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|. INTRODUCTION ity provided by its various constituents behind well-defined
interfaces. This decoupling not only enables one to deploy
Miniature computing devices are being embedded in &f¥ferent variants of the same component (e.g., tailored to
increasing range of objects around us including home a@-gpecific device type), but also enables dynamic reconfig-
pliances, cars, buildings, and people. Furthermore,née ration of component instances and their interconnections.
working of such embedded environments is enabling advancegig provides support for dynamic adaptation to changing
scenarios in which devices leverage off each other and exhiinditions—a fundamental requirement in the context-aware
autonomous and coordinated behaviour. Recent developmejisnarios typical of networked embedded systems. Moreover,
in wireless networking are pushing these trends even furthge RUNES middleware reaches down into layers that typically
by simplifying deployment, and enabling new applicativgelong to the network and the operating system, therefore
scenarios, as witnessed by the recent surge of interestyidviding a unified approach to configuration, deployment and
wireless sensor networks. reconfiguration at multiple levels of abstraction. Finally, the
However, research into such networked embedded engkpertise of the involved partners in the related fields of mobile
ronments has focused almost exclusively on the develagsmputing, context-aware systems, and code mobility provides
ment of miniaturised devices with increasingly powerful anghe necessary knowledge and background for the design of
general capabilities. As a result, theoftware fabricthat specific components customised for particular networked em-
ultimately makes innovative applications possible has tendgéddded systems.
to be overlooked. Instead, software is developed in an ad-hocThe rest of the paper is organised as follows. Section
fashion, with little or no provision for reusable services anfl introduces the component model that is the foundation
abstractions. Furthermore, even where attempts are madeft@ur middleware. Next, section Il describes a number of
provide such features, the wide range of devices involved @y middleware services that can be built in terms of the
networked embedded environments inevitably leads to signomponent model. Finally, section IV offers our conclusions
icant complexity in appropriately configuring, deploying, anénd plans for future work.
dynamically reconfiguring the software. There is therefore a
need for aprogramming platformwith abstractions that are
able to span the full range of heterogeneous embedded sfs-Overview
tems, and which also offers consistent mechanisms with whichThe RUNES approach to middleware provision is to
to configure, deploy, and dynamically reconfigure networkesliid the middleware in terms of a well-defined language-
embedded systems software. independentomponent modekhich is supported by a min-
The work discussed in this paper is addressing the need ii@ial runtime API. The component model and its supporting
such a programming platform. The work is being carried out iuntime API are discussed in Section 1I-B.
the context of the EU-funded RUNES project (Reconfigurable, The required heterogeneous realisation of the component
Ubiquitous, Networked Embedded Systems), which has theédel in various types of devices is achieved by providing
general general goal of developing an architecture for nefifferent implementations of the runtime API, and by imple-
worked embedded systems that encompasses dedicated rafliating components themselves in various ways. For example,
layers, networks, middleware, and specialised simulation apd a PDA running a standard OS we might implement com-
verification tools. ponents as sets of Java classes or as Linux “shared objects”;
Our programming platform, which is at the heart of thevhereas on a sensor mote’s microcontroller, components might
RUNES architecture, takes the form ofcamponent-based be implemented simply as segments of machine code. This
middlewarethat decouples and encapsulates the function@- possible because the component model iscal model:

Il. THE COMPONENTMODEL
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Fig. 1. Elements of the RUNES component model. component instances@mpinsts); this can be done multiple
times if desired.Bind() is used to third-party bind a pair
of “interaction points” (i.e. a receptacle and an interface). It

distribution is assumed to be built on top of this foundationaéturns acompinst that represents the binding; this, like any
layer. other component instance, can be destroyed udasgroy()

The component model itself is complemented by two further The putattr() and getattr() calls give access to a general
architecture elementscomponent frameworkand reflective purposeregistry facility. This allows allow arbitrary<key,
meta-modelsThese are discussed in Sections 1I-C and ll-Dalue> attributes to be associated with component model
respectively. entities (i.e. components and interaction points). It provides

the basic means by which components discover each other
B. Elements of the Component Model at runtime: to this endload() and instantiate() register the

An outline of the component model, which is based oexistence of each new template or component instance under a
Lancaster’s OpenCOM [1], is illustrated in Figure 1. well-known key. It is also used to obtain the interaction points

Componentsare encapsulated units of functionality anéssociated with a component, and to associate QoS properties
deployment that interact with other components exclusivestc. with component model entities.
through “interfaces” and “receptacles” (see belo@apsules
are containing entities that offer the above-mentioned runtirfe Component Frameworks
API. As implied above, capsules can implemented differently A component frameworR] is an encapsulated composition
on different devices—e.g. they might be implemented asof components that addresses some focused area of function-
Unix or Windows process on a PDA or PC; or as a RAMlity, and which accepts additional components as run-time
chip on a sensor mote. Components can be deployed at §olyig-ins” that somehow modify or extend the component
time during run-time, and their loading can be requested froiramework’s behaviour (examples are given below). Crucially,
within any component within the capsule (this is caltedd- component frameworks (hereafter CFs) actively police at-
party deployment Interfacesare expressed in terms of setdempts to plug-in new components according to well-defined,
of operation signatures and associated datatypes; OMG IDLpisr-CF, it policies andconstraintsthat are expressed in a
used for interface specification to give language independeniesmguage such as OCL.

(Note, however, that this doesot imply the overhead of The benefits of CFs are as follows, they provide an
CORBA-like stubs and skeletons.) Components can suppirtermediate abstraction between components and whole sys-
multiple interfaces: this is useful in embodying separationems and thus generally increase the understandability and
of concern (e.g. between base functionality and componenaintainability of systemsj) they simplify component devel-
management)Receptaclesire “required” interfaces that areopment and assembly through design reuse and guidance to
used to make explicit the dependencies of a component @evelopers; andi) they enabldightweightcomponents (plug-
other components: when deploying a component into a caps) because plug-ins can assume shared CF-specific state and
sule, one knows by looking at its receptacles precisely whiskervices.

other components must be present to satisfy its dependencieSpecific examples of CFs are given in Section IlI-A.

Finally, bindings are associations between a single interface .

and a single receptacle. Like deployment, the creation of2h Reflective Meta-Models

binding is inherently third-party in nature. That is, it can be The essence of “reflection” is to establish and manipu-
performed by any party within the capsule, not only by thiate causally-connectemheta-modelf an underlying target
first-party components that will themselves participate in thgystem [3]. Such meta-models are representations of some

! receptacle

binding. aspect or view of the target system, and they expose a so-
An abstract of the runtime API offered by each capsule talledmeta-interfaceghrough which the representation can be
as follows: inspected and manipulated. The main purpose of reflection is
to maintain an architectural separation of concerns between
template  load(comp _type name); system building orconfiguration (sometimes called base-
comp.inst  instantiate(template  t); level programming), and system adaptatiorreonfiguration
status  unload(template  t); (sometimes called meta-programming).
comp.inst bind(ipnt _nst interfface , ipnt .inst receptacle ); Reflection is a powerful technique, and its use should ideally
status  destroy(comp _inst comp); be constrained to minimise programmer error. Our approach

status  putattr (ID entity , ID key, any value ); is to deploy reflective meta-models in close association with



CFs. The idea is that CFs can encapsulate meta-interfaaeloit data acquired by a GPS sensor if present. Otherwise
and appropriately restrict access to them according to polidymay adopt other plug-in strategies; e.g. by interacting with
Furthermore, such encapsulation can also ensure that m&®S-equipped nodes.
interfaces are accessed only when conditions sae; for Advertising and Discovery Services.Analogously to the
example, a CF could restrict component replacement vig . . : o : )

i ' L way in which the runtime’s registry allows applications to
the architecture meta-modgkee Section 11I-B) to situations ; .
. ) ) . ) reason about the components availdbtzlly, the advertising
in which no invocations are currently being made across | . o
. . . .t and discovery CF allows applications to reason abewtote
interaction points owned by the “old” component. Further, a

CF can define a suitable state-transfer protocol to carry—o&é)rmponems'

. Components that wish to advertise their presence in the
essential state from the old component to the new one. : .
o . : environment are called\dvertisablecomponents. Examples
Specific examples of reflective meta-models are given In o . .
. include codec repositories and general services. An Advertis-
Section 1I-B. ) . : .
able component implements thelvertisableinterface, which
I1l. TOWARDS THERUNES MIDDLEWARE enables the component to export a message that can be used
or advertising. Plug-in advertising “strategies” (e.g. based on

W how how the abstract ts offered b tr];
N nowt S Oc\jNI ow b € ats rtact goncep S.f(.) eRrSNEg nP, SLP etc) are then representeddsgertisercomponents.
component model can be Instantiated as specitic >YhHese are responsible for taking the messages of advertisable
ware elements. First, in Section IlI-A, we describe a number

. ) . . ) mponents and, after potentially transforming them into other
possible RUNE.S CFs; then, in Sect!on ”I'B’We dgscrlbe Sor?grmats, using these as advertisements. There can be any
example reflective meta-models. Finally, in Section III-C, w

Ve an example of how multiple CFs can work together Rumber of Advertiser components installed in the CF.
9 P P 9 ' Similarly, discovery “strategies”, which allow clients to

A. Examples of RUNES CFs reason about the advertisable components that have been found

. I I ; .
The following are examples of RUNES CFs: remotely, are encapsulated Bscoverycomponents

Local OS services This CF exposes as plug-ins functionalit Coordination Services. This CF hosts a range of plug-in
ices.” i xp piug-Ins functi "Yorotocols that are used to coordinate in various ways between

Egr a;}bsttracUoni' of func;tlonallty) 'that IS t?]/plcallly plrovu:le(; bl UNES nodes—especially between sensor network nodes.
e host operating system running, such as local scheduli amples are as follows:

memory management, or MAC protocols. As an example, di “Wake-up Coordination and Clusterin§ensor motes typi-

Leltrjzrjitnt:read scheduling polocies can be provided by d'ﬁerer[]a'{lly employ a range of strategies to reduce bandwidth and

save energy. Wake-up coordination strategies try to prevent
Network Services. This CF supports an extensible setedundant transmissions by ensure that transmitting and re-
of plug-in network communication services and provideseiving nodes are both powered up at the same time. Similarly,
a uniform set of APIs to these. It accommodates both range of clustering strategies can be employed for data
ad-hoc networking and infrastructure-based networking (aggregation and energy-efficient communication—e.g. based
the latter the plug-ins tend to be overlays). Examples oh geographic proximity or other criteria such as battery
plug-ins that might be accepted by the CF are: floodintgvel and sensor types. All such policies employ distributed
flooding with probabilistic pruning, anycast, multi-hop routcoordination and can thus be provided as plug-ins under this
ing, application level multicast, tunnelling, clustering, delayheading.

tolerant routing, and distributed hash table protocols. SomeDistributed Task Scheduléfhese plug-ins are responsible

of the CF’s generic APIs are as followsend(message, for allocating tasks on different nodes according to their
address) is used for unicastsendToAll(message) specific capabilities and energy statuses. Inputs from the
for broadcast; sendToGroup(message, topic) for application include application structure, data/control flow, re-
multicast; sendByKey(message, key) for DHT; and source requirements, and constraints on latency, reliability and
send(message) for content-based routing. energy use. Distributed task schedulers are also responsible

Interaction Services. This CF supports an extensible se[Or managing the trade-off between energy consumption and
%ophcatlon performance.

application-level “interaction paradigms” that may be layere
on top of the Network Services CF. Examples of plug-ing. Examples of RUNES Meta-models

accepted by this CF include: tuple spaces, reliable mulUcast,We now give a number of examples of reflective meta-

publish-subscribe and event notification, remote procedure
: : . models. Note that all of these meta-models can be loaded/

call, etc. Many such plug-ins can coexist depending on ap-
- ) : nloaded on demand and thus only consume resources when
plication needs. Furthermore, one plug-in may exploit another
and where actually needed.

(e.g. RPC may exploit a tuple-space component which in turr'First, here are three examples of generic meta-models

may be built on top of publish-subscribe). that are scoped within a single capsule: Taechitecture
Location Services.This CF is responsible for elaborating theneta-modelexposes the compositional topology of a sys-
physical or logical position of the host it is running on. It mayem of deployed components in a capsule as a casually-
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Fig. 2. A RUNES Reconfiguration Meta-Model.

connected graph structure. It also exposes the nested structure Fig. 3. Publish/Subscribe
of composite components and CFs. It enables one to inspect,
adapt and extend component topologies through high-level
operations on nodes (components) and arcs (bindings). Wadid logical destinations of an LMU are CFs, which allows
interception metamodelllows one to interpose interceptors afor deploying components in particular CFs, and individual
bindings between component interfaces for purposes suchcamponents, which allows for dynamically updating a single
monitoring, debugging or security. Thaterface metamodel component.
allows one to discover information about interface types atAn LMU can optionally encapsulate &andler which
runtime and to invoke interface instances that are dynamicatlypresents code that can be used by the recipient node to
discovered at runtime. Note that these meta-models rely deploy the contents of the LMU in a customised manner.
special support from the runtime API (e.g. the architecture
meta-model needs to be informed every time a componentGs Example: Event Notification
created or destroyed); we have glossed over these details iffg show how CFs can work together we now describe how
this short paper. an Event Notification service may be implemented, deployed
As a more detailed example, we now describe a meta-modeld adapted in our system (see Figure 3).
that can be used to manage system reconfigurationdis-a  The key component is afEvent Notificationcomponent
tributed environment. A high level view of this reconfigurationthat is encapsulated within the Interaction Services CF. This
meta-model, which is based on [4], is given in Figure 2. Thexposes application interfaces to publish events and to sub-
meta-model is based on principlesaaide mobilityf5] and can scribe to classes of relevant events. It also has receptacles
be used to dynamically transfer code, state and data betwésnan appropriate network service (provided by the Network
RUNES nodes. The meta-model sgmmetric meaning that Services CF) to enable network level communication.
it allows nodes to act both as senders and receivers. Then deployment, the Event Notification component uses
meta-model defines &ogical Mobility Entity (LME), as a the architecture and interface meta-models to discover which
generalisation of code, state, components or datalerefers network services are currently available, and to establish an
to, for example, classes or scripttaterefers to the state of gptimal strategy accordingly. For example, it might bind to a
executing code at a particular instance in time (for exampleontent-based routing component that happens to be present,
the value of variables)componentsefer to the collection of which will directly support the required content-based routing.
code elements and metadata that make up a component; @fgerwise, it might have to directly deal with events and
datarefers to resources that other LMEs may reference (egibscriptions itself, and rely for network communication on
application profiles, files, etc.) a more primitive network service such as generic multi-hop
The meta-model also defines.agical Mobility Unit(LMU)  routing. Or, alternatively, if a flooding-based network service
which is a collection of an arbitrary number of LMEs, ands available, events can be delivered to all nodes in the network
is the basic unit of deployment. As such, an LMU caand the Event Notification component itself can be responsible
contain anything from an individual class, to a collectiofor performing the matching against its own subscriptions.
of components. LMUs are described using a collection of The architecture and interface meta-models might also be
<key, value- attributes similar to those associated with thased to check whether a clustering component is available in
RUNES component model entities, and are transfered ae Coordination Services CF and, if so, to investigate which
deployed by so-calledeployers These are responsible forinterfaces it provides (e.g. it may or may not offer location-
sending and receiving requests, and for packing, serialisifigsed aggregation, depending on whether the host is equipped
transferring and deploying LMUs. LMUs do not necessarilwith a GPS-sensor). Given this information, the Event No-
have to be requested by their intended recipients; they dification component may refine its application interfaces by
be imposed on the recipient by a controlling third partgnabling the application to specify a subscription scope or a
LMUs comprehend bottphysical and logical destinations. desired form of event aggregation.
The physical destination is the address of the recipient nodeFinally, in the operational phase, dynamic aspects of the



architecture come into play. For example, the interceptiamant to implement the runtime APl on top of the Contiki
meta-model might be used to detect a change in context fr@$ [15] on sensor motes and thereby validate that the approach
an ad-hoc networking environment to an infrastructure-basesdviable even in extremely resource-constrained environments.
environment. On this basis, the Event Notification componefnhen we want to use the approach to develop application level
might decide to use the architecture or reconfiguration mefanctionality in terms of a emergency fire-fighting scenario
model to switch to a new and more appropriate netwotkat we have developed which employs at least three types
service. of device: sensor motes, mobile PDAs and central control
computers on the fixed network.
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In our future work, we want to investigate the practicality

of our approach in a range of environments. In particular, we



