
454 This work was supported in part by the National Security Agency

under Grant MDA904{84{H{0004.

454 This work was supported in part by the National Security Agency

under Grant MDA904{84{H{0004.

1



Improving Privacy in

Cryptographic Elections

Josh D. Cohen

April 26, 1994

Abstract

This report describes two simple extensions to the paper A Robust

and Veri�able Cryptographically Secure Election Scheme presented in

the 1985 Symposium on the Foundations of Computer Science. The

�rst extension allows the \government" to be divided into an arbitrary

number of \tellers". With this extension, trust in any one teller is

su�cient to assure privacy, even if the remaining tellers conspire in an

attempt to breach privacy. The second extension allows a government

to reveal (and convince voters of) the winner in an election without

releasing the actual tally. Combining these two extensions in a uniform

manner remains an open problem.

1 Introduction and Background

In [CoFi85], a protocol was presented which gives a method of holding a

mutually veri�able secret-ballot election. The participants are the voters, a

government, a trusted \beacon" which generates publically readable random

bits, and a trusted global clock.

The protocol has four basic phases.

In phase 1, the government \calls for an election". In doing so, the

government releases cryptographic parameters to be used in the election and

engages in an interactive proof to give high con�dence that these parameters

meet certain speci�cations.

In phase 2, voters \register" for the election. This phase consists of each

voter preparing a blank (unmarked) ballot and engaging in an interactive

proof to give very high con�dence that the ballot consists of one no vote

and one yes vote.

2



In phase 3, voters \cast" their votes. Each registered voter has the

opportunity to designate one of the two votes on his or her ballot as the

vote to be cast.

In phase 4, the government announces the tally and releases additional

information to substantiate the accuracy of the tally. With the aid of a

�nal interactive proof, very high con�dence is given that the tally released

correctly represents the total number of no votes and the total number of

yes votes cast.

For completeness, the protocol is given in �gure 1.1.

Proofs are given in [CoFi85] that this protocol satis�es a correctness

theorem and a privacy theorem. The correctness theorem states roughly that

if the election passes a simple check function, then with high probability the

tally claimed by the government is the desired tally of votes. The privacy

theorem state roughly that, based on a number-theoretic assumption, no

set of conspiring voters can distinguish between the possible votes of any

other voters. The function check simply veri�es that the government steps

appear to be consistent with the government having followed its protocol

and includes in the tally precisely the votes of voters who took actions which

appear consistent with their protocols.

Perhaps the greatest shortcoming of the privacy theorem is that it ex-

cludes the government. That is to say, the government can tell exactly how

every voter votes in every election. In section 2, a generalization to the orig-

inal protocol is presented in which a set of \tellers" replace the government.

The sum of the results obtained by the tellers represents the tally of an

election; however, unless all tellers conspire, none will be able to determine

how any individual voter voted. This technique is then further general-

ized to allow the computation of an accurate tally even in the presence of

faulty tellers. A simulation technique is also discussed whereby the beacon

is replaced by a set of election \o�cials".

In section 3, a second generalization is given whereby the government

can announce (and convince the voters of) the winner of an election without

releasing any details about the actual tally. This technique can also be used

with the teller method above; however it seems to be necessary for at least

one teller to know the exact tally of the election.

3



Phase 1 steps executed by government:

1a. Release �

1

randomly-chosen pairs (n

i

; y

i

) such that n

i

is N -

admissible, gcd(y

i

; n

i

) = 1, and there exists no x

i

such that

x

r

i

� y

i

(mod n

i

).

1b. Use beacon to generate a random integer m, 1 � m � �

1

.

1c. For all i 6= m, reveal length N primes p

i

and q

i

such that

n

i

= p

i

q

i

, rj(p

i

� 1), and r6 j(q

i

� 1). Denote (n

m

; y

m

) by

(n; y).

Phase 2 steps executed by each voter v

j

2 V :

2a. For 0 � i � �

2

, randomly select f

i

and g

i

such that

gcd(f

i

; n) = gcd(g

i

; n) = 1, and release a ballot B

j;i

con-

sisting of the two numbers (f

r

i

mod n) and (yg

r

i

mod n) in

random order.

2b. Use beacon to generate �

2

random bits b

i

; 1 � i � �

2

.

2c. For all i such that b

i

= 1, reveal f

i

and g

i

. For all i such that

b

i

= 0, reveal f

i

� f

�1

0

and g

i

� g

�1

0

mod n.

Phase 3 executed by each voter v

j

2 V :

3. Select one element of B

j;0

as the actual vote w

j

. To vote

\yes", select w

j

= yg

r

0

. To vote \no", select w

j

= f

r

0

.

Phase 4 steps executed by government:

4a. Compute � = fj : check

V

(j) = goodg and W =

Q

j2�

w

j

mod n. Randomly select �

4

numbers c

i

such that

gcd(c

i

; n) = 1 and reveal all C

i

= c

r

i

.

4b. Use beacon to generate �

4

random bits b

i

; 1 � i � �

4

.

4c. Compute x and t such that W � y

t

x

r

(mod n) and 0 � t <

r. Reveal (t; j�j � t). For all i such that b

i

= 1, reveal c

i

. For

all i such that b

i

= 0, reveal c

i

x.

Figure 1.1: The basic election scheme S

1

.

4



2 Replacing the Government with Tellers

The basic idea of this generalization is to have each teller conduct a sub-

election with all of the voters. A voter may cast any number of votes in any

of the sub-elections with only one constraint. The total number of votes cast

by any voter over all sub-elections must be either 0 (mod r) { indicating

a no vote { or 1 (mod r) { indicating a yes vote. A form of interactive

proof (see [GMR85], [CoFi85]) is used to ensure that this constraint is met.

This protocol denoted by scheme S

2

is given in the four phases detailed

in �gures 2.1{2.4. Before the �rst phase, a prime r is �xed such that r is

greater than the number of eligible voters. �

1

, �

2

, and �

4

are preset integers

which depend on the security parameter N . An integer n is said to be N -

admissible if n = pq where p and q are primes of length N and where rjp�1

and r6 jq � 1.

In phase 1, given in �gure 2.1, each of the k tellers t

j

selects parameter

sets to be used in the election. Interactive proofs are then used to select

one parameter set for each teller and give high con�dence that these distin-

guished parameter sets are of the required form. This phase is no di�erent

from phase 1 of the basic election scheme S

1

, except that this phase is re-

peated for each teller.

Phase 1 steps executed by each teller t

j

2 T :

1a. Release �

1

randomly chosen pairs (n

j

i

; y

j

i

), 1 � i � �

1

, such

that n

i;j

is N -admissible, gcd(y

i;j

; n

i;j

) = 1, and there exists no

x

i;j

such that x

r

i;j

� y

i;j

(mod n

i;j

).

1b. Use beacon/o�cials to generate a random integer m,

1 � m � �

1

.

1c. For all i 6= m

j

, reveal length N primes p

j

i

and q

j

i

such that

n

j

i

= p

j

i

q

j

i

, rj(p

j

i

� 1), and r6 j(q

j

i

� 1). Denote (n

j

m

; y

j

m

) by

(n

j

; y

j

).

Figure 2.1: The parameter setting phase of S

2

.

Recall that a pair of election parameters (n

j

; y

j

) was selected by each

teller t

j

in phase 1. A vector consisting of k integers which is expressible in

the form hy

e

1

1

x

r

1

; y

e

2

2

x

r

2

; : : : ; y

e

k

k

x

r

k

i such that

P

j

e

j

� C (mod r) denotes a

C-vote. As before, a 0-vote represents a no vote, a 1-vote represents a yes

5



vote, and a valid ballot is a pair consisting of a no vote and a yes vote. In

phase 2 of the election, presented in �gure 2.2, each voter prepares a single

master ballot and many scratch ballots and engages in an interactive proof

to demonstrate with very high con�dence that the master ballot is valid.

The componentwise product (the j

th

product taken modulo n

j

) of a C

1

-

vote and a C

2

-vote is easily seen to be a (C

1

+C

2

)-vote. Thus, the product of

up to r�1 no votes and yes votes is a t-vote, where t is the number of votes

which were yes votes. Therefore, the tally of an election is determined by

the vote type of the the product of all legitimate votes cast in the election.

Note also that it is possible to demonstrate that two votes are of the

same type by showing that their quotient is a 0-vote. This will be required

in order to enable the check function to verify that a ballot is valid.

Phase 2 steps executed by each voter v 2 V :

2a. For 0 � i � �

2

, randomly select vectors �

i

= h�

i;1

; �

i;2

; : : : ; �

i;k

i

and �

i

= h�

i;1

; �

i;2

; : : : ; �

i;k

i such that for all i and j, 0 �

�

i;j

; �

i;j

< r and for all i,

P

j

�

i;j

� 0 (mod r) and

P

j

�

i;j

� 1

(mod r).

For 0 � i � �

2

, randomly select vectors f

i

= hf

i;1

; f

i;2

; : : : ; f

i;k

i

and g

i

= hg

i;1

; g

i;2

; : : : ; g

i;k

i such that gcd(f

i;j

; n

j

) =

gcd(g

i;j

; n

j

) = 1 for all i and j.

For 0 � i � �

2

, let F

i

= hy

�

i;1

1

f

r

i;1

; y

�

i;2

2

f

r

i;2

; : : : ; y

�

i;k

k

f

r

i;k

i and

G

i

= hy

�

i;1

1

g

r

i;1

; y

�

i;2

2

g

r

i;2

; : : : ; y

�

i;k

k

g

r

i;k

i, and release a ballot B

i

con-

sisting of the two vectors F

i

and G

i

in random order { (F

i

; G

i

)

or (G

i

; F

i

).

2b. Use beacon/o�cials to generate �

2

random bits b

i

; 1 � i � �

2

.

2c. For all i such that b

i

= 1, reveal �

i

, �

i

, f

i

and g

i

.

For all i such that b

i

= 0, reveal �

i

� �

0

(mod r) and �

i

� �

0

(mod r); and for those j for which �

0;j

� �

i;j

(resp. �

0;j

�

�

i;j

) reveal f

i;j

=f

0;j

(resp. g

i;j

=g

0;j

), otherwise reveal y

�1

f

i;j

=f

0;j

(resp. y

�1

g

i;j

=g

0;j

).

Figure 2.2: The ballot preparation phase of S

2

.

Phase 3 consists of each voter actually designating which of his or her two

votes is to be cast in the election. This phase is analogous to the marking

6



of a (previously) blank ballot. Note that phases 1 and 2 may be completed

well before the actual voting takes place. These phases may be viewed as a

registration process, leaving the vote casting of phase 3 for \election day".

See �gure 2.3.

Phase 3 executed by each voter v 2 V :

3. Select one element of B

0

as the actual vote w. To vote \no",

select w = F

0

. To vote \yes", select w = G

0

.

Figure 2.3: The vote casting phase of S

2

.

The �nal phase of the election comprises the computation and release of

the election tally. Each teller releases the tally of its sub-election as well as

additional information which gives very high con�dence that this sub-tally is

accurate. Figure 2.4 shows the details of this phase. Like phase 1, this phase

is unchanged from the basic election scheme S

1

, again with the exception

that this phase is repeated for each teller.

Phase 4 steps executed by each teller t

j

2 T :

4a. Compute � = fi : check

V

(i) = goodg and let W

j

=

Q

i2�

w

i;j

mod n

j

where w

i;j

is the j

th

component of the vote of

voter v

i

. Randomly select �

4

numbers c

i;j

such that gcd(c

i;j

; n) =

1 and reveal all C

i;j

= c

r

i;j

.

4b. Use beacon/o�cials to generate �

4

random bits b

i

; 1 � i � �

4

.

4c. Compute x

j

and �

j

such that W

j

� y

�

j

j

x

r

j

(mod n)

j

and 0 �

�

j

< r. Reveal �

j

. For all i such that b

i

= 1, reveal c

i;j

. For all

i such that b

i

= 0, reveal c

i;j

x

j

.

Figure 2.4: The tally tabulation phase of scheme S

2

.

The tally of the election (number of yes votes) is

P

j

�

j

mod r.

The function check, as in the basic scheme, simply veri�es that the

actions taken by each teller are super�cially consistent with those actions

dictated by the protocol. It should be emphasized, however, that a voter's

vote is not included in any sub-tally unless its vote in all sub-elections is

7



consistent with the protocol.

The only subtle aspect of the check function is the veri�cation that voter

ballots are valid (step 2c). In the cases where the beacon bit b

i

is 1, the

disclosure of the corresponding f

i

and g

i

serve as proof that �

i

and �

i

are of

the appropriate form and that the ballot B

i

is therefore valid. In the cases

where the beacon bit b

i

is 0, the disclosure of the required quotients allow an

observer to verify that �

i

��

0

and �

i

��

0

are each 0-votes. The sub-case in

which the quotients are multiplied by y

�1

normalizes the elements of �

i

��

0

and �

i

� �

0

to the range from 0 to r � 1. Together, these two cases give an

observer extremely high con�dence that each ballot B

i

and in turn master

ballot B

0

is valid.

The proof of correctness of the tally is almost identical to that in the basic

protocol and is straightforward. The proof of privacy can be generalized

under the assumption that at least one teller is honest (does not divulge its

partial information to others). This generalization is again straightforward,

since in the case where all but one teller collaborates, the remaining teller

is roughly equivalent to an honest government.

The extreme cases are also of interest since the case of one teller is iden-

tical to that of the government in the basic scheme. The opposite extreme

in which every voter is a teller guarantees privacy, but the robustness is lost

since a faulty teller forces the election to be restarted (without that teller).

This case is analogous to boardroom voting (see [DLM82],[Mer83],[Yao82]).

It should be emphasized that a faulty teller is used here to mean one that

refuses to complete its protocol. Unless the failure occurs before ballots are

prepared (allowing the election to be restarted easily), such a failure could

be limited to a teller not releasing its required sub-tally. (This would be

accomplished by moving the random number selection of step 4a into phase

1.) Since no partial information about the tally exists before this point, a

simultaneous broadcast protocol (see [CGMA85], for example) can prevent

an unhappy teller from refusing to release its sub-tally after seeing that the

tally is not developing as it desires.

2.1 Recovering from Teller Faults

An alternative approach to dealing with the possibility of faulty tellers

is given by embedding the entire election within a suitable secret sharing

scheme. With such an embedding, it will be possible to hold an election

with k tellers as in scheme S

2

. However, for a predetermined d, any subset

consisting of d or more of the tellers can determine and prove to participants

8



and observers the tally of the election. The disadvantage in this approach

is that any subset consisting of d or more of the tellers can also determine

how any individual voter voted in the election.

Although the entire election scheme is to be embedded within a secret

sharing scheme, the modi�cations to scheme S

2

which are required in order

to achieve this embedding are surprisingly minor. Shamir's threshold scheme

[Sha79] is particularly well suited for this purpose.

The key di�erence between the new scheme and scheme S

2

is in the

de�nition of a C-vote. Whereas a vector hy

e

1

1

x

r

1

; y

e

2

2

x

r

2

; : : : ; y

e

k

k

x

r

k

i was in

scheme S

2

interpreted as a C-vote if and only if

P

j

e

j

� C (mod r), the

same vector is interpreted in the modi�ed scheme as a C-vote if and only

if there is a polynomial of degree at most d� 1 over the integers modulo r

which passes through the points (j; e

j

) for all j, 1 � j � k and which also

passes through the point (0; C).

The changes indicated by this modi�cation can be enumerated as follows:

1. In step 2a of scheme S

2

, instead of requiring that each �

i

and �

i

be

chosen such that

P

j

�

i;j

� 0 (mod r) and

P

j

�

i;j

� 1 (mod r), we

now require that each �

i

and �

i

be chosen such that the points (j; �

i;j

)

together with the point (0; 0) all lie on a polynomial of degree at most

d� 1 over the integers modulo r and the points (j; �

i;j

) together with

the point (0; 1) all lie on a polynomial of degree at most d� 1 over the

integers modulo r.

2. The tally of the election, rather than being

P

j

�

j

mod r, now becomes

the value at 0 of the (at most degree d�1) polynomial (taken over the

integers modulo r) de�ned by any d or more of the points (j; �

j

).

3. The function check, precisely as in scheme S

2

, must check that the

information revealed in step 2c is consistent with the protocol. How-

ever, the votes revealed must be consistent with the new de�nition of

a C-vote.

It might seem as though an adversarial group of less than d tellers could

use its private information together with the information publically revealed

by the remaining tellers to discern information about individual votes. It is

seen in [Coh86], however, that this cannot happen.

There is an obvious trade o� in the choice of d | the number of tellers

required to complete the protocol. If d is chosen to be equal to k, then the

properties achieved are the same as those achieved by scheme S

2

, although

9



the approach is somewhat di�erent. Here, trust in one teller is su�cient

to assure privacy. In general, the number of tellers which must be trusted

(in the sense that they will not conspire to compromise privacy) becomes

k � d + 1. As d is reduced, k � d + 1 increases. An apparent limit is

reached when d drops to half of k. At this point, only k=2 tellers need be

trusted to complete the protocol. However, the remaining k=2 tellers, being

untrustworthy, will presumably conspire to read individual votes. It seems

that a d only slightly smaller than k | accounting for the possibility of a

few saboteurs, and necessitating trust in only a few tellers | might be the

best compromise.

2.2 Replacing the Beacon with O�cials

The original paper brie
y describes how the beacon can be replaced by a set

of election o�cials (previously called tellers). By again using a simultaneous

broadcast protocol such as [CGMA85], the private coins of o�cials can be

revealed and XORed to form a secure public coin. For simplicity here it

shall be assumed that a faulty o�cial forces the election to be restarted

(without that o�cial), although a more complicated analysis seems to allow

an election to be recovered and continued without the faulty o�cial.

As with tellers, the use of o�cials can easily be incorporated into the

correctness and privacy proofs. The assumption that at least one o�cial

is honest is now necessary for the correctness theorem. (Recall that the

assumption of an honest teller was used for the privacy theorem.)

The extreme cases are again interesting. The case of one o�cial is iden-

tical to that of a trusted beacon. The opposite extreme in which every voter

acts as an o�cial again causes a loss in robustness. It may be possible to

retain the robustness in this latter case by repeating only a small portion

of the election; however a complete analysis of the additional in
uence that

may be gained by voters in this case has thusfar de�ed the author.

The case in which the tellers also serve as the o�cials is perhaps the

simplest and most practical of the generalizations. In this case, trust in one

teller/o�cial gives all of the desired properties simultaneously.

10



3 Announcing the Winner without Divulging the

Tally

In this section an extension to the basic scheme will be presented by which

the winner of an election can be veri�ed without giving any speci�c infor-

mation about the actual tally. It may be desirable in some cases to allow

the margin of victory in an election to be concealed, if for no other reason

than to protect the self-esteem of the loser.

This can be accomplished by demonstrating that all possible tallies in fa-

vor of one candidate are not correct tallies, thus proving that this candidate

is not the winner of the election. This involves establishing that up to

r

2

spe-

ci�c integers are not r

th

residues. In order to demonstrate non-residuosity,

additional non-residues are prepared at the beginning of the protocol. Each

known non-residue z can be used later to show that a subsequently derived

integer w is also a non-residue by showing that w is expressible as w � z

i

x

r

(mod n) for integers x and i with 0 < i < r.

The protocol of scheme S

3

is shown in �gures 3.1{3.4.

Figure 3.1 shows the parameter setting phase of scheme S

3

. The only

di�erence between this and the �rst phase of the basic election scheme S

1

is

the inclusion of additional non-residues in each parameter set. The number

of additional non-residues prepared must be large enough to accomodate the

requirements of phase 4.

Phase 1 steps executed by government:

1a. Release �

1

randomly-chosen sets (n

i

; y

i

; z

i;0

; z

i;1

; : : : ; z

i;br=2c

)

such that n

i

is N -admissible, gcd(y

i

; n

i

) = 1, for all j,

gcd(z

i;j

; n

i

) = 1, and there exists no x

i

such that x

r

i

� y

i

(mod

n

i

) or that x

r

i

� z

i;j

(mod n

i

) for any j.

1b. Use beacon to generate a random integer m, 1 � m � �

1

.

1c. For all i 6= m, reveal length N primes p

i

and q

i

such

that n

i

= p

i

q

i

, rj(p

i

� 1), and r6 j(q

i

� 1). Denote

(n

m

; y

m

; z

m;0

; z

m;1

; : : : ; z

m;br=2c

) by (n; y; z

0

; z

1

; : : : ; z

br=2c

).

Figure 3.1: The parameter setting phase of scheme S

3

.

Figures 3.2 and 3.3 describe the ballot preparation and vote casting

phases of scheme S

3

. These phases are unchanged from the basic election

11



scheme S

1

. Voters paricipate in scheme S

3

exactly as they do in S

1

, although

additonal requirements are placed on the government.

Phase 2 steps executed by each voter v

j

2 V :

2a. For 0 � i � �

2

, randomly select f

i

and g

i

such that gcd(f

i

; n) =

gcd(g

i

; n) = 1, and release a ballot B

j;i

consisting of the two

numbers (f

r

i

mod n) and (yg

r

i

mod n) in random order.

2b. Use beacon to generate �

2

random bits b

i

; 1 � i � �

2

.

2c. For all i such that b

i

= 1, reveal f

i

and g

i

. For all i such that

b

i

= 0, reveal f

i

� f

�1

0

and g

i

� g

�1

0

mod n.

Figure 3.2: The ballot preparation phase of scheme S

3

.

Phase 3 executed by each voter v

j

2 V :

3. Select one element of B

j;0

as the actual vote w

j

. To vote \yes",

select w

j

= yg

r

0

. To vote \no", select w

j

= f

r

0

.

Figure 3.3: The vote casting phase of scheme S

3

.

The �nal phase, shown in �gure 3.4, details the mechanism by which a

possible tally can be shown to not be the correct election tally. Phase 4

repeats this process su�ciently often to demonstrate that the stated loser

is the actual loser. Care must be taken not to re-use any of the pre-selected

non-residues, since using one pre-selected non-residue to demonstrate the

non-residuosity of more than one derived integer can have the side-e�ect of

giving speci�c information about the tally. This is why br=2c, non-residues

were prepared in phase 1.

4 Open Problems and Remarks

There are several components of the schemes seen here in which improve-

ments are desired.

12



Phase 4 steps executed by government:

4a. Compute � = fj : check

V

(j) = goodg, � = bj�j=2c, and W =

Q

j2�

w

j

mod n. For 1 � i � �

4

and 0 � � � �, randomly select

integers c

�;i

such that gcd(c

�;i

; n) = 1 and reveal all C

�;i

= c

r

�;i

.

4b. Use beacon to generate random bits b

�;i

such that 1 � i � �

4

and 0 � � � �.

4c. Compute x and t such that W � y

t

x

r

(mod n) and 0 � t < r.

If t = j�j=2 announce tie and for all i such that b

0;i

= 1, reveal

c

0;i

; for all i such that b

0;i

= 0, reveal c

0;i

x.

If t > j�j=2 announce yes wins and for all � such that 0 � � � �

compute 


�

and x

�

such that 0 < 


�

< r and Wy

��

� z




�

�

x

r

�

(mod n). Reveal all 


�

. For all i such that b

�;i

= 1, reveal c

�;i

.

For all i such that b

�;i

= 0, reveal c

�;i

x.

If t < j�j=2 announce no wins and for all � such that � � � � j�j

compute 


�

and x

�

such that 0 < 


�

< r and Wy

��

� z




�

�

x

r

�

(mod n). Reveal all 


�

. For all i such that b

j�j��;i

= 1, reveal

c

j�j��;i

. For all i such that b

j�j��;i

= 0, reveal c

j�j��;i

x.

Figure 3.4: The tally tabulation phase of scheme S

3

.

4.1 Combining Schemes S

2

and S

3

It would be nice to be able to combine the two new schemes presented in

this report. It is possible to substitute a set of o�cials for the beacon in

scheme S

3

; however using tellers instead of the government does not seem to

generalize well here. The problem seems to be that in order to show that a

certain tally is not correct, it seems necessary that at least one party know

what tally is correct.

If all tellers but one announce and publically prove their sub-tallies, then

the remaining \master teller" could (with its private knowledge of its own

sub-tally) engage in a protocol similar to that of scheme S

3

and prove that

its sub-tally does not correspond to any of the values which would make one

candidate the winner, thereby proving that the other is the winner.

Perhaps each teller could begin by proving that one particular integer is

not the sub-tally which it holds. After each teller has done this, they might

next prove that an adjacent integer is also not its sub-tally. If this process

13



is continued until each of k tellers holds only two possible sub-tallies (say t

and t+ 1), then the election tally is constrained to one of k+ 1 consecutive

values. How to ensure that these k+1 values all represent the same winner

or to generalize this technique so that all tallies which give victory to the

winning candidate are possible remains open.

4.2 Recovering from Faults

One of the major advantages of these election schemes is that a voter who

does not comply (or at least seem to comply) with the election protocol can

simply be ignored. By using a government and beacon and assuming their

reliability, it was possible to eliminate the possibility of a failed election.

When tellers replace the government and o�cials replace the beacon, the

problem of failures among these agents cannot be ignored. Faults here are

taken to mean detectable faults | generally refusing to continue a protocol

that has been begun. Undetected deviations from the prescribed protocol

can only with very low probability a�ect the outcome of an election.

By simply declaring that a faulty teller or o�cial causes the election

to fail, the problem of faults may be dismissed easily. This is not entirely

unsatisfactory, since the number of tellers and o�cials is presumed to be

relatively small. A better solution would, however, be desirable.

In section 2.1, we examined how the techniques of secret sharing could

be used to enable an election to be completed despite some predetermined

number of faulty tellers. The problem of recovering an election with a faulty

or malicious o�cial seems to be somewhat more di�cult.

The role of the o�cials is simply to generate random bits for use in

interactive proofs: one interactive proof with each teller in each of phases 1

and 4, and one interactive proof with each voter in phase 2. It seems that

if an o�cial fails during any such proof step, then only that proof need be

repeated (without the faulty o�cial), and subsequent proofs can be executed

with the faulty o�cial excluded. All indications have thus far agreed with

this intuition, but the proof that the in
uence exerted by an o�cial choosing

to stop is negligible has been excruciating and has not yet been completed.

4.3 Achieving Exponentially Strong Con�dence

In phase 1 of the schemes presented, the probability of defeating the interac-

tive proof decreases only linearly with the number of parameter sets chosen

(doubling the number of parameter sets only halves the probability of cheat-

14



ing), whereas the interactive proofs in all subsequent steps of these schemes

decrease exponentially with the number of scratch ballots or random inte-

gers chosen (each additional scratch ballot required halves the probability of

a voter cheating successfully). Finding an exponentially secure interactive

proof for phase 1 of these schemes is very much desired.

One possible solution to this problem would be to hold many simulta-

neous elections and to demonstrate that each results in the same tally. In

order to meet this condition, voters would be required to cast the same vote

(yes or no) in each election. The government would be required to reveal

any voter who does not comply. This would ensure that every election does

in fact yield the same tally.

This solution could also be applied when tellers are used instead of a

government. Each voter would now be required to give the same sub-votes to

each teller in each election (i.e. use the same �

0

or �

0

in each election | see

�gure 2.2). Each teller would then be responsible for exposing any voter who

voted inconsistently in that teller's sub-election, and, once the inconsistency

is veri�ed, the votes submitted by that voter would be excluded from all

sub-tallies.

This approach, however, represents a signi�cant increase in the work

necessary to hold an election, and it is not yet known how to generalize the

privacy proof for this extension. A local version of an exponentially secure

interactive proof would still be prefered for phase 1.

4.4 The Di�culty of Deciding r

th

Residues

All of the schemes presented have relied on (in the sense that privacy is

dependent on) the di�culty of distinguishing between residues and non-

residues. This problem is believed to be hard, but more information as to

its precise complexity would be very useful.

Adelman and McDonnell in [AdMc82] (see also [APR83]) have shown

that the problem is almost as hard as factoring when the exponent r is

allowed to vary. It would be nice to show that the �xed exponent case used

here is as hard as factoring.

The problem of deciding r

th

residues is certainly in NP, but it would be

very nice to show that it is NP-complete | yielding among other things the

corollary that factoring is NP-hard. Manders and Adelman in [MaAd78]

have shown that the problem is in factNP-complete (even when r is 2) when

the size of the potential r

th

roots is constrained. The reduction, however, is

based on the large number of roots which might have to be considered and

15



not on any intrinsic di�culty of distinguishing between residues and non-

residues.

It would be extremely nice to show that the complexity of the problem

is super-polynomial | thereby separating P and NP, but there has thus

far been only limited progress in this direction.

Finally, it would be nice to develop some kind of intractability result,

but this is probably a bit much to ask.

Acknowledgements

Many debts are owed to people who have contributed to this work. Moti

Yung developed the �rst generalization to the one government protocol. His

idea allowed two governments to each hold an election such that the overall

tally was the di�erence of the individual tallies. Adi Shamir originally sug-

gested the problem of announcing a winner without the tally. He, together

with Oded Goldreich and Ron Rivest developed the key idea which led to

this generalization. Dana Angluin suggested holding simultaneous elections

to achieve exponential security. Jerry Leichter, David Wittenberg, and Moti

Yung have made many contributions to various portions of this work. Fi-

nally, my advisor, Mike Fischer has been instrumental in all phases of this

(and of course the original) work.

References

[AdMc82] Adleman, L. and McDonnell, R. \An Application of Higher

Reciprocity to Computational Number Theory." Proc. 23

rd

IEEE Symp. on Foundations of Computer Science, Chicago, IL

pp. (Nov. 1982), 100{106.

[APR83] Adleman, L., Pomerance, C., and Rumley, R. \On Distin-

guishing Prime Numbers from Composite Numbers." Annals of

Math. 117, (1983), 173{206.

[CGMA85] Chor, B., Goldwasser, S., Micali, S., and Awerbuch, B.

\Veri�able Secret Sharing and Achieving Simultaneity in the

Presence of Faults." Proc. 26

th

IEEE Symp. on Foundations of

Computer Science, Portland, OR (Oct. 1985), 383{395.

16



[CoFi85] Cohen, J. and Fischer, M. \A Robust and Veri�able Cryp-

tographically Secure Election Scheme." Proc. 26

th

IEEE Symp.

on Foundations of Computer Science, Portland, OR (Oct. 1985),

372{382.

[Coh86] Cohen, J. \Keeping Shares of a Secret Secret." TR-453, Yale

University, Departement of Computer Science, New Haven, CT

(Feb. 1986).

[DLM82] DeMillo, R., Lynch, N., and Merritt, M. \Cryptographic

Protocols." Proc. 14

th

ACM Symp. on Theory of Computing,

San Francisco, CA (May 1982), 383{400.

[GMR85] Goldwasser, S., Micali, S., and Racko� C. \The Knowl-

edge Complexity of Interactive Proof-Systems." Proc. 17

th

ACM

Symp. on Theory of Computing, Providence, RI (May 1985),

291{304.

[MaAd78] Manders, K. andAdleman, L. \NP-Complete Decision Prob-

lems for Binary Quadratics." J. Comput. System Sci. 16, (1978),

168{184.

[Mer83] Merritt, M. \Cryptographic Protocols." Ph.D. Thesis pre-

sented at Georgia Institute of Technology (Feb. 1983).

[Sha79] Shamir, A. \How to Share a Secret." Comm. ACM 22, 11 (Nov.

1979), 612{613.

[Yao82] Yao, A. \Protocols for Secure Computations." Proc. 23

rd

IEEE

Symp. on Foundations of Computer Science, Chicago, IL (Nov.

1982), 160{164.

17


