T) can be assumed
to have type T in the continuation process. The rules for split and match are similar.

Rules for Processes: E ` P

(Proc Nil)
E ` �
E ` 0

(Proc Res)
E,x:T ` P T generative

E ` new x:T ;P

(Proc Fact)
E,C ` �
E `C

(Proc Expect)
E,C ` � clauses(E) |= C

E ` expect C

(Proc Par)
E,env(Q) ` P E,env(P) ` Q fn(P | Q)⊆ dom(E)

E ` P | Q

(Proc Typecase)
E ` M : U E,x : T ` P

E ` typecase M of x:T ;P

(Proc Spawn)
E ` M : Pr(T) E ` N : T

E ` spawn M with N

(Proc Spawn Un)
E ` M : Un E ` N : Un

E ` spawn M with N

(Proc Input)
E ` M : Ch(T) E,x:T ` P

E ` [!]in M(x:T);P

(Proc Input Un)
E ` M : Un E,x:Un ` P

E ` [!]in M(x:Un);P

(Proc Output)
E ` M : Ch(T) E ` N : T

E ` out M(N)

(Proc Output Un)
E ` M : Un E ` N : Un

E ` out M(N)

(Proc Decrypt)
E ` M : Un E ` N : Key(T) E,y:T ` P

E ` decrypt M as {y:T}N;P

(Proc Decrypt Un)
E ` M : Un E ` N : Un E,y:Un ` P

E ` decrypt M as {y:Un}N;P

Notation: brackets denote optional constructs.

As a simple example, we can show that for E = Bar :−Foo, b:Ch(Ok(Bar)), the
typing judgment E ` Foo | out b(ok) is valid. The judgment follows by an instance of
(Proc Par), from E ` Foo and E,Foo ` out b(ok). The latter in turn follows by (Proc
Output) and (Msg Ok), where the second rule uses the logical inference clauses(E,Foo)
|= Bar. Section 4 includes a longer, detailed example of how the interplay between static
and dynamic typechecking makes this type system expressive.

Results. We obtain a type preservation result and a safety theorem that guarantees that
typability implies safety.

Lemma 1 (Type Preservation). If E ` P and P →∗≡
E P′ then E ` P′.

Theorem 1 (Safety). If E ` P then P is safe for E.

The safety theorem makes explicit the connection between the environment used for
typing (existentially quantified in related work), and the run-time environment.

In order to show that our notion of opponent is not restrictive in a typed setting,
we prove that any opponent can be typed in an environment that does not make trust
assumptions. Finally, we prove that if a process P is safe for a security policy S and an
untrusted environment, then it is robustly safe.

Lemma 2 (Opponent Typability). For opponent O, x̃:Ũn ` O, where fn(O)⊆ {x̃}.

Theorem 2 (Robust Safety). If x̃:Ũn,S ` P then P is robustly safe for x̃:Ũn,S.

For example, let us consider process Q = out b(a,ok) | in b(x,y);expect A(x). It is easy
to see that given E = a:Un,b:Ch(x:Un,A(x)),A(a) we have E ` Q, so Q is safe for E.
On the other hand it is not possible to derive a:Un,b:Un,A(a) ` Q, so we cannot prove
robust safety (which does not hold).

Dynamic Verification. We define a derived construct to verify that a piece of code M,
when passed a parameter N of type T enforces property S. The idea is to typecheck dy-
namically M, against the parameter type T and an implicit parameter c that is a channel
used to return the result of verification, namely an ok token carrying the effects S. The
continuation process P will execute only if verification succeeds, that is M sends an ok
on channel c.

verify M〈[z̃:Un,N:T]〉:S;P , new c:Ch(Ok(S));(
typecase M of y:Pr([z̃:Un,T,]Ch(Ok(S)));

spawn y with ([z̃,N,]c) | in c(x:Ok(S));P
)

(where {c,y,x}∩ fn(P,M, [N,]S) = ∅, and {z̃} ⊆ fn(S))

One may wonder whether it is prudent to run the code of an untrusted verifier that is
guaranteed to enforce a certain policy. Although additional precautions may be appro-
priate, this guarantee is substantial. By lexical scoping, the code of the verifier cannot
contain capabilities that are not already known by its generator; other capabilities can
only be passed explicitly as parameters. Moreover, the verifier must be well-typed in
the run-time typing environment, which can be restricted conveniently to further limit
potential side effects. On the other hand, this guarantee does not cover other kinds of at-
tacks (such as information leaks or denial-of-service attacks), which may be addressed
independently.

4 Examples: a Conference Program Committee

As a benchmark for the effectiveness of CCA, we revisit the conference program com-
mittee example of [12]. We first review the idealized electronic conference system, then
present two examples that illustrate the benefits of CCA.

Review: an Electronic Conference Reviewing System. There are three kinds of princi-
pals: the program committee chair (pc-chair), identified with the server, the program
committee members (pc-members), and potential reviewers. The last two are clients of
the server. We model only the portion of the conference reviewing system for delegat-
ing and filing reviews. The authorization policy S, from the subjective viewpoint of the
pc-chair, is:

S = Review(U,ID,R) :− Reviewer(U,ID),Opinion(U,ID,R)
Review(U,ID,R) :− PCMember(U),Opinion(U,ID,R)
Reviewer(V,ID) :− Reviewer(U,ID),Delegate(U,V,ID)
Delegate(U,W,ID) :− Delegate(U,V,ID),Delegate(V,W,ID)
Delegate(U,U,ID) :− Opinion(U,ID,R)

The predicate Opinion(u,id,r) states that principal u holds opinion r on paper id, and
is under the control of u itself (that is, the code identified with u can freely assert that
predicate). The predicate Delegate(u,v,id) states that principal u delegates its capability
to review paper id to principal v, and is also under the control of u. All the other predi-
cates are controlled by the pc-chair, and should be asserted only within server code.

Cryptographic keys can be associated with each of these predicates to convey au-
thorization facts through untrusted messages. Thus, the pc-chair may appoint alice as
a pc-member by sending her a token {alice}kp encrypted under a key that carries the
effect PCMember(alice), and similarly for the other predicates. We define the type of
the keys that correspond to each effect, and the type of a channel that implements a
database where the pc-chair stores the keys of all potential users:

KA = Key(u:Un,id:Un,Ok(Reviewer(u,id)))
KP = Key(u:Un,Ok(PCMember(u)))
KD = Key(z:Un,id:Un,Ok(Delegate(v,z,id)))
KR = Key(id:Un,r:Un,Ok(Opinion(v,id,r)))

T = Ch(v:Un,(KD,KR))

Keys of type KA or KP are used by the pc-chair only, to assign a paper to a reviewer
or to appoint a pc-member respectively. Keys of type KD or KR (parametric in v) can be
used by principal v to convey either an opinion or a delegation effect. Type T is the type
of a channel used to retrieve the keys of each registered user. Note that it is a dependent
type that binds the free parameter v of types KD and KR.

Off-line Delegation. Our first example presents a system that lets reviewers appoint sub-
reviewers without involving the pc-chair in the process. A typical solution that does not
use CCA is to have a reviewer present to the server a request that contains her opinion,
together with some evidence that represents a chain of delegation. The server then runs
an algorithm to traverse the chain and check corresponding permissions, and grants
access if the evidence is satisfactory. This solution commits the server to a specific ver-
ification algorithm (or a fixed number thereof). Using CCA instead, the server code can
be simpler and parametric. For example, the server is defined by the same code whether
or not the delegation chain is ordered, has limited length, or delegation is permitted at
all. Along with each request to file a review, the server receives the code of a verifier
and some evidence. It verifies that the code enforces the desired authorization policy,
and grants access without further checks. The relevant portion of the server code is:

Server(pwdb:T,ka:KA,kp:KP) =
S | !in filereview(v,id,r,p,e);

verify p〈(v,r,e,(pwdb,ka,kp)):(v:Un,r:Un,Un,(T,KA,KP))〉:Review(v,id,r); [...]

It contains the assertion of policy S, and a process always ready to accept messages
on the public channel filereview. Parameters v, id, and r are interpreted as a request
from principal v to file review r on paper id. Parameter p is the code of a verifier

that must be run to grant authorization (i.e., prove Review(v,id,r)) on data including
the evidence received as the last parameter e, and local credentials provided by the
server. The parameters passed by the server to the verifier p are the name v of the
principal issuing the request, the report r, the evidence e, and a triple (pwdb,ka,kp).
Channel pwdb can be used to retrieve user credentials. Keys ka and kp are the secret
keys used by the pc-chair to appoint reviewers and pc-members. If verification succeeds,
authorization is granted, and r is a valid review for id.

A delegate v receives from a reviewer a request to review paper id, with additional
parameters p (the verifier code to be passed on to the server), and dc (the evidence
that represents a chain of delegation). The delegate may appoint another sub-reviewer,
adding a delegation step to the chain (v,{u, id,ok}kdv,dc), or file a review, adding evi-
dence of its opinion to the top of the chain:

Delegate(v:Un,krv:KR,kdv:KD) =
!in reviewrequest(=v,id,p,dc);
(in accept(r); Opinion(v,id,r) | out filereview(v,id,r,p,({id,r,ok}krv,dc)) |
(in delegate(u); Delegate(v,u,id) | out reviewrequest(u,id,p,(v,{u,id,ok}kdv,dc)))

The pc-member can embed its logical effects directly in the verification code. For
that reason, it transmits as evidence ok tokens with empty logical effects. The verifier
fver, used to file a review ignores the principal name and the evidence, states that v
holds opinion r on id, parses the server credentials to get the key to appoint pc-members,
proves that v is a pc-member, by decrypting the appointment token (passed by the server
earlier on), and finally signals success.

PCMember(v:Un,pctoken:Un,idtoken:Un) =
!in paperassign(=v,id,idtoken);
(in review(r); out filereview(v,id,r,fver,ok) |
(in delegate(u); out reviewrequest(u,id,dver,ok))
fver = (, ,keys,return) (Opinion(v,id,r) | tuple keys as (, ,kp);

decrypt pctoken as {=v, }kp; out return(ok))

The verifier code dver involves a loop to gather and verify all the elements of the
delegation chain. Because of space constraints, we relegate it to the full version [16].

This code, and a few additional code fragments not shown here, can be assembled
into a program that represents the entire conference reviewing system. This program
typechecks in an environment of the form x̃:Ũn (according to the rules of Section 3).
Therefore, Theorem 2 applies, and guarantees robust safety. In this particular case, this
theorem implies that expectations in the server code, such as Review(v,id,r), are always
satisfied at run-time when they occur, even in an untrusted environment.

Server-Side Proxy. Our second example illustrates the use of verifiers as server-side
proxies installed by clients. It illustrates the flexibility of using typecase and spawn
independently from the derived verify construct.

We modify our previous example so that the pc-member sends the delegation ver-
ifier dver directly to the server, which can use it to authorize requests from delegated
reviewers. We show the code for dealing with delegated reviews, which is the most
interesting. The server registers proxies for each pc-member, and accepts requests on
each proxy. A message on the public channel newproxy causes the server to typecheck

the code dver and install it as a handler and verifier for requests coming from reviewers
delegated by pc-member u:

Server(pwdb:T,ka:KA,kp:KP) =
S | new protectedfilereview:V;

(!in newproxy(dver); typecase dver is y:Pr(U);
spawn y with ((pwdb,ka,kp),protectedfilereview)

|!in protectedfilereview(v,id,r,); expect Review(v,id,r); [...])
U = ((T,KA,KP),V)
V = Ch(v:Un,id:Un,r:Un,Ok(Review(v,id,r)))

Once appointed, a pc-member installs its delegation proxy on the server. The proxy
receives requests from delegates on a dedicated channel and authorizes them. Upon
delegation, the pc-member needs to send to the delegate a request that contains the
name of the dedicated channel and evidence of delegation. The evidence consists of a
delegation chain that contains a delegation step {u,id,ok}kdv (the name of the delegate
and the paper id encrypted under the delegation key of the pc-member, and an ok token)
and the list terminator (another ok token):

PCMember(v:Un,pctoken:Un) =
!in paperassign(=v,id,idtoken);
new filesubreview:Un;

out newproxy(dver) |
(in delegate(u); out reviewrequest(u,id,filesubreview,({u,id,ok}kdv,ok)))

The verifier dver now installs a process ready to listen to delegate requests on chan-
nel filesubreview, and then verifies requests similarly to the code shown above for off-
line delegation. The main differences are that, in this case, the result returned by the
verification process needs to contain the parameters v, id,r of the effect Review(v,id,r)
to be enforced, and the code (given in the full version [16]) does not contain the implicit
delegation effect Delegate(v,u,id).

The code for the delegate is little changed. It files reviews on the dedicated channels,
or delegates further:

Delegate(v:Un,krv:KR,kdv:KD) =
!in reviewrequest(=v,id,filereview,dc);
(in accept(r); Opinion(v,id,r) | out filereview(v,id,r,({id,r,ok}krv,dc)) |
(in delegate(u); Delegate(v,u,id) | out reviewrequest(u,id,filereview,(v,{u,id,ok}kdv,dc)))

Best-Effort Evidence. Our third example presents a system that supports the possibil-
ity for reviewers to appoint sub-reviewers, without needing immediate access to their
delegation credentials. In a completely static type system, a typical delegation protocol
such as the one presented in the previous section needs to record in a delegation chain
the causal relation between delegation steps. Hence, a reviewer that momentarily does
not have access to its delegation key cannot appoint a sub-reviewer.

We present a protocol that is well-typed, hence guarantees that, each time authoriza-
tion to file a review is granted, the requesting principal is provably a reviewer. Yet, the
protocol is “best-effort”, in that authorization can be denied at run-time if the server has
not yet received all the delegation messages necessary to reconstruct a valid delegation
chain.

To simplify the presentation, and to illustrate another advantage of CCA, we present
code that does not use cryptography. Suppose that the machine of the reviewer is down,
so she picks up the phone and asks a sub-reviewer to review a paper and to send his
opinion (in the form of a simple verifier) to the server, trusting that the review will be
accepted. The sub-reviewer can do so, or delegate further by issuing another informal
request and by separately contacting the server to communicate his delegation decision:

Delegate(v:Un) =
!in phonereviewrequest(=v,id);
(in accept(r); out filereview(v,id,r,fver))

|(in delegate(u); out phonereviewrequest(u,id) | out latedelegation(v,u,id,dver))
fver = (return)(Opinion(v,id,r)|out return(ok))
dver = (return)(Delegate(v,u,id)|out return(ok))

The server independently accepts requests for filing reviews and messages that state
delegation decisions. In the first case, the server simply verifies that the review can be
filed; in the second case it verifies that it is safe to assert a delegation step. At run-time
the server authorizes the request to file a review from a delegate only if it has already
verified enough delegation evidence to form a chain that originates from an appointed
reviewer:

Server() =
S | PCMember(alice) | Reviewer(bob,42)

| (!in filedreview(v,id,r,fver); verify fver〈〉:Review(v,id,r); [...])
| (!in latedelegation(v,u,id,dver); verify dver〈〉:Delegate(v,u,id);Delegate(v,u,id))

In previous static systems, this sort of best-effort code was not possible. The code
had to be written so that the expectation Review(v,id,r) could occur only after code that
would check the necessary delegation facts.

5 From Theorem Proving to Proof Checking

We have shown how to pass and dynamically check the code of a verifier process.
The dynamic check may involve invoking a theorem prover, potentially a costly op-
eration. On the other hand, passing proofs only requires the receiving side to have a
proof checker, reducing both the trusted computing base and the performance cost of
verification. For this reason, we extend our framework with the capability to pass also
hints, that can help the receiver of a reference monitor with the logical proofs involved
in dynamic typechecking. Hints could be proofs, in the formal sense of the word, or any
other kind of information which may (or may not) be helpful. In particular, hints could
be incomplete proofs, that simplify rather than eliminate theorem proving.

From oks to Hints. The ok token can already be interpreted as an empty hint, that
leaves to the typechecker the burden of finding a proof. We parametrize ok tokens by
a generic language of (possibly empty) proof hints H. Hints may contain variables, so
that they can be combined at run-time to form larger hints. Expectations now mention
a term that can be used as a hint to prove C.

Syntax for Hints

M,N ::= okH | . . . proof hint H replaces ok
P,Q,R ::= expect C by M | . . . expectation that clause C is derivable by M replaces expect C

The notion of type-safety does not change (just replace expect C by expect C by M),
since the final result that we desire is still that any expectation is justified by logical en-
tailment. It is the verification process that can be made simpler by adopting a verification
relation, which naturally should imply entailment.

Verification Relation: V (M,C,S)

Given an authorization logic (C , fn, |=), we assume an abstract verification predicate V that holds
only if a message M is a proof of clause C starting from policy S, and such that V (M,C,S) ⇒
S |= C.

We use hints and the verification relation in the typing rules that involve logical ef-
fects. In particular, we only need to replace (Msg Ok), (Msg Ok Un), and (Proc Expect)
by the corresponding typing rules given below.

Typing Rules for Hints

(Msg Hint)
E,S ` � fn(H)⊆ dom(E) V (H,C,clauses(E)) ∀C ∈ S

E ` okH : Ok(S)

(Msg Hint Un)
E ` � fn(H)⊆ dom(E)

E ` okH : Un

(Proc Expect Hint)
E,C ` � E ` M : Ok(S) C ∈ S

E ` expect C by M

The rules for hints are the obvious adaptations of the corresponding rules for ok . Note
that verification can assume as lemmas the effects of hints that are just variables, be-
cause they are included by clauses(E) in the premise of (Msg Hint). Rule (Proc Expect
Hint) no longer involves verification directly. It is the premise needed to give M the
Ok(S) type that may involve proof-checking.

This type system conservatively extends the one without hints. In fact, the type sys-
tem presented in Section 3 correspond exactly to the instance of the current type system
where H is empty, each expectation is of the form expect C by ok , and V (M,C,S) is
defined as S |= C.

Theorem 3 (Safety with Hints). (i) If E ` P then P is safe for E. (ii) If x̃:Ũn,S ` P then
P is robustly safe for x̃:Ũn,S.

The syntactic sugar from Section 4 can be adapted easily to hints by making explicit
the variable x that is bound to the hint that results from the verification process, so that
it can be used in subsequent expectations, or to build more complex hints.

Verification in Datalog. For the examples, we use the simple hint language and log-
ical verification relation for Datalog defined below, where S |=1 C is the single-step
entailment relation.

For example, considering S = D :−C,C :−B,B :−A,A and S1 = D :−C,C :−B,B
and S2 = C,D :−C, we have that V (ok(S1,S2),D,S) follows by an instance of (Verify
Pair) with premises V (okS1,C,S), V (okS1,D :−C,S), and V (okS2,D,S1).

Hints and Verification

H ::= S | M proof hint: clauses S or message M

(Verify S)
S |=1 C′ ∀C′ ∈ S′ S′ |=1 C

V (okS′,C,S)

(Verify Pair)
V (okM1,C′,S) ∀C′ ∈ M2 V (okM2,C,M1)

V (ok(M1,M2),C,S)

okS = S (M1,M2) = M1∪M2 M = ∅ otherwise

Example: Best-Effort Evidence Revisited. We revisit the example of Section 4. In the
system without automatic theorem prover, it is not enough to perform the operational
checks that grant authorization. It is also necessary to provide the logical engine with
hints on how to derive the right authorization facts.

For example, a reviewer v for paper id that decides to appoint a sub-reviewer u,
needs to tell the server how to derive from the policy the fact Reviewer(u,id), based on
the facts that may be available by the time the request is submitted. In particular, the
hint H in the verifier code dver contains the facts Delegate(v,u,id), stated by v itself,
Reviewer(v,id) which v cannot state, but that it can assume to be asserted by the time
the delegation request is filed, and the rule needed to conclude Reviewer(u,id). The
(simpler) case for filing reviews is given in the full version [16].

H = Reviewer(U,ID) :− Reviewer(V,ID),Delegate(V,U,ID); Reviewer(v,id);Delegate(v,u,id)
dver = (return)(Delegate(v,u,id) | out return(ok(H))

The server code needs to change the effects obtained by verifying a delegation re-
quest, essentially stating a lemma useful to prove further authorization.

S | PCMember(alice) | Reviewer(bob,id) | ...
| (!in latedelegation(v,u,id,dver); verify dver〈〉:Reviewer(u,id);Reviewer(u,id))

6 Conclusions
In this paper, we introduce “Code-Carrying Authorization” as a discipline for passing
fragments of a reference monitor rather than proofs in order to perform run-time autho-
rization. These fragments are themselves checked dynamically, since in general they are
not trusted. We present a typing discipline that statically enforces safety with respect to
authorization logics, and explore the notion of passing (proof) hints as a way to alleviate
the dynamic verification process. The recent literature contains other type systems for
authorization policies. While we base our work on that of Fournet et al. [12], because of
its simplicity, the ideas that we explore should carry over to more elaborate languages.
In particular, these variants would address the problem of partial trust [13]. They may
also enable us to instantiate CCA in a general-purpose programming language such as
F# [6] (a dialect of ML). Going beyond the present exploration (in which we emphasize
concepts and theory over practice), such extensions are important for the further study
of CCA and its applications.
Acknowledgments. We thank Gordon Plotkin for useful comments and suggestions.
Sergio Maffeis is supported by EPSRC grant EP/E044956/1. This work was done while
Maffeis was visiting Microsoft Research, Silicon Valley, whose hospitality is gratefully
acknowledged.

References

1. M. Abadi. Access control in a core calculus of dependency. In Computation, Meaning, and
Logic: Articles dedicated to Gordon Plotkin, pages 5–31. Elsevier, 2007. Volume 172 of
ENTCS.

2. M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-typed lan-
guage. In POPL’89: Proceedings of the 16th Annual ACM Symposium on Principles of
Programming Languages, pages 213–227. ACM, 1989.

3. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. Inf.
and Comp., 148:1–70, 1999.

4. A. W. Appel and E. W. Felten. Proof-carrying authentication. In CCS’99: Proceedings of
the 6th ACM Conference on Computer and Communications Security, pages 52–62, 1999.

5. L. Bauer, M. A. Schneider, and E. W. Felten. A general and flexible access-control system
for the Web. In Proceedings of the 11th USENIX Security Symposium, pages 93–108, 2002.

6. J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refinement types for
secure implementations. In 21st IEEE Computer Security Foundations Symposium (CSF’08),
pages 17–32. IEEE, June 2008.

7. S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about Datalog (and
never dared to ask). IEEE Trans. Knowl. Data Eng., 1(1):146–166, 1989.

8. B.-Y. E. Chang, A. J. Chlipala, G. C. Necula, and R. R. Schneck. The Open Verifier frame-
work for foundational verifiers. In ACM SIGPLAN Workshop on Types in Language Design
and Implementation (TLDI 2005), pages 1–12. ACM, 2005.

9. A. Cirillo, R. Jagadeesan, C. Pitcher, and J. Riely. Do As I SaY! Programmatic access control
with explicit identities. In CSF’07: 20th IEEE Computer Security Foundation Symposium,
pages 16–30. IEEE, 2007.

10. A. Cirillo and J. Riely. Access control based on code identity for open distributed systems.
In TGC’07: Trustworthy Global Computing, volume 4912 of Lecture Notes in Computer
Science, pages 169–185. Springer, 2007.

11. J. DeTreville. Binder, a logic-based security language. In IEEE Computer Society Sympo-
sium on Research in Security and Privacy, pages 105–113. IEEE, 2002.

12. C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization policies. ACM
Trans. Program. Lang. Syst., 29(5):25, 2007.

13. C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization policies in
distributed systems. In CSF’07: 20th IEEE Computer Security Foundation Symposium, pages
31–45. IEEE, 2007.

14. M. Hennessy, J. Rathke, and N. Yoshida. safeDpi: a language for controlling mobile code.
Acta Inf., 42(4-5):227–290, 2005.

15. C. Lesniewski-Laas, B. Ford, J. Strauss, R. Morris, and M. F. Kaashoek. Alpaca: extensible
authorization for distributed services. In CCS ’07: Proceedings of the 14th ACM conference
on Computer and communications security, pages 432–444. ACM, 2007.

16. S. Maffeis, M. Abadi, C. Fournet, and A. D. Gordon. Code-carrying authorization. Long
version: http://www.doc.ic.ac.uk/~maffeis/cca.pdf, 2008.

17. G. C. Necula. Proof-carrying code. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 106–119. ACM, 1997.

18. J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile agents. J.
Autom. Reas., 31(3-4):335–370, 2003.

19. D. Sangiorgi. From pi-calculus to higher-order pi-calculus - and back. In TAPSOFT’93:
Theory and Practice of Software Development, pages 151–166, 1993.

20. J. A. Vaughan, L. Jia, K. Mazurak, , and S. Zdancewic. Evidence-based audit. In 21st IEEE
Computer Security Foundations Symposium (CSF’08), pages 163–176. IEEE, June 2008.

	Code-Carrying Authorization
	Introduction
	A Spi Calculus with Dynamic Verification
	A Type System for Robust Safety
	Examples: a Conference Program Committee
	From Theorem Proving to Proof Checking
	Conclusions

