1612.07896v1 [cs.Al] 23 Dec 2016

arxXiv

A Base Camp for Scaling Al

C.J.C. Buraegs, T. HART, Z. YANG,*
S. CucerzaN, RW. WHITE, A. PASTUSIAK, |J. LEWIs

Microsoft Research

December 21st, 2016

Abstract

Modern statistical machine learning (SML) methods share a major limitation with the early
approaches to Al: there is no scalable way to adapt them to new domains. Human learning
solves this in part by leveraging a rich, shared, updateable world model. Such scalability
requires modularity: updating part of the world model should not impact unrelated parts.
We have argued that such modularity will require both “correctability” (so that errors can be
corrected without introducing new errors) and “interpretability” (so that we can understand
what components need correcting).

To achieve this, one could attempt to adapt state of the art SML systems to be interpretable and
correctable; or one could see how far the simplest possible interpretable, correctable learning
methods can take us, and try to control the limitations of SML methods by applying them only
where needed. Here we focus on the latter approach and we investigate two main ideas: “Teacher
Assisted Learning”, which leverages crowd sourcing to learn language; and “Factored Dialog
Learning”, which factors the process of application development into roles where the language
competencies needed are isolated, enabling non-experts to quickly create new applications.

We test these ideas in an “Automated Personal Assistant” (APA) setting, with two scenarios: that
of detecting user intent from a user-APA dialog; and that of creating a class of event reminder
applications, where a non-expert “teacher” can then create specific apps. For the intent detection
task, we use a dataset of a thousand labeled utterances from user dialogs with Cortana, and we
show that our approach matches state of the art SML methods, but in addition provides full
transparency: the whole (editable) model can be summarized on one human-readable page. For
the reminder app task, we ran small user studies to verify the efficacy of the approach.

*Currently at Carnegie Mellon University. This work was done while Yang was an intern at MSR.

A Base Camp for Scaling Al

CONTENTS

1 Introduction and Related Work

1.1 Teacher Assisted Learning
1.2 PFactored Dialog Learning
1.3 Predicates, Templates, and TAL and FDL compared

2 Teacher Assisted Learning

21 Design e
211 Templates
212 Predicates
213 TextPreprocessing
214 The Parsed Components List
2.1.5 The Template Matching Process
2.1.6 The TAL Training Process
2.1.7 Editing the TALModel
218 Testing TAL
2.2 Experiments: Learning Curves
221 Data
222 TAL and LUIS: Learning Curve Experiments
2.3 Experiments: Full Training
23.1 LUISBaselineResults
232 TALResults
233 Comparison
234 The Complete TAL Intent Detection Classifier

3 Factored Dialog Learning

3.1 The Ask-How-To-Say Dialog Structure
3.2 The Train-Predicate Dialog Structure
3.3 Overview of the Module Specification Language
33.1 ScriptBlocks
332 The“Turn”indetail
3.3.3 Other Turn Typesinthe MSL
3.4 Case Study: Adapting the Event Reminder Module
3.4.1 Teacher Task Description
342 Teacher TaskResults
3.43 Teacher Task Summary

A Base Camp for Scaling Al

344 User Task Description B2

345 UserTaskResults B3

34.6 User Task Summary B3

4 Discussion B3]
5 Some Ideas for Future Work 34
5.1 Wake Phase Error Correction B34
5.2 Dream Phase Error Correction B34
52.1 Template Error Correction Using Unlabeled Data B4

522 Template Unification 35l

53 Extensibility 36)
531 Multiple Languages« oot Bd

532 TAL'sWorld Model Bd

5.3.3 Extending to Large Numbers of Templates and Predicates B2

534 Extendingthe MSL B7

54 Other Benefits of Model Transparency B7
5.5 The Machine Comprehension of Language B7

6 Acknowledgements B8]
7 Appendix 1: Specification of the Module Specification Language 39
71 YAML Basics 39
72 Scriptblocks 40]
7.3 Script Parameters 41l
7.3.1 Parameter Names and References 41l

732 Special Parameter Names 42]

733 Parameter Types 43]

7.3.4 Conditional Operations on Parameters 45)

7.3.5 Arithmetic Operations on Parameters 45

74 ScriptHandlers
75 TurnTypes 46)
751 Prompt. [4al

752 ParamValueTurn e 47

753 TrainPredicateTurn L 49

754 TestPredicateTurn. 49

755 NIerationso v v ittt B3l

75.6 SetParamValues. B4

A Base Camp for Scaling Al

757 RemoveParamValues G54

7.5.8 ScriptConditionalActions B3l

759 UserConditionalActions b5

75.10 ParamValueOrConstantTurn Bal

7511 SetConstantValues e 58|

7512 EndIterationAction i i 1]

7513 EndScriptAction L 59

7514 NOACHON o o e B9l

7.6 Finding the Appthe User Wants 59

8 Appendix 2: TAL's American Slang and Abbreviations Map

1. INTRODUCTION AND RELATED WORK

Al has had a long and difficult childhood [4], with nine “AI Winters” of varying degrees commonly
identified [31]]. A key technical roadblock seems to be the problem of scale, both in terms of tasks
(it is much easier to build a system that solves one domain-specific task well, than to build one
whose domain can be easily extended to new tasks) and complexity (it is easy to build small
systems, but as they grow, systems can rapidly become unmanageable). This has led to our
reliance on statistical methods, in particular on statistical machine learning (SML), where tasks
are essentially defined by labels on large datasets and by models that are carefully constructed
to solve those tasks. SML has had recent impressive successes [6], and in fact major inroads
have been made into the first three “Al Winters” listed (“the failure of machine translation”, “the
abandonment of connectionism” and “speech understanding research”) [31]. But all statistical
machine learning methods to date share some critical limitations when it comes to scalability:
there is no procedure to make one machine-learned model maximally leverage what another has
learned, on a different task. How can different models that solve different problems be built in
such a way that one can take advantage of the other’s world model, for shared basic concepts
like space, time and number? And how can one system take advantage of the natural language
learning that another has performed - how can we achieve the desideratum: Every teacher benefits
from what any teacher teaches? In the world of SML, “Transfer learning” and its variants have been
proposed to attack this problem. Transfer learning takes the form of models sharing features,
parameters, or data (for a review, see [17]), but the set up is very close to the SML backbone; the
problem is viewed as a mismatch of the data distributions that one’s model sees, rather than the
lack of a shared, fundamental, growable world model.

The key to a scalable world model is modularity. We have argued that modularity in turn requires
correctability [3]. A system is correctable if its errors can be corrected in such a way that its
generalization performance is improved while no (or, controllably few) new errors are introduced.
We have also argued that interpretability, by which we mean the ability of the designer to easily
understand why the system makes the assertions it does, is a desirable stepping stone towards
correctability, although perhaps not a necessary one.

The vast majority of current statistical models have complex, unseen, and essentially uncontrollable
decision surfaces that make full correctability and interpretability beyond our reach. (Statistical
models unencumbered by such problems tend to be very small.) In these circumstances the

A Base Camp for Scaling Al

simplest option available for error correction is to add labeled training data and then either
continue training starting from the current model, or re-train. But this is a clumsy tool for a
delicate task: previously correct predictions can become errors, training data is expensive to gather,
and we have little control over whether the new model actually solves the errors in question. One
can certainly take a more nuanced approach to balance robustness with improved generalization:
see for example (Wang et al., 2012) [30] for an interesting application of such ideas to ranking. But
currently, the tide is flowing in the opposite direction. Large neural network models are powerful
but are becoming increasingly complex. Furthermore, it is worrying that deep nets for vision
tasks generate their highest confidence outputs when presented with inputs that to a human looks
like noise [16]; and that almost imperceptible changes can be added to an input image that was
previously classified correctly by a deep neural net, causing that net to make an error (and that the
same changes, found using a sensitivity analysis for one net, can be applied to another, trained
on a subset of the same data, with the same result) [25]. These are striking departures from how
we understand the human visual system to work and would seem to be another barrier to both
interpretability and correctability.

The machine comprehension of text (MCT) presents particularly stark challenges for statistical
methods. An effective automated open domain dialog system will likely require a rich world
model and the ability to perform commonsense reasoning over it [14]. It is possible that purely
statistical methods will be all that is needed (see for example [10] for work on extending LSTM
dialog models to model individual speakers, and [9] for using CNNs and RNNs for dialog
topic tracking). But the performance of machines currently lags far behind that of humans in
comprehending even language familiar to a typical first or second grader. Such a dataset, in
multiple choice format, was presented by [21] and the state of the art results on that data is
approximately 70% accuracy [29, 27], compared to the 100% that humans can easily achieve. A
much larger question answering dataset provided by (Rajpurkar et al., 2016) [20] for MCT paints a
similar picture, with F1 scores achieved by a strong machine learning baseline of 51%, compared
to 87% for humans.

The vast majority of the approaches proposed not just for MCT, but for the general algorithmic
modeling of various aspects of human intelligence, are statistical in nature (for recent work, see, for
example, [11], [26], [18] and [8]). This is a very appealing research strategy for several well-known
reasons. But when it comes to building interpretable and correctable methods, a natural question
arises: how far can we get with methods for which interpretability and correctability are built in
from the ground up, before resorting to statistical machine learning methods? Specifically, can the
problems associated with SML be controlled by carefully compartmentalizing its role in such a
system?

The work in this paper investigates this question. We adopt a machine teaching approach, and
ask specifically: how much progress can be made with an interpretable, correctable, rule-based
system that can be taught using crowd-sourcing? While the end goal is to answer whether such a
system could help address the core scalability issues facing Al today, in this work we are simply
searching for the hard limitations that the simplest possible methods will run into; in particular,
the points at which SML methods become clearly required, if such points exist. We view this
exercise as constructing a base camp for the expedition, and as we will see, the initial results are
surprising: we find that a crowd-sourced rule-based system, with generalization built in using a
taxonomy, can perform as well as a state of the art machine learning system, but correctably and
interpretably, on an MCT task.

Such a bottom-up approach is reminiscent of the early work in Al, perhaps the closest being the
work of (Schank, 1977), where particular scenarios are encapsulated by scripts [23]. The more

A Base Camp for Scaling Al

recent work of (Hixon et al., 2015), in which a knowlege graph is learned from conversational
dialogs, is similar in spirit to ours: there, human knowledge is leveraged more deeply than by
just extracting labels, and an editable ontology is used to aid in representing world knowledge.
However, their focus is very different [7]: they investigate the construction of a knowledge base
to support question answering, given a set of background true/false statements about the world
(in their case, 4th grade science), and they gather user input through dialogs structured around
multiple choice questions. In contrast, our focus is on methods to achieve scalability in general, on
modeling language directly to support this, and on the general development of apps for APAs,
rather than question answering.

Our base camp is built on two foundations: Teacher Assisted Learning (TAL) and Factored Dialog
Learning (FDL), which we now describe. Since FDL uses TAL but not vice versa, we describe TAL

firsfl]

1.1. Teacher Assisted Learning

Traditionally, developing machine learning models has required expertise in machine learning
and programming. However, some recent research has focused on how to help someone who
is a domain expert, but who knows little about machine learning, to quickly build machine
learned models [24, [35]. LUIS [34] provides user-friendly interfaces, available through a web
portal, that allow the user to perform necessary machine learning steps, such as defining labels,
adding examples, and training and evaluating models, in an interactive fashion. LUIS also
provides visualizations that show the prediction performance, and it integrates an active learning
component (“Suggest”) to allow the users to label the “most uncertain” utterances.

However, a non-expert’s knowledge and intuition about the problem domain is a highly valuable
resource that is not fully leveraged by traditional machine learning techniques, beyond asking for
labels. For example, when predicting speaker intent for dialog utterances [28], a non-expert can
not only easily interpret the meaning of each utterance, but can also explain why they believe their
interpretation, why some utterances are ambiguous, when some utterances don’t make sense, and
so forth. Current SML approaches, including the above machine teaching methods, ignore this
extra rich information.

We hypothesize that a learning task can benefit from teachers who are experts in their domain, but
not in machine learning, in the two most important steps of learning: representation learning and
model generalization. The core idea in TAL is to use language-based templates and predicates
which the teacher can tune to solve the problem at hand, using examples from the training set and
other resources for guidance. TAL is by construction interpretable and correctable. In this setting,
we have to address the following fundamental questions:

e TAL shares its objective with traditional machine learning, namely, maximizing general-
ization performance. How can we make maximal use of the Teacher’s language skills and
domain expertise to achieve this?

e How can we build interpretability and correctability into the model from the ground up?

e As we assume the teachers are usually not technical experts, how do we design simple
natural-language-based dialogs between TAL and the teacher during the teaching process,
which will work for any language modeling task, thus taking a step towards addressing the
scale problem described above?

1We also use “TAL” to denote the overall dialog system itself, when the meaning is clear from context.

A Base Camp for Scaling Al

e Could this approach address the core scaling problem facing Al - that is, how can we ensure
that all teachers (or systems) benefit from what any teacher teaches?

Because the representation is interpretable, highly modular, and language-based, the Teacher
can adjust it as desired, giving them much more control over how the system detects meaning
compared to SML approaches. Teaching is an iterative process where, once the teacher has taught
a pattern, TAL can then run it over labeled data, looking for false positives and negatives, which
then guide the teacher to further tune their pattern. This approach thus leverages the deeper
language skills mentioned above, because at any point the teacher can reason why their pattern
fails and take steps to correct it.

The work presented here focuses on the first three items above. The fourth is a very interesting
open problem; some discussion is offered in Section 5|

We present more details on TAL below. In a case study in MCT, where the task is to detect when
the user has the intent to make a purchase, we demonstrate how an English speaker, using a TAL
instance that integrates the WordNet semantic taxonomy [5], can train an intent prediction model
for dialog utterances, correctably and interpretably, and attain results comparable with LUIS [34].

1.2. Factored Dialog Learning

Automated Personal Assistants (APAs) have a long history in Al (see for example [12] [15]) and
modern APAs, such as Siri or Cortana, can perform various useful tasks through conversational
dialogs with users: for example, they can detect when the user wants to make a phone call, or find
an address, or add an item to their calendar, and can then take an appropriate action. However,
scaling APAs to large numbers of different kinds of tasks, and eventually, to having them anticipate
the user’s needs through natural, engaging dialog, is still beyond us. The traditional software
development process [2] is not well suited to this problem. Typically, to support a new task,
designers and developers must first write and review the new design and its requirements, they
must make necessary changes to the implementation (if not start again from scratch), and finally,
the new system must undergo a suite of unit and system wide tests, which may require beta
testing with users. For dialog apps, these changes include redesigning the turn-taking structure of
the dialog and implementing any extra needed underlying logic. Moreover, the language skills
(for both speaking and understanding) of an APA are crucial for a good user experience, from
intent detection to task completion. This process thus usually requires the developers to “teach”
the languages the agent needs for each application, in some form, and to continue training to
understand what the user says even if the domain is fixed.

Here we investigate addressing this scalability issue by leveraging two key ideas: first, by factoring
the development in such a way that the entire language learning part of the problem can be
performed by non-experts; and second, by developing a shared world model that can be re-used
by widely different classes of applications. The goal is to achieve scalability by opening up the
possibility of using crowd sourcing for application development (in addition to using crowd source
for language learning, as above). We call this approach Factored Dialog Learning (FDL).

FDL uses TAL as a language learning component, but it also introduces two additional roles to
those found in the traditional development process: the Teacher and the Designer, each of which
deals with a different aspect of the scalability issue. We define the Teacher as the person who
teaches the APA the language skills required to engage in a user dialog, for a particular application.
We define the Designer as the person who identifies a class of tasks that they want the APA to

A Base Camp for Scaling Al

handle, and who then designs the abstract dialog flow for every application domain within that
class (including user-system dialog shared across all applications in the class).

As opposed to the complex skillset required of the developer in the traditional development
process, here, the Teacher need only be familiar with the application that they want to build,
in addition to being fluent in their native language. The FDL framework requires more of the
Designer (but still far less expertise than that required of a developer): the Designer must learn a
simple, high level scripting language which we call the Module Specification Language (MSL).
The Designer uses the MSL to specify how the Teacher will create an app from the Designer’s class
of applications. Although MSL is a simple scripting language, it does support basic programming
concepts such as loops and conditionals. We will describe the MSL in detail below.

In this paper, in order to contrast the different roles played by FDL and TAL, we choose a
development example where FDL's dependence on TAL is very light: we implement FDL for a
class of Event Reminder applications, and we demonstrate its use to create reminder scheduling
apps for tracking the consumption of medications, visits to the gym, birthdays, and some other
reminder tasks.

FDL factors the language development out of the overall development process and thus can assign
all language development tasks to the Designer and Teacher. However, of course the Developer
still plays a crucial role in the overall process. For example, for the Event Reminder class, there
are seven quantities that the APA must extract from the user, given that the user wants to create a
reminder: two strings (a name for the reminder itself, and any notes to add to the reminder) and
five numbers (the event duration, frequency, group frequency, start time, and end time). These
will be explained more below, but the point here is that the developer must write the code to have
the APA do the appropriate thing once the user is running the app and this data is received (in
this case, the APA would simply add the notated events to the calendar). However, notice that the
APA’s actions triggered by these seven quantities are independent of the particular reminder app
being run. Thus it is the Developer’s (and Designer’s) role to identify classes of applications such
that the APA actions taken for any app in a given class need only be coded once.

Figure [l|summarizes the development process flow diagram of the FDL framework.

1.3. Predicates, Templates, and TAL and FDL compared

The key concept underlying both TAL and FDL is that of a predicate. A predicate can be thought
of as a Boolean function over text where the function has "state’. The state is modeled with a data
structure that contains slots and handler functions. When the predicate fires (i.e. takes the value
"true’), its slots are populated, and its handler functions tell the APA what to do.

Thus for example, a predicate for the concept is collocated with might contain a slot for the set of
entities that are deemed to be collocated, whenever the predicate returns true. No constraints are
imposed on the text: in particular, we do not require the presence of a Verbﬂ

TAL distinguishes two kinds of predicates: Parsed Predicates and Learned Predicates. Parsed
predicates currently form TAL’s world model; they encapsulate notions such as time, space, and
number, and they are currently hardwired. Parsed predicates are thus easily shared across classes
of applications. For example, in building the event reminder class of applications described in
this paper, the developer had to create parsed predicates for time, frequency, period, and duration

2Qur earlier work did, and predicates are associated with verbs in theories of syntax and grammar [32]. However,
queries submitted to intelligent agents often lack verbs but nonetheless convey intent(for example, self-reminders like
Sophie’s piano lesson).

A Base Camp for Scaling Al

DEVELOPER
DESIGNER
T ——
Implement Design Classes
Reusable ..
of Applications
Components

Application
Components Class Spec-
ification

Teach Lan-

TEACHER guage Skills
[—

Personal
Assistant
Application

Y

UsER Use
—

Figure 1: The Factored Dialog Learning (FDL) framework.

- which could then all be used by any other designer in their creation of a different class of
applications. It seems reasonable to allow that the world model, at least at the level of physics
and mathematics, warrants its own special development effort, since physics and mathematics
themselves form such a succinct yet powerful world modeﬂ

Learned predicates, on the other hand, are used to model all other forms of meaning in language.
We thus expect that learned predicates will greatly outnumber parsed predicates as TAL grows.
Learned predicates are not hard-coded but instead are learned entirely using human teachers.
For learned predicates, we divide the problem, and introduce templates, which are used to detect
patterns in language. A learned predicate is declared to be true if and only if its containing
template “fires” (matches a text fragment). Templates are also entirely taught (rather than coded):
they are language-based and they leverage a semantic taxonomy, as well as teacher input, to
achieve generalization. In this study we use WordNet for our semantic taxonomy [5], but teachers
can also both add and remove items from the taxonomy as needed.

Thus, any given template has an associated set of learned predicates, and whenever that template
matches a piece of text, its predicates are declared true for that text. For example, the text “Jesse
ate a sandwich” might fire a “Collocated” predicate, and also a “Consumes” predicate. In addition,
a given predicate can be fired by several different templates: for example, “Jesse ate a sandwich”
and “The sponge absorbed the liquid” might both fire a “One entity consumes another” predicate,

3The only alternative that comes to mind is to try to learn the laws that govern the physical world from labeled
examples. But at its core, SML is for modeling functions that we don’t know how to describe in closed mathematical form,
which is not the case here.

A Base Camp for Scaling Al

even though the templates that fire that predicate are different.

Since learned predicates and their containing templates are all learned from teachers, TAL attacks
the scalability problem by leveraging the expertise of crowd-sourced teachers who need only be
experts in their own native language. By factoring the problem in this way, the pool of available
teachers becomes very large.

In contrast to TAL, FDL’s main task is to factor the language needed for the application develop-
ment process in such a way that one designer can create a script that could be used by hundreds
of teachers, who then in turn create apps to support millions of users. Thus FDL attacks the
scalability problem by further factoring the language modeling problem in such a way that the
available expertise matches each subtask well.

In our Event Reminder class of apps described below, the TAL system relies almost entirely on
parsed predicates, and it had to learn only one extra learned predicate (to allow it to detect when
the user wants to call up the app). (When TAL searches for predicates matching a piece of text, it
always tests both parsed and learned predicates.) However in our study of learning user intent,
TAL relies entirely on learned predicates. We chose to use these two examples with as little overlap
of the predicate types they need as possible, to more clearly test, and contrast, the ideas in each
approach.

2. TEACHER ASSISTED LEARNING

In the following, for succinctness, we replace the phrase “correctable and interpretable”, as defined
above, with “transparent”.

The main design goal for Teacher Assisted Learning (TAL) is that the resulting models be fully
transparent: TAL's behaviour should always be fully and explicitly attributable to the underlying
data and rules (the WordNet taxonomy, our gazetteers, the hardwired lists of tokens (e.g. personal
pronouns)), or to the data and rules input by a Teacher. In earlier versions of the system we
used dependency and consituency tree parsing, semantic role labeling, and other NLP constructs,
using the SPLAT NLP tool from MSR [19] and the Stanford NLP package [13]]. These tools are
the culmination of decades of development effort and it seemed wise to use them rather than
try to reinvent the wheel. But using them revealed four significant drawbacks: they are brittle,
they are slow, they are not transparent, and they solve a harder problem than we need to solve.
The brittleness and lack of transparency are unavoidable consequences of the statistical models
underlying the tools; one could investigate building “shims” around the tools to correct errors,
and then retrain the underlying models when enough data was gathered, but the overhead would
be high, and retraining does not guarantee that the errors are resolved. The speed issues are
harder to address and would likely have proven a show stopper to shipping TAL (imagine having
to compute the parse trees and SRL for the inputs from millions of users, simultaneously). At the
time, we only had a hunch that these systems also solve a harder problem than we really needed
to solve, but this indeed turned out to be the case. In this section, we describe in detail the current
processing that TAL uses.

2.1. Design

Here we extend the high level overview given in the Introduction to give a detailed description of
templates and predicates, and of the process used to train TAL.

10

A Base Camp for Scaling Al

2.1.1 Templates

The template data structure consists of an ordered list of items used for pattern matching, together
with a pointer to a set of predicates. Each item can be roughly thought of as either a string, a
synset, or a set of synsets (detais are given below). For efficiency, templates are indexed by the
first synset occuring in their list (every template must have at least one synset); thus, rather than
scanning all templates over a piece of text to detect patterns, only those templates indexed by
the possible synsets correspoding to the current token in the text are tested for possible matches
with that and subsequent tokens. A template is said to “match” or “fire” if and only if a sequence
of tokens in the text is found that matches that template’s list, in order. During the matching
process, only tokens that could be nouns, verbs, adjectives, adverbs, pronouns, or negation terms,
are considered. If a template fires, then TAL asserts that all of the predicates associated with
that template are true, for that piece of text. As mentioned above, the template/predicate map is
many-to-many: a given predicate can also be pointed at by more than one template.

Each template’s list is of fixed length but different templates can have different length lists. There
is no limit to the possible length of a template’s list, but typically the list has between two and
four elements: see Table 1| for the histogram of the lengths of list for the TAL classifier trained for
this paper (see Section for details).

List Length Number of Lists

2 1
3 8
4 14
5 1

Table 1: Histogram of template list lengths for the TAL classifier trained for this paper.

Concretely, each item in a template’s list can be one of three types: a string; a set of noun
synsets; or a pair, consisting of a single verb synset, together with a simplified form of that
verb’s tense. Currently TAL supports the simple tense types Past, Present or Future, or the catchall
PastOrPresentOrFuture. An element in the template matches a token in the text if one of the
following three conditions holds:

1. The element is a string, and the token is the same string.

2. The element is a single verb synset S with simple tense T, and the token appears as a possible
verb in the taxonomy, such that one of the possible synsets of that verb is a hyponym of S,
and such that that token could also have simple tense TH

3. The element is a set of noun synsets S, and the token appears as a possible noun in the
taxonomy, such that one of the possible synsets of that noun is a hyponym of one or more of
the synsets appearing in S.

We reserve the use of string matching for parts of speech that have a small number of possible
instantiations: currently, TAL only allows question adverbs, as listed in Table 2l Note that if
needed, other specialized parts of speech (e.g. prepositions) could also be used (for example,

“Note that a single token can have several possible simple tenses: for example “cut” is the infinitive/present, past tense,
and past participle of the verb “to cut”.

11

A Base Camp for Scaling Al

“Let’s get Taco Bell” and “Let’s get to Taco Bell” connote different user intents). We decided to make
question adverbs the first such direct match type, to give TAL rudimentary question detection
abilities.

who whoever when whenever what whatever
how however why whyever where wherever

Table 2: Question adverb strings used by TAL for direct matching.

During processing, template matching is not done over the raw text, but over a list of parsed
components. The construction of these is described below. Here we just note that while our
templates currently model nouns, verbs and question adverbs, our parsed components in addition
model adjectives, general adverbs, prepositions, pronouns, and negation. Some of these take
part in the current matching process (see below), while the others were included to facilitate the
extension of the template data structure if desired.

2.1.2 Predicates

As mentioned in the Introduction, TAL distinguished two kinds of predicates: learned predicates,
which a Teacher constructs by interacting with TAL via natural language only, and parsed predicates,
which form the backbone of TAL's world model and which are currently hardwired.

Learned Predicates: The learned predicate data structure consists of the predicate’s name (a string),
the names of its components (a list of strings), a slot for optional notes (also a string), and a
set of handlers for specifying the scripts and actions to be launched when this predicate fires
(which occurs when and only when any template that points to it fires). For example, a predicate
modeling “Entity ingests something” might have component names “Ingester” and “Ingested”. It
is important to note that mapping the text to these component names is straightforward, since
TAL can just ask the Teacher for the mapping once the template has been trained. Thus “It was
eaten by him” would fire a different template than that fired by “He ate it” (recall that templates
take word order into account) and the slots, at run time, would be filled automatically, based
on the mapping specified by the Teacher at train time. This is an important advantage of using
Teachers: we do not have to solve the Semantic Role Labeling problem to compute this mapping.
Table 3| shows the properties of the LearnedPredicate. The last item - LearnedSynsetMap - was
added purely to lower the cognitive load on the Teacher: the chances are good that a synset found
for a word used to train a previous templates for a given predicate, is also the correct synset for
that word, for a different template being trained for that same predicate. (The Teacher always has
the option of choosing a different synset.)

12

A Base Camp for Scaling Al

Name

Description

PredicateName The name of this predicate.

ComponentNames | The mapping between the matching template and the relevant item
of the predicate, such as a value that would be retrieved by an
application that receives notice the predicate has fired.

Notes Additional information about the predicate.

Handlers A set of action names that map to the script that is to be executed to
implement that action when the predicate has fired. See
(Script Handlers) for a detailed description.

LearnedSynsetMap | A mapping from a word to the last synset that was selected for that
word for this predicate. Used to eliminate duplicate questions to the
Teacher during predicate training, and presents a confirmation to
use this previous selection, which the Teacher may override.

Table 3: LearnedPredicate properties.

Parsed Predicates: So far we have written built-in parsed predicates to support notions of time
(for the Event Reminder module described below). A parsed predicate has a name and may have
properties. Table [gives a brief description of the built-in ParsedPredicates currently implemented
by FDL; see table 24]in [section 7.5.4 (TestPredicateTurn) for a detailed description for script usage.

Name Description

Frequency This has properties for the period of time (e.g. “day”), the number of
events per period (which can either be single integer, or a range of
integers, as in “three to four times per day”), and the starting time of
the first occurrence in each period.

SequenceDuration | The duration of the sequence of reminders (how long the reminders
are to remain on the user’s calendar; e.g. the number of recurring
events to place in the user’s calendar).

EventDuration The duration of a single event (e.g. a medication reminder might
specify 5 minutes, while an exercise reminder might use two hours).
StartDate The date the sequence of reminders is to start (e.g. a specific date or

“tomorrow”).

Table 4: TAL's current built-in Parsed Predicates.

Parsed predicates do not use templates; they are fired by (currently built-in) pattern detectors. We
chose to hard-wire several pattern detectors since these patterns are likely to be shared across
many different applications, and since the quantities they represent can be modeled extremely
succinctly by mathematical notions such as time, and the number line. We wrote patterns to model
date, time, duration and frequency. As an example, Table [5|shows the pattern detectors used
to detect frequencies from English text. Each pattern detector is written as an F# active pattern;
we found the F# language to be particularly well-suited for this kind of modeling. Each active
pattern’s name encapsulates one of the possible patterns it captures, to facilitate code readability:
thus for example, the OncePerSecond active pattern models text snippets such as “Once a second”,
“Twice per day” or “Three times every week”. The order of the scans (from top to bottom, in Table [5)

13

A Base Camp for Scaling Al

matters: more complex patterns can contain simpler ones (e.g. the “Hourly” detector should be
scanned over the text only if the “OnceHourly” detector failed to fire).

OncePerSecond
OnceHourly
NtoMTimesHourly
NtoMTimesASecond
OnceEveryNtoMSeconds
NtoMTimesEveryNtoMSeconds
EveryNtoMSeconds
EverySecond
Hourly
NtoMHertz

Table 5: The scan used to detect frquencies in text. Pattern detectors are run in order, from first to last, above.

2.1.3 Text Preprocessing

Since we use no more sophisticated standard NLP processing than lemmatization and basic part
of speech tagging, we can describe the process in full here.

e 11'//

First, the user’s input is broken into sentences. Then, terminators (characters in the set {*.
“?”}) are removed from the end of each sentence, and any leading or trailing space is then removedl
The text is lower-cased, and then any tokens that appear in the Slang Map (see Appendix [8)
are replaced (for example, “wanna” is replaced by “want to”). Apostrophes (“’s” and “”’) are
then removed. Then two mappings corresponding to TAL's internal model of time intervals are
performed: first, strings matching the pattern #-#, where # represent an integer (i.e. dashed
intervals), are mapped to # to #. Then, strings matching the pattern #x/T, where “#” is an integer
and T is one of the hardwired time intervals (e.g. day) (i.e. slashed intervals) are expanded to the
form # times per T. We expect these mappings to be shared across all applications that use TAL's
world model and so they are hardwired. Finally, tokens are mapped to lemmas as follows: we use
two files, one that lists verbs and their declinations, and one that lists nouns and their plurals. If a
token appears as a declination of a verb, and that declination does not appear in the noun list,
then that token is declared to have type verb. Otherwise, we gather all possible parts of speech
for the token. In all cases, tokens are replaced by their lemmas, and for verbs, their declination is
mapped to one of Past, PresentOrFuture, PastPresentOrFuture. Throughout processing, both the
original tokens and their lemmas are kept.

2.1.4 The Parsed Components List

We then construct a parsed components list for the sentence. This amounts to mapping each token,
or compound phrase, to a set of its possible parts of speech (POS); keeping track of negations;
and handling modal verbs. The parts of speech we track are shown in Table[6] We reserve the
"Unkown’ flag to model tokens whose POS does not map to one of those listed. Note that the code
that implements the processing described in this section is language-specific and currently would
have to be rewritten to map TAL to handle new languages, although the amount of code is small.

5Currently TAL only handles single sentence input; if it detects more than one sentence at this point it issues a warning

14

A Base Camp for Scaling Al

Noun
Verb
Adverb
Adjective
Preposition
Personal Pronoun
Non-personal Pronoun
Unknown

Table 6: Tracked parts of speech.

Compound Phrases: In Teach phase, known compound phrases (phrases consisting of two or
more tokens that appear in our extended WordNet taxonomy, for example look for or White House)
are shown to the Teacher for confirmation, and the Teacher can then either confirm, or declare a
found compound phrase as non-compound (for example, get to has three synsets in WordNet, but
none of them have the meaning as in I need to get to the store). Then the Teacher is given the option
of adding any compound phrases that TAL missed (for example, the name of a new video game).
New compound phrases thus formed are then added to the taxonomy. In Test phase, currently,
TAL assumes that any compound phrases it finds are correct (but see Section [5).

Negation: We simply track negation, as the negation of the tracked part of speech immediately
following the negator. It turns out that every part of speech we track can be negated; Table 7| gives
an example for each.

Noun: "No deal!"

Verb: "I did not walk."
Adverb: "I walked, but not quickly."
Adjective: "The paint is not wet."
Preposition: "This is not for me."
PersonalPronoun: "It was not me."
NonPersonalPronoun: "That is not it."

Table 7: Negation examples.

Modal Verbs: We distinguish semi-modal verbs from pure modal ones. A modal is “semi” if it can
be a standalone verb, or a modal verb, such as “have” or “did”. A modal is “pure” if it cannot
occur as a standalone verb. Our list of pure modals is can; could; may; might; must; shall; should; will;
would. We include modals like can and must since although they can occur in their own sentence
(e.g. I can.), they always refer to an action. We also cast modals as past tense, or ‘present or future’
tense, and update the verb’s tense based on its modal, if it has one. Finally we also distinguish
modals with possible noun meanings (can; may; will; might; must).

Processing of modals occurs as follows. As mentioned, negation is detected and attached to the
following POS, and verb tense is detected attached to a following verb. A pure modal that can
also be a noun is declared a noun if it is preceded by a determiner or a possessive pronoun (e.g.
The can is heavy.). Otherwise, pure modals themselves are not kept for further processing. For semi
modals, if they modify a verb, that verb’s tense is kept, and the modal is skipped; if not, they are

and takes only the first.

15

A Base Camp for Scaling Al

kept as ‘stand alone’ verbs (e.g. I have one.).

Finally, all parsed components that could not possibly be a noun, verb, pronoun, or directly
matchable token (which in the current system are restricted to question adverbs) are dropped; the
remaining noun and verb meanings are mapped to sets of possible synsets (in Teach phase, the
Teacher is first asked to identify whether the token is a noun, verb or neither, if it's ambiguous);
and certain pronouns are mapped to special purpose synsets (for example, the pronoun I is
mapped to a synset which derives from the first noun meaning of narrator); and personal pronouns
other than I, you or we are mapped to the synset person.n.01). This was done mainly to make
patterns containing these pronouns more clearly readable.

2.1.5 The Template Matching Process

Template matching to a phrase is straightforward. First, the phrase is mapped to its parsed
component list as above. The template matching is done by an ordered comparison between
the template’s list, and the phrase’s parsed component list. To greatly reduce computational
overhead, templates are stored in a dictionary, where the key is also the first synset occurring
in the template’s list. In order to search for a match at a given position in the text, only those
templates whose key is a hypernym of, or equal to, the synset at the current position in the parsed
component list (allowing for skipping of fixed token patterns such as “where”) are examined. This
is done by constructing all hypernyms for the current token (if it is a possible verb or noun) and
using each as a key.

All positions in the template list must match, for a match to be declared. If the text’s parsed
component list is longer than the template’s list, all subsequence matches are attempted (only one
has to succeed for a match to be declared). If the template item is a fixed token (e.g. “where”),
that token must match exactly. If the template item is a verb synset V'S, together with its tense, the
set of synsets for the corresponding position in the text must contain at least one synset which is a
hyponym of VS, and the tenses must match. Finally, if the template item is a set of noun synsets
SNS, then for a match to occur, at least one member of that set must be a hypernym of (or equal
to) one of the synsets in the set of synsets for the corresponding position in the text. Allowance
is also made for skippable items: parsed components whose POS set contains one or more of
[adjective, adverb, unknown]. For example, if a token’s parsed component POS set contains adjective
and noun, then that token can be skipped in the search for a match (if it itself does not take part in
the match), and the next noun set examined for a match. In “He likes blue cheese”, the token blue,
taken alone, could be a noun or an adjective, so the matching process will both attempt to make it
part of the match, or will skip it if that match fails.

2.1.6 The TAL Training Process

In Train phase, the POS (noun or verb or neither) is confirmed with the Teacher, and the Teacher
is then asked to identify the single best matching synset for each noun or verb thus identified. As
described above, to lighten the cognitive load on the Teacher, TAL “guesses” the correct synset
to use to confirm with the Teacher, based on previous Teacher inputs. Also as mentioned, the
Teacher confirms any compound phrases found by TAL (if the Teacher declines the confirmation,
the phrase is left in non-compound form), and is asked to identify any compound phrases TAL
missed; any such phrases are then added to the taxonomy, with the Teacher’s guidance.

Training can be done either in batch mode (which requires a set of positive and negative labeled
examples), or in free form mode (where the Teacher simply enters example phrases instantiating

16

A Base Camp for Scaling Al

the predicate they wish to teach). We summarize below the iterative steps involved in training a
TAL model, in batch training mode:

1.
2.

10.

11.

12.

13.

14.

A small number of labeled positive and negative phrases are first input for training.

TAL's first task is to elicit from the Teacher the predicate they wish to train. First, all
predicates that match one or more of the positive training examples are listed, and the
Teacher is asked to select one or “Train another predicate”. If the latter is chosen, TAL lists all
the predicates it knows about, along with an option to train a new predicate. If no existing
predicates are found, the Teacher must train a new predicate.

. TAL presents the next positive example to the Teacher, lets them know if the text already

matches the predicate (i.e. matches a template containing the predicate), and asks them
if they wish to train on this example. If there are no more positive examples, training is
complete.

. If Yes, TAL asks them to enter a phrase inspired by the input text, that captures the predicate

being trained. This allows the Teacher to zero in on just that part of the text that should fire
the predicate, and to enter related text that should also fire the predicate, if desired.

. TAL then shows any compound nouns and verbs it found, and asks for confirmation. Any

that are confirmed as incorrect are dissolved back into single token form.

. TAL asks if it missed any compound nouns, and adds them as indicated by the Teacher. For

the rest of the discussion, we will refer to both individual tokens and compound phrases as
“tokens”.

. TAL asks the Teacher for the meaning of any tokens it doesn’t know, and adds the new

definitions to its WordNet ontology. Thus the ontology is grown as needed, and these
additions are shared between Teachers.

. TAL assigns a set of possible parts of speech (POSs) to each token. It only keeps tokens that

are a question adverb, or that could possibly be a noun or verb.

. If the POS set is ambiguous (still contains more than one POS), TAL asks the Teacher if the

token is a noun, verb, or neither.

TAL lists the synsets for each noun or verb and asks the Teacher to pick one. It then lists the
possible generalizations (hypernyms) of that synset and asks the Teacher to generalize by
picking one, if appropriate.

Once a unique set of synsets or strings has been identified, TAL constructs the corresponding

template from them, and adds the predicate to that template.

TAL shows the template to the Teacher and asks them if it looks correct. If they say no, TAL
returns to step [4].

TAL then runs the new template over the negatively labeled training samples. If this results
in any false positives, TAL shows them to the Teacher and asks if they still want to keep the
template. If so, the loop continues from [3] above; else, it continues from [4], but also gives
the Teacher the opportunity to move to the next training sample (i.e. go to step [3]).

After the iterative training process is complete, the Teacher can read and modify the learned
templates file (a text file in YAML format).

17

A Base Camp for Scaling Al

We found the last step - editing the templates file - to be a simple and very useful exercise: note
that this can only be done with such a transparent (correctable and interpretable) system. We also
allowed the Teacher to edit the templates on the fly, as described in the next Section.

Thus the teaching process can result in new synsets (or nodes) being added to, or deleted from,
the taxonomy. Examples of both of these are given in Section [2.3|below.

2.1.7 Editing the TAL Model

After training, TAL's transparency allows us to manually edit the model. This process can be very
efficient, especially when the number of templates is small, compared to adding labeled data and
retraining an SML model. We followed the following procedure:

1. We extended each template’s sets of noun synsets, based on noun synsets occuring in
the other templates. Thus, for example, if one template allowed “get.v.01” followed by
“currency.n.01”, and another allowed the same verb synset but was missing a following
“currency.n.01”, we added itﬂ

2. We removed any resulting duplicate templates.

3. Over-generalization is checked. For example, for the intent model trained below, we noticed
during the teaching process that TAL suggested “get.v.01” as a more general version of
“buy.v.01”. We found that replacing the latter by the former did indeed improve performance
on the training set, for some templates, but for others, many false positives were generated.

4. We manually checked, using the online version of WordNet [5], that the synsets chosen
previously made sense, again removing any resulting duplicates.

2.1.8 Testing TAL

Test phase for TAL is simpler and involves no Teacher interaction. The text is normalized,
compound phrases are identified using the (possibly extended) WordNet, and all the templates are
matched against the text, using the template matching logic described in section2.1.1] If a template
fires, TAL asserts that all of its associated predicates are true. In the experiments described below,
we had only one predicate; a test example was declared positive if the predicate was true for that
example.

2.2. Experiments: Learning Curves

2.2.1 Data

We generated training and test data from Cortana logs as follows: we searched for user inputs
containing one of more of the strings shown in Table

Note the lack of a space after tokens “ purchas” and “ acquir”, resulting in matches for user
inputs containing these strings as stems. In addition, we adder filters to restrict the user inputs to
either speech or SMS texts; to inputs issued on Windows devices, and to inputs issued to Cortana

6This could all be done during the initial training process, but the instantiation used did allow parallel templates to
develop (templates containing the same verb but different following or preceding noun synsets).

18

A Base Camp for Scaling Al

1" buy 1" £ buying ‘" 1" bought 1"
“ get” “ got “ purchas” “ acquir”

“

Table 8: Strings used to filter user inputs from the Cortana logs.

(as opposed to other Windows services). Running these queries over 18 days of logs from May,
2016 resulted in 15,310 records. Uniquing this data resulted in 12,690 records. We also took the
most recent 200 (distinct) queries in the logs as unbiased background data. We shuffled the 12,690
records and then took the first 800. We then labeled the resulting combined 1000 sentences as
indicating the user’s intent to buy, or not. The remaining 11,890 records were kept for use with
the LUIS active learning experiments. Because some of the sample sets were very small (e.g. the
process only resulted in 14 queries containing “ acquir”), we split each individual dataset in two
(e.g. the “ acquir” positives, and “ acquir” negatives, were each split in two) to create train and
test sets. This resulted in the totals shown in Table

Sample Sizes

Train Test

Positives 78 82
Negatives 417 422

Table 9: Train and Test Sample Sizes

2.2.2 TAL and LUIS: Learning Curve Experiments

As mentioned above, we used the LUIS system [34] as a state of the art machine learning baseline.
LUIS uses a logistic regression model with bag of words features (inverse document frequencies)
and the number of tokens as inputs. LUIS also gives the ability to use domain-specific dictionaries;
we experimented with this but did not find improved performance on this task. Internally, LUIS
performs 10 fold cross validation to choose the optimal model parameters, and then trains on all
the training data, using the found parameter values.

Since constructing the learning curves required training 490 models for LUIS, in order to make the
comparisons both feasible and as fair as possible, for these experiments we used both systems
in maximally automated mode. For LUIS this simply meant that no active learning was used,
while for TAL, we used a simplified version of the full system: the user was not allowed to delete
items from the ontology; they were not given the option of editing the learned templates; and the
templates used were a simplified version where each synset set was constrained to be a singleton.
For TAL, full training (on 495 training samples; see section [2.3| below) resulted in a total of 99
templates (compare this with 24 templates, for the full system below trained on the same data,
when sets of noun synsets were allowed; and 21 templates if verbs are further combined into sets
where possible).

Figure 2] shows the training curves for accuracy, precision and recall on the 504 sample test set as
a function of training set size. For the LUIS experiments, training set sizes were increased by 10

"The sizes in Table E] add up to 999 because one non-English query had slipped though the filters, which we later
decided to drop since the language of the problem domain is English.

19

A Base Camp for Scaling Al

samples from one experiment to the next, starting at 10 samples. For TAL, the data was split into
sets of size 20, 40, 60 and 78 positives.

20

A Base Camp for Scaling Al

e LUIS o TAL

- mHwmmmmmw

Accuracy
o o o
[00 o]
S (2] 0o
——
—e——i
AR
——
———t
e
e
——e—
————
——i
1
1
—e—
e

0.82
0.8
0 50 100 150 200 250 300 350 400 450 500
Number of Training Phrases
e LUIS o TAL
1.2
1 [e e
-
08 }HH}}HHH}HIHHHHHHHHHHH‘-%
S
§ 0.6
a
0.4
0.2
0
0 50 100 150 200 250 300 350 400 450 500
Number of Training Phrases
e LUIS ¢ TAL
0.7

2l i

21

Figure 2: Accuracy, Precision and Recall Training Curves for LUIS and TAL.

A Base Camp for Scaling Al

2.3. Experiments: Full Training

We used the same training data as above.

2.3.1 LUIS Baseline Results

LUIS supports Active Learning (AL) via its ‘Suggest” option. The user can upload a set of unlabeled
samples and then enter Suggest mode. LUIS will present up to 10 of the unlabeled samples that it
decides will most benefit the model to verify, along with its current prediction for them. The user
changes the prediction if necessary, or accepts the current label. After the set of samples is labeled,
LUIS retrains its model, then presents the next set of up to 10 unlabeled samples.

After training LUIS initially from the full 495-sample test set, we ran it on the full test set, then
performed active learning using the 11,890 unlabled samples. We did three runs of active learning,
creating 25 newly labeled samples, and ran it on the test set again. Table [L0|shows these results
along with TAL's scores on the test set.

Note that the LUIS team made significant improvements to its intent prediction classifier after we
had performand the learning-curve experiments above. This resulted in a pre-AL baseline with
significantly higher recall and somewhat less precision than before. Adding active learning to
LUIS increased its precision with no change in recall.

2.3.2 TAL Results

After training on the first 20 sentences, the manual editing process described above resulted in
reducing the number of templates from ten to seven. This template collapse pattern repeated,
until after training on all the data, we arrived at 24 templates. All the templates found for the
fully trained TAL user intent model are shown below, in Table In addition, since the model is
fully transparent, we could also check the other user-entered data, as shown in

We also noticed that the 24 templates could easily be further reduced to 21 if verb synsets are
combined into sets where possible. See Section and Table (13| for details.

2.3.3 Comparison

Compared to LUIS with active learning, TAL is significantly higher in precision and lower in
recall, for a marginal increase in overall accuracy. A natural next step would be to tune LUIS for
the same precision and then measure its recall, and compare again. However, these results alone
demonstrate that comparable performance can be achieved with a fully transparant, succinct, and
editable model. Because of these advantages, we believe that TAL could take advantage of more
training data to increase accuracy arbitrarily (up to the level of label noise).

Experiment Precision Recall Accuracy
LUIS (no AL) 0.800 0.683 0.919
LUIS (with AL) 0.824 0.683 0.925
TAL 0.911 0.622 0.929

Table 10: Comparison of TAL'’s precision and recall to LUIS with and without active learning.

22

A Base Camp for Scaling Al

2.3.4 The Complete TAL Intent Detection Classifier

We present here the entire classifier that TAL learned to detect intent to buy. First, the Teacher
removed a single synset from the WordNet taxonomy. TAL uses a YAML file to track such
removals, and in this case the file contains the single mapping get: get.v.22, meaning that the 22nd
verb synset listed for the token gef is to be removed from the graph. This was done to remove a
loop in WordNet that causes TAL to generalize incorrectlyﬂ

Table [11| shows the Teacher-taught extensions to WordNet, with tokens on the left and their
mappings on the right. The table distinguishes concepts and instances: all mappings not denoted by
the string InstanceOf are concepts. Table [12|shows a noun set referred to by many of the templates,
referred to as SNS (for shared noun set). Finally Table [13| shows the 24 templates used. There,
for example, cost.v.01 denotes the first verb synset listed in WordNet for the token cost; PPF is
shorthand for past, present or future tense, and PF for present or future tense. Recall that the
pronoun “I” is mapped to the special synset tal_narrator_i.n.01, and “you” is mapped to the
special synset tal_audience_you.n.01 (see Section 2.1.T). Finally sets of noun synsets are denoted
by the curly braces. All templates fire the same “intent to buy” predicate, which is therefore not
shown.

It is a striking fact that the entire classifier can be written with complete transparency (with
consequent full interpretability and correctability) in one page.

app application.n.04
até&et company.n.0l
at&t hotspot (InstanceOf) wireless local area network.n.01
best buy shop.n.01
black ops 3 (InstanceOf) computer game.n.01
blu ray videodisk.n.01
cheeseburgers food.n.01
ge portable water dispenser dispenser.n.01
hoverboard plaything.n.01
killer instinct (InstanceOf) computer game.n.01
opal automobile carn.01
sd cards circuit board.n.01
taco bell restaurant.n.01

Table 11: The Teacher-taught extensions to WordNet.

8get.v.22 (purchase) is a hyponym of buy.v.1 (purchase, acquire) which is a hyponym of get.v.1 (acquire); the occurrence
of “get” being a hyponym of “get” prevented the Teacher from using “buy” as a special meaning of “get”.

23

A Base Camp for Scaling Al

artifact.n.01
commercial document.n.01
currency.n.01
dish.n.02
domestic animal.n.01
food.n.01
food.n.02
game.n.03
license.n.01
music.n.01
plant.n.02
precious metal.n.01
software.n.01
vehicle.n.01
wireless local area network.n.01

Table 12: The set of nouns shared by multiple templates, denoted by SNS in Table

cost.v.01 (PPF)
get.v.01 (PF)
“how”
“how”
{tal_narrator_i.n.01}
{tal_narrator_i.n.01}
{tal_narrator_i.n.01}
{tal_narrator_i.n.01}
{tal_narrator_i.n.01}
{tal_narrator_i.n.01}
{tal_narrator_i.n.01}
{place.n.02}
{place.n.02}
{place.n.02}
remind.v.01 (PF)
{tal_audience_you.n.01}
“what”
“what”
“what”
“where”
“where”
“where”
“where”
“where”

4

7

buy.v.01 (PF)
{dish.n.02}
buy.v.01 (PF)
{tal_audience_you.n.01}
achieve.v.01 (PF)
buy.v.01 (PF)
desire.v.01 (PF)
desire.v.01 (PF)
expect.v.01 (PF)
want.v.01 (PF)
refer.v.02 (PF)
{district.n.01}
{district.n.01}
get.v.01 (PF)
{person.n.01}
commend.v.04 (PF)
{SNS}
{SNS}
{prerequisite.n.01}
buy.v.01 (PF)
get.v.01 (PF)
get.v.01 (PF)
{tal_narrator_i.n.01}

{tal_narrator_i.n.01}, {tal_audience_you.n.01}

{SNS}

{SNS}
buy.v.01 (PF)
get.v.01 (PF)

{SNS}
buy.v.01 (PF)
get.v.01 (PF)
get.v.01 (PF)
get.v.01 (PF)
get.v.01 (PF)
buy.v.01 (PF)
{district.n.01}

{SNS}
get.v.01 (PF)
buy.v.01 (PF)
get.v.01 (PF)

{tal_narrator_i.n.01}

buy.v.01 (PF)
{game.n.01}
{SNS}

cook.v.03 (PF)
buy.v.01 (PF)

get.v.01 (PF)

buy.v.01 (PF)

{SNS}
{SNS}

get.v.01 (PF)
{SNS}
{artifact.n.01}

{food.n.02}

{SNS}

{SNS}

Table 13: The templates used by the classifier. Each row, left to right, forms a single template. Note that most are quite general; some
are specific to the training data (e.g. the template with two {district.n.01}’s arose from the sentence Cheapest place in Saint
Louis Missouri to buy X); and some lie in between (e.g. the template with the {game.n.01}, {artifact.n.01} synsets arose
from Where to buy golf shoes? but would also apply to e.g. Where to buy a tennis racquet?

24

A Base Camp for Scaling Al

3. FACTORED DiALOG LEARNING

The language skills required of an APA can be broadly classified as the generation and compre-
hension of languageﬂ To model this, we designed two corresponding dialog structures which we
call Ask-How-To-Say and Train-Predicate.

3.1. The Ask-How-To-Say Dialog Structure

In the FDL framework, the language teaching stage occurs after the Designer has completed their
design for the class of applications and created the corresponding module specification (this will
be covered in the next section). In the language teaching stage the Teacher teaches the system the
language it will need to converse with the User (beyond any language that can be shared across
all apps in the class; that too is specified by the Designer). Throughout the rest of this section we
will use Event Reminders as an example class of applications.

Ask-How-To-Say is a dialog between the system and the Teacher that is intended to develop the
system’s language generation skills. The system asks the Teacher explicitly how to say something
pertaining to a given, general scenario, and it then uses the Teacher’s response later, when
interacting with the User. However, the system is not limited to simply parroting the Teacher’s
phrases. For example, for the Event Reminders class, the system extracts a verb phrase from the
Teacher that it can use throughout its dialog with the User, as in:

ﬂ I need to know how to refer to the type of reminders created by your app. If I tell the user,
"I understand that you'd like me to help remind you when to X", what would be a good phrase
for X? Please be sure that:

1. X starts with a verb (because it is an action, and will be inserted as a verb phrase into
many sentences to request input and confirmation from the user).

2. X refers to the type of reminder rather than a specific instance of the reminder; for example,
"feed the fish”, but not "feed the fish once a day”.

Thus when the Teacher is creating an Events Reminder app for tracking medications, for example,
they might type:

T: take your medications

This verb phrase would then be used by the system in multiple different interactions with the
User.

Another way that the Designer can reduce the cognitive load on the Teacher is by making judicious
use of defaults. Continuing with the meds tracking example, it might go like this:

S: [will ask the user to provide some optional notes for their reminder by saying “What would
you like to name this particular reminder?”. Does that sound good?
T: Yes.

By “the APA comprehends X” we simply mean that the phrase X triggered the desired actions by the APA, and did
not trigger any undesired actions.
OWe use S, T, U to represent the utterances of system, Teacher, and User respectively.

25

A Base Camp for Scaling Al

Then later, when in dialog with the User,

S: What would you like to name this particular reminder?
U: Take aspirin.

This dialog would then trigger the APA to add an event to the User’s calendar labeled “Take
aspirin”.

The Module Specification Language is described below, but we just make the connection to the
MSL here by pointing out that in the MSL YAML file, the above actually appears as follows:

ParamValueTurn:

Confirm: I will ask the user to provide a name for their new reminder by saying
“(ask_event_name)”. (DoesThatSoundGood)

Loopback: (OKEnterSentence)

Param: (ask_event_name)

Type: STRING

Default: What would you like to name this particular reminder?

Figure 3: Example ParamValueTurn that suggests to the Teacher default language to use to ask the User for a name
for their reminder app, and accepts and stores an alternative form if the Teacher so desires.

where the system asks the Teacher whether the default language is acceptable, and if it is not, then
asks them for the sentence that they would like to use instead. This sentence is then stored by the
system in the variable <ask_event_name>. Note that the system can also use its own variables
(like <DoesThatSoundGood>, which in this case translates to the string “Does that sound good?”.
The MSL has several such constructs that are intended to make the Designer’s task easier, and
they are described below.

In User mode, the system gathers the data it needs for the running application by asking the User
questions, using application-specific language. To keep the load on the User as light as possible,
the system at first prompts the User to simply enter the data in free form, and then confirms its
understanding with the User, and queries the User for any missing data. Thus, for example, for
the Prescriptions Reminder app, the User can just directly enter their prescription, and as long as
all the required data is there, TAL can then just confirm, and then populate the User’s calendar.

In order to be able to do this, TAL needs to be able to parse, and to model, fundamental concepts
such as space, time, and number. To this end we use Parsed Predicates, as opposed to Learned
Predicates (see above). Parsed predicates are patterns that are coded by the developer to parse text
and extract key quantities. To make this concrete, we briefly describe the F# structures we use for
the built-in parsed predicates. For example, TAL's code contains a Frequency module that collects
several active patterns; one is called OncePerSecond and models frequencies written in the form
“Once per second”, “Twice per day”, “4 times an hour”, etc. (We adopt the convention that the
active pattern’s name be like one of the patterns it matches, to make the code easier to read). We
call these collections of active patterns, each designed to detect a particular pattern in language,
microgrammars. At run time, all microgrammars are scanned across the text, in a particular order:
it is thus important to keep the active patterns independent or, if one contains another, to call
the more specific version first. For example, in our current code the active pattern Hourly, which

”oou V77

matches “hourly”, “daily”, “annually” etc., is called after the active pattern OnceHourly, which

26

A Base Camp for Scaling Al

v

detects “once hourly”, “twice daily”, etc. However, such dependencies are rare: active patterns can
be similar yet still independent. For example, the active pattern for EverySecond, which matches
“Every day”, “In the morning”, etc., is similar to the more specific pattern EveryNtoMSeconds, which

matches “every 3-4 seconds”, “every 6 to 9 minutes”, etc., but these patterns are independent (i.e.
they will never both be triggered by the same text) and so can be used in the scan in either order.

The parsed predicates scan the microgrammar active patterns over the text to fill their slots. For
example, our built-in parsed predicate for Frequency has two slots, Period (to model the base
frequency, like “weekly”) and NumberOfEventsPerPeriod (to model the “twice” in “twice daily”).

Thus TAL's built-in parsed predicates form a rudimentary world model. The hard-wiring raises
the concern that this would limit scalability. However, the concepts modeled are fundamental, and
can be shared across all apps: we argue that it makes sense to allow limited hardwiring, to take
advantage of the extreme succinctness of basic physical models (imagine learning to count, from
positive and negative examples only, with no underlying model of the number line). We touch on
this issue again in Section

3.2. The Train-Predicate Dialog Structure

While Factored Dialog Learning is centered around factoring the language out of the problem
using built-in parsed predicates, we still need Teacher Assisted Learning to learn any predicates the
app needs that are not covered by the built-ins. In our running example of the Events Reminders,
the only place learned predicates are used is to detect which app the User wants to run. In general,
apps will need more learned predicates: we minimized the dependence on learned predicates
here to simplify our exploration (and exposition) of FDL. So here, we just use TAL to learn when
the User wants to run their app. This will be important in practice, for two reasons: the primary
interface is expected to be speech only; and the number of apps is likely to become larg SO
listing them all is not practical (especially with a speech-only interface).

For example, in the module specification for the event reminder class of apps, the Designer can
introduce a “Train Predicate” dialog:

S: When the user wants to run an app, they will type a phrase that describes what they want to
do, and I will find apps that match that intent. So, you need to teach me how to recognize when
the user wants to run your app, by entering example phrases that the user might type to do
this; for example, “feed the fish” to create a fish-feeding reminder.

I will try to generalize your examples, so that you don’t have to type in too many.

I will use what you tell me to build a "predicate”, which describes the meaning I will look for in
the user’s text.

For each sentence, I will retrieve and display all existing templates that match for your sentence
at one or more Verb positions. This will allow you to merge synsets from your new template
into an existing template, remove synsets from existing templates, or remove existing templates.

Then, the Teacher can type in phrases like

T1: track meds

11 AppBrain estimates that the number of Android apps is currently at the 2.5 million mark{[T].

27

A Base Camp for Scaling Al

T2: take my medications

Note that it is advantageous for the Teacher to zero in on key phrases, since they can be detected
in longer sentences which may also contain irrelevant details. The process is as described above in
lsection 2 (Teacher Assisted Learning): the Teacher will specify the meaning of each noun and verb
according to the ontology, and, for example, the system will generalize “medication” to “drug”, if
the Teacher chooses to. The system then will recognize User input such as

U: tell me when to take my pills

since there exists a synset for “pill” which is a hyponym of “medication”, and since possessive
pronouns are ignored by the template matching process.

3.3. Overview of the Module Specification Language

The MSL (Module Specification Language) is specified in detail in [Appendix 1: Specification of]
[the Module Specification Languagel Here, we give an overview of the main ideas behind the MSL.

In order to extend the APA to support a new application domain, the Designer must create a
module specification script that supports the new class of applicationspzl

3.3.1 Script Blocks

A module specification script consists of four sections, or blocks, listed below. We will describe the
notion of a turn in more detail below, but at a high level, it is a series of system-User interactions
that together aim to acquire a single piece of information from the User, or to deliver a single
piece of information to the User.

Name: A string that defines the name of the module (for example, Event Reminders).

Initialize block: A set of app-independent constants used to streamline the interactions with
the Teacher (and, less commonly, the User).

Teach block: Both the Teach and Use blocks consist of a series of two kinds of turn: predicate
detecting turns, and parameter value turns. At a high level, the Teach block is a turn-taking
structure, where the Designer designs a series of questions intended to leverage the Teacher’s
language skills to teach the application the language comprehension and generation skills
that are to be used in User mode.

Use block: This is a turn-taking structure that obtains and parses free User input in order to create
the actual entity. In the Events Reminder example, a predicate detecting turn is used to parse
free User input describing their reminders, and a series of parameter value turns confirms
the values found or to ask the User to fill in missing values (such as the length of time the
reminders should run for).

12We use the term “module” here to denote the class of applications being considered.

28

A Base Camp for Scaling Al

3.3.2 The “Turn” in detail

The Turn is the key atomic building block in a module specification. Depending on what type
of information is to be gathered or delivered, one of four core turn types are used: Prompt,
ParamValueTurn, TrainPredicateTurn, and TestPredicateTurn.

Prompt: A message that the system will show the Teacher/User.

ParamValueTurn: The system can ask the Teacher/User a question and obtain the answer and/or
confirm with the Teacher/User that some value is correct. Any parameter value thus
obtained can be referenced in the subsequent turns (or in the current turn if it is used after
the value is assigned). Figure [d shows an example that asks for and confirms the start date
for a reminder app.

TrainPredicateTurn: Used to train the templates needed to form a learned predicate detector,
where the Teacher supplies example phrases to train the desired Predicate. The Teacher
types an example phrase that should fire the predicate, and the system engages in dialog with
the Teacher to select the correct parse, synsets, and their generalizations for the identified
terms or compound terms. The system uses this information to create a template which it
associates with the predicate.

TestPredicateTurn: The system displays a Question to prompt the User to provide needed
information: for example, for a medications tracker app in the Event Reminder class, the
User might be prompted to input their prescription. The system them parses the User’s
input to detect matches with both parsed and learned predicates. The components of any
matching predicates (such as frequency, time, and duration) are mapped to the parameters
defined in the PredicateParamMappings field, which can then be referenced in subsequent
turns. Values that are present are used to populate a confirmation question (“You would like
your reminder at 7:00 a.m. Is that correct (Y/N)?”); missing values require the user to enter that
value (“Please tell me what time you would like your reminder”) before confirming it.

ParamValueTurn:

Question: (ask_start_date_language)

Confirm: You would like to start on (start_date). Is that correct?

MistypeFollowup: What date is that? You could enter “today”, “tomorrow”, or a specific
date such as “July 19, 2016”.

Param: start_date

Type: DATE

Figure 4: Example ParamValueTurn that asks for and confirms the start date of a reminder app.

3.3.3 Other Turn Types in the MSL

In addition to the above four core Turn types, the MSL provides composite Turn types that define
iteration and conditional execution, auxiliary Turn types that support these, and Turn types that
explicitly control parameter values. We briefly describe these here; see [Appendix 1: Specification|
[of the Module Specification Language|for complete details.

29

A Base Camp for Scaling Al

SetParamValues: Allows the Designer to set parameter values directly in the script.
RemoveParamValues: For deleting previously assigned parameter values.

ScriptConditionalActions: Equivalent to an if-else-then dialog flow, based on the boolean
value of a condition written in a simple conditional grammar that allows testing whether a
script parameter is set or has an infinite value, comparing numeric values (=, >, >=, etc.),
and parentheses for precedence.

UserConditionalActions: Like ScriptConditionalActions, but the condition is the boolean
result of a question presented to the User. For example, in the Reminder application, if all
necessary slots are filled, the User will be presented with a single sentence to confirm; if No
is returned, then the script presents the series of ParamValueTurns.

ParamValueOrConstantTurn: Like ParamValueTurn, but allows the Teacher to enter a constant
value if so doing is more appropriate for the app they are creating. For example, a Teacher
creating a birthday reminder app would not want to have the app ask the User how often
their reminder should fire.

SetConstantValues: Sets script variables to constant values (such as those set by ParamValueOr-
ConstantTurn) if they were not already set (such as by a TestPredicateTurn).

NIterations: Equivalent to a for-loop.

EndIterationAction: For Nlterations; the equivalent of a break in a for-loop, with a parameter
to specify ending either the innermost or all nested loops (if any).

EndScriptAction: Ends the script, with a parameter indicating success or failure.

NoAction: A no-operation; functions as an empty branch of an “if”.

3.4. Case Study: Adapting the Event Reminder Module

To evaluate the generalizability of the FDL framework, we performed a small (3 participants)
user study to determine whether ordinary English speakers can easily and effectively function as
Teachers, creating reminder applications based in the Event Reminder application class (module).
One Teacher participant and one new participant then operated as Users, testing whether these
applications could be used to easily and intuitively create reminders for their domains.

3.4.1 Teacher Task Description

Using the Event Reminder Module, we assigned the participants to create two reminder applica-
tions: a yearly reminder (such as a birthday) and a regular reminder (such as going to the gym).
We provided an informational document that described both their role as a Teacher (creating an
application that a User will use to create actual reminders) and the general form of the prompts
they would receive and the answers they should supply. Other information was contained in the
prompts themselves, many of which showed examples taken from a prototype Medication Tracker
application.

Subject A had some linguistic background, and created a birthday reminder application with an
early version of the FDL system; feedback from this session was incorporated into a new version.
With this second version, Subject A re-did the birthday reminder application and then created a

30

A Base Camp for Scaling Al

gym reminder application. Subject B, who had no linguistic background, did the gym reminder
application first, then the birthday reminder application. Neither subject had any programming or
application-development experience.

Subject C is a software developer with no significant linguistic background, and used a third
version of FDL that had been modified based upon the feedback from Subjects A and B, creating
first a regular “Call your Friend’ reminder application, and then a Wedding Anniversary reminder
application. Additionally, for Subject C, the “medication tracker” examples in the prompts were
largely replaced with a “feed the fish” imaginary application, and some additional features were
added to the FDL system (these are discussed below in the relevant subsections).

We observed the teachers as they performed the tasks and asked them to provide feedback when
complete. In particular, we asked whether they felt the system was expressive enough to create
the desired application, whether the task was harder or easier than expected, and whether any
parts of the task were particularly difficult, confusing, or easy.

3.4.2 Teacher Task Results

The distinction between the Teacher creating an application vs. a User who will use that application
to create the actual instances (in this case, reminders) is a key focus of FDL. Subject A’s initial
use of the system incorrectly started from the User perspective, for example by using an actual
reminder description ("my father’s birthday") instead of a reminder creation action (e.g. "remember
a birthday") for the application activity ("you would like me to help you remember to ..."). The
documentation and prompts were modified to clarify this distinction and this was not an issue for
Subject A’s subsequent pass. Subject B still exhibited some confusion in this, although much less
than Subject A did initially. Subject C had only minor confusion about this. A detailed tutorial
combined with experience using the app will be sufficient to clarify this important distinction.

Subject A provided additional valuable feedback to streamline and clarify the system between
the first two iterations, in particular in generalizing from the medication reminder examples to a
different reminder topic, clarifying how multiple reminders (delimited by "then") are detected,
clarifying when a response should be "yes/no" vs. a sentence or phrase, improving the flow of
specific and generalized synset selection (including eliminating duplicate selection requests), and
merging or omitting some steps. After this iteration of user feedback and system revisions, the
first-use experience for Subjects B was much more straightforward. Building upon feedback from
Subjects A and B, additional features (discussed below) were added to address specific pain-points,
which led to an improved first-use experience for Subject C.

Subjects A and B found the gym reminder much easier to understand and create, for the following
reasons:

o The gym reminder shares its schedule structure with the example medication reminder; both
are geared towards daily, while the birthday reminder is annual.

e The gym reminder, like the medication reminder, refers to a specific, concrete event; the
birthday reminder is more ambiguous, as it may be for sending an email or card, buying a
gift, planning or attending a party, taking a trip to visit, or simply an indefinite reminder to
"remember the birthday."

e Some questions have only one applicable value in the reminder domain, such as "how often
do you want the reminder sent?” for the birthday reminder. Both subjects suggested that these
should allow the Teacher to set a constant value such as "annually” and not present the
question to the User.

31

A Base Camp for Scaling Al

The FDL system allows the Teacher to provide multiple example sentences for the same Learned
Predicate. For Subjects A and B, FDL required that the Teacher explicitly create a new predicate for
the application, and create a different one when the meaning changed. Neither subject understood
this clearly from the prompts. Subject B, lacking a linguistic background, found the concept of
predicates confusing until more explanation was provided, and also did not initially realize that
the example sentences were to be supplied as the User would enter them. Additionally, Subject B
felt some of the instructions (such as requiring that the phrase referring to the application start
with a verb) were unnecessarily restrictive.

This feedback led us to make the following changes before Subject C’s session:

o The ability to specify constant values was added. Subject C happily used this to specify that
reminders for the Wedding Anniversary would occur once annually, forever.

e Because each application should define a single function or a small set of closely related
functions, the creation and selection of Learned Predicates was removed in favor of a single
predicate per application, reducing complexity for the Teacher.

e Additional explanation was added in the prompts. For example, to address Subject B’s
feeling that requiring a Verb to start the phrase referring to the application was too restrictive,
additional text was added to explain that this is due to how it will be used in subsequent
prompts.

These changes resulted in much less confusion and a more streamlined experience for Subject C.
However, subject C was still puzzled in a couple of areas, such as not knowing the definition of a
compound, and in seeing the name of a script variable. These were subsequently modified for
clarity. Subject C also mentioned that some of the prompts were long enough to be difficult to
read. Moving much of the material from the prompts to a tutorial that includes both a detailed
walk-through of Teaching an application and a parallel demonstration of that application in action
during the Use phase would improve both the first-use and, by reducing clutter, subsequent uses
by the Teacher.

Both subjects felt that the turn-by-turn dialog was helpful in building up the app, and were much
more comfortable with the process at the conclusion of their tasks. However, for the Teacher, a GUI
rather than the command-line interface would reduce clutter (such as when selecting synsets and
generalizations, which can take multiple screens) and could add support for Undo functionality,
which would reduce the need for multiple confirmations.

3.4.3 Teacher Task Summary

While there were some initial mistakes by all subjects, the FDL system’s evolution led to a much
better experience as testing proceeded. All subjects became more comfortable as they developed
experience using the system. With a better tutorial providing a more detailed walk-through of
both Teacher and Use phases and a GUI that reduces screen clutter and supports Undo, we believe
that Teachers who have solid English skills and no programming or application-development
experience will be able to quickly learn how to use the FDL system to create applications, especially
if they have some linguistic background.

3.4.4 User Task Description

Subject A and a new Subject D (who has linguistic and machine-learning experience) used the
Medication Reminder script to create actual reminders to take medication.

32

A Base Camp for Scaling Al

3.4.5 User Task Results

Subject A again went first, and created reminders for each of 10 prescriptions. Having operated
twice previously as a Teacher, Subject A was by now familiar with the goals of the process. There
was some confusion when being asked to specify a single value for a range (for example, “every 4
to 6 hours” must be converted to a single “every N hours” within that range). Here the dialog was
not clear as to the context, and there was no clear error message when it retried on out-of-range
values. There were also some missing recognitions of abbreviations for intervals. Once these were
encountered and understood, the process proceeded quickly, and the last few reminders were
completed easily.

Subject D used the system after Subject A’s feedback was incorporated. Subject D entered only a
single prescription and found the process quite straightforward; the only negative feedback was
that the number of confirmations slowed the process down.

3.4.6 User Task Summary

Both subjects felt the turn-taking process made it easy to provide the necessary information to
create the reminder. Both subjects felt that the confirmations could be streamlined to make the
process flow more smoothly.

4. DI1scuUSSION

In this section, we look back, and assess how things went; in the next, we look ahead, and map
out some possibe routes upward, from our newly established base camp, for developing fully
transparent and scalable approaches to AL

Our main result is that, with the tools we’ve developed, it’s straightforward to build a user-intent
detector that is fully transparent, editable, and succinct, and that performs as well as a state of the
art machine learning approach. Furthermore, the tools themselves do not rely on sophisticated
NLP methods such as semantic role labeling or consituency or dependency parsing; they do not
employ statistical methods at all - yet. Thus not only are the results transparent, so are the tools
used to achieve them. Finally the ideas should apply equally well to detecting other meanings in
text.

However we found that our initial hope, that the Teacher would only need a clear understanding
of the app they wish to build, and of their own native language, was only partially fulfilled; while
it’s certainly possible to so restrict the teacher’s role, we found that allowing them to edit the text
files that contain the templates, and the extensions and deletions in the taxonomy, was very useful.
This requires an extra level of training for the Teachers. But if the hope of just a few designers,
feeding hundreds of teachers, who can then support millions of users, comes to pass, perhaps it’s
not too much to ask a little more of the Teacher role.

A more serious issue is that we made little headway towards our “Every teacher benefits from
what any teacher teaches” North Star. The built-in parsed predicates are shared, and certainly,
teachers can reuse predicate detectors that others have built. But true reusability will likely have
to employ hierarchical structures of predicates. We will discuss some ideas for this in the next
section.

An earlier version of TAL used gazetteers to identify US cities and retailers. We found that we did

33

A Base Camp for Scaling Al

not need these gazeteers, at least for the “intent to buy” detection task. Later versions may need
them. However, compound phrase handling does need to be improved. We found that allowing
both paths (i.e. searching for a match by treating a possibly compound phrase as compound, and
also as non-compound) introduced training errors, as did treating possibly compound phrases
as definitely compound. It seems that to solve this robustly we will need to use context; if the
phrase itself could be a compound noun, check that a noun phrase is a possible part of speech,
given the surrounding tokens; similarly for verbs; and only employ the "try both paths’ trick if the
compoundness is truly ambiguous. Note that this still does not require a full NLP parse of the
text.

Finally the ideas outlined in this paper need to be further checked against more tasks and on other
datasets. Our hope is that the benefits resulting from a fully transparent approach will warrant
such explorations.

5. SoMmek IpEAs FOR FUTURE WORK

For the discussion in this section it is helpful to name two phases of learning that TAL can do:
“wake” phase, in which TAL learns directly from a human, and “dream” phase, in which no
human is involved. In dream phase, for example, TAL could learn either by leveraging large,
unlabeled datasets, or by directly making more sense of what it has already learned.

5.1. Wake Phase Error Correction

We will describe ideas for error correction using large unlabeled datasets below, but we can
also ask the teacher for confirmation of consequences of their choices that thay may not have
anticipated. If the teacher has arrived at a template using labeled data, TAL could run it in real
time over a large unlabeled dataset, show the resulting matches to the teacher, and then allow
them to modify the template accordingly. False positives are thus easy to control. False negatives
pose a harder challenge. For these, perhaps the simplest approach would be to run the unlabeled
data through both TAL and a statistical system such as LUIS, then have the teacher manually
inspect any samples on which the two systems disagree and update the templates as needed.

5.2. Dream Phase Error Correction

5.2.1 Template Error Correction Using Unlabeled Data

Suppose that a teacher has taught TAL an overly general template intended to fire the predicate
“person ingests food”. Suppose that their template is (schematically) as illustrated in Table
where the synsets of the template are in the first column and the corresponding roles defined by
the teacher (i.e. the corresponding predicate’s components) are in the right column. This template
overgeneralizes because, for example, it will fire for the phrase “building eats person”.

One way to leverage a large, offline, unlabeled dataset to check that a template does not overgen-
eralize is as follows. First, run the template over the dataset, making a record of all matches. For
each match, increment a counter in the node in the WordNet-based taxonomy, where the counter is
labeled by its component name in the corresponding predicate (e.g. “ingester”). (Note that a given
token will correspond to multiple nodes since at test time, we don’t know its correct synset.) The
taxonomy hypernym tree (for each component of the predicate) can thus be represented as a heat

34

A Base Camp for Scaling Al

Synset Role
entityn.01 ingester
eat.v.0l act of ingesting
entity.n.01 ingested

Table 14: Synsets and Roles

map. If the template is too general, then the heat map will contain cold spots at, or close to, the
leaves. (The token “building” will rarely occur as an “ingester” in the dataset). This computation
gives us a distribution over the nodes of a subtree of the taxonomy for each predicate component,
where the root of the subtree is that component’s synset. We can extend this reasoning to handle
templates with sets of synsets, but for clarity here we consider components that correspond to a
single synset in the template being tested.

For concreteness consider just the first component, and call its tree T. If some subtree S C T
has nodes that are sufficiently “cold”, one could try to find a subtree S’ C T that maximizes the
number of “hot” nodes and minimizes the number of “cold” nodes. If necessary, one could split
the original template into two or more, such that each has only “hot” nodes, and all “hot” nodes
in T are covered (this fits naturally into our template model that uses sets of noun synsets). This
process is necessarily statistical, since rare phrases do occur (buildings can eat people, in fiction or
metaphors).

An interesting line for future work is to take the brakes off this process and simply ask: given a
large, unlabeled text dataset, how can one choose N templates for which the amount of matching
text is maximized, but such that amount of text for which pairs of templates match is minimized?
If N = 1, presumably a template could be chosen that will cover most, or all, of the data. For
N > 2, templates compete to explain the data. In this way, one might approach the fully offline
learning of templates. How far can one get by using only the taxonomy and large unlabeled
datasets, in this way? Could some predicates arise naturally from the resulting templates? Could
such a set of templates help inform us on how to build a suitable hierarchy of predicates?

5.2.2 Template Unification

Similarly a large unlabeled dataset can be used to identify templates that are essentially the same,
even if their sets of synsets differ, by the similarity of their heat maps. First, two templates that
are candidates for unification could be found by automatically comparing pairs of heat maps.
Those templates might then be unified if a template could be found that maximally agrees with
the combined heat maps of the individual templates. A process like this will likely be needed
to identify similar templates proposed by different teachers, if the automated checking process
used during training (“your input phrase fired this template: combine or add?”) fails. Similar
ideas can be applied to identify when the predicate being trained is likely the same as one already
learned. Note that these ideas are already instantiated, to some extent, in TAL: any phrase input
by a Teacher is tested against all existing predicates, and the Teacher is alerted if there is a match;
similarly, TAL currently allows the unification of parts of templates, if those templates share a
verb synset.

35

A Base Camp for Scaling Al

5.3. Extensibility

5.3.1 Multiple Languages

TAL’s language dependence currently resides in the WordNet taxonomy; a “microgrammars” file
that instantiates the built-in parsed predicates; an “English POS” file that lists parts of speech that
only occur via small numbers of tokens (e.g. pronouns, and question adverbs); the function that
maps text to lemmas and tense, using the Slang Map; the function that maps annotated lemmas
to the "parsed components list’; and two supporting files, of verb declinations and nouns with
their plurals. Clearly the adherence to transparency comes with a development cost when it
comes to adding new languages. WordNet is supported for languages other than English [33]], and
one can certainly envision using other, similar taxonomies. Extending templates and predicates
from one language to another requires more than just having a mapping of synsets available,
since different languages can express the same concept in very different ways. Even so, it may
be possible to use machine translation systems to accomplish this automatically. If one has a
large database of paired phrases for the two languages, then the templates in the new language
could be learned automatically, and its predicates’ component names could be translated similarly.
This idea, combined with a given mapping of synsets from one language to the other, could
also be used to learn the mapping of the predicate components to their corresponding template
components in the new language.

5.3.2 TAL’s World Model

We think of the built-in parsed predicates - e.g. detecting properties of time, space, and number -
as forming the basis of TAL's world model. Currently the structure containing the predicates is
flat, but it’s clear that a hiearchy will be needed: velocity needs the concepts of space and time,
acceleration needs velocity and time, etc. It seems likely that a hierarchy would also be required
to make learned predicates scalable. If one entity is about to eat the other, then the two entities
must be colocated. If two people are married then they must know each other, must have made a
joint commitment, etc.

One way to encode logical relationships is to have a directed graph whose nodes are negatable
predicates (by a negatable predicate, we just mean a predicate with an added negation flag: thus
he is not eating fish would fire the Ingests(person, food) predicate with its Not flag set). If a node is
true only if its children are all true, then we have the logical connectives And and Not, which form
a functionally complete set (a set from which any truth table can be constructed). It may however
be more convenient to explicitly model the Or connective by instead having a directed bigraph
in which nodes are either predicates or connectives, and for which every node has an attached
Boolean variable. For example, if several predicate nodes are connected to an Or node, the latter
is true only if one or more of those predicates is true. Such a graph is one way of implementing
logical inference, and such a hierarchy would also help with the interpretability of the overall
model. One can apply similar ideas to those above, to detect logical relations between predicates
automatically. Thus if a set of templates and predicates is run over a very large dataset, and
predicate A is always found to be true whenever predicate B holds, then the relation B = A could
be added to the graph. It is more likely, however, that a probabilistic way of modeling logic, such
as Markov logic networks [22], would be required.

For scalability, if a new parsed predicate must be added, and it can be defined in terms of existing
parsed predicates (for example, speed or velocity in terms of position and time), ideally one would

36

A Base Camp for Scaling Al

define the new predicate in terms of the others in a script file, without having to write new code.

5.3.3 Extending to Large Numbers of Templates and Predicates

TAL already uses a simple mechanism to limit its search: roughly speaking, only those templates
that are indexed by the token currently being examined are tested for a match for the following
tokens. The search can be further limited by partitioning templates using context. For example,
when TAL is awaiting user input to determine which app to run, it knows it’s in a particular state,
and so it can safely use templates that would overgeneralize in other situations: so for example a
template containing the single verb “exercise” can be used to select a “go to the gym” reminder
app, and not used elsewhere. More generally, TAL can represent its inner state using a finite state
automaton, and have only subsets of templates (and their predicates) available for each state. This
could be extended to its interactions with the user: TAL could model the user’s state using a
Markov chain, where each state again links to a limited set of templates, and only those templates
corresponding to states whose probabiliy exceeds a threshold would be tested for matches.

5.3.4 Extending the MSL

We currently define a number of Turn types in MSL (see [Appendix 1: Specification of the Module]
[Specification Language). These are intended to be generic and flexible enough to accommodate all
the necessary question-answering and control-flow operations needed by a Designer. Supporting
domain-specific Turn types would require a plug-in model for FDL to understand which actions
to take for which questions.

We may consider supporting module reuse through some form of module inheritance, allowing a
module to extend a base module. The base module might include all the required metadata-collecting
operations such as those in the Initialize block, so the the derived modules do not need to repeat
them. This is similar to the superclass constructor execution when constructing subclass instances
in object-oriented programming. Similarly, we might extend the script blocks to allow a base
module to define a set of of Turns that could be “called” by a derived module.

5.4. Other Benefits of Model Transparency

Suppose you have several statistical models that were trained (possibly using different data) for
the same task. How best to combine them? Model averaging often works well. But that’s a hack
and it requires running all the models. With a fully transparent model such as TAL, the models (i.e.
their templates) can be directly combined, resulting in a model with the benefits of all the trained
models but that is both more compact and efficient than using all of the models independently.
This is another way that transparency can contribute to scalability. Multiple Teachers can do their
thing on their own data, training the same predicate (task), and the results can be combined. Being
able to handle the inputs of many teachers is a key requirement for scalability.

5.5. The Machine Comprehension of Language
In [3]]), the following practical definition of the machine comprehension of text was proposed:

A machine comprehends a passage of text if, for any question regarding that text that
can be answered correctly by a majority of native speakers, that machine can provide

37

A Base Camp for Scaling Al

a string which those speakers would agree both answers that question, and does not
contain information irrelevant to that question.

We can recast this in terms of predicates as follows:

A machine comprehends a passage of text if, for every (possibly implicit) assertion
made by the text, as identified by a majority of native speakers, that machine asserts
the corresponding predicate to be true, and it does not assert any other predicates to

be true

Note that some ’false negatives’ are easy to detect automatically: if no predicate fires for a passage,
and if we know that the passage has some meaning that should have been detected (as would
be the case, for example, in parsing a passage for general question answering), then the machine
necessarily does not comprehend that text.

The above definition gives us a way to measure how well a system comprehends a dataset of text
samples. We could first crowd source the labeling, asking workers to write down all assertions
(predicates) made by each sample text, and then determine the overlap between the human
generated predicates, and those predicates declared to be true by the system when run over the
text. Errors introduced during labeling could be controlled by using multiple workers for each
sample, and by asking a further set of workers to verify any outlier claims. We might further test
the system’s world model by distinguishing those predicates that follow directly from the text,
and those that are implied indirectly by it.

This measurement strategy would of course work for any system that makes assertions via
predicates, giant black-box neural nets included. However, as we have argued above, we believe
that the fully transparent, interpretable, correctable, predicate-based approach presented in this
paper at least provides us with a good starting point - a base camp - for further investigations into
scaling Al

6. ACKNOWLEDGEMENTS

We thank Jason Williams, Paul Bennett and Richard Hughes for many valuable discussions and for
their support of this work. We also thank Vishal Thakkar, the Stargate Support team, and Hisami
Suzuki for their help and guidance in our generating the Cortana dataset.

This work is the culmination of several years of explorations. We thank Erin Renshaw for her
steadfast help with the earlier work. We thank John Platt for his vision in supporting big-bet,
long-term research at MSR, which freed us to (repeatedly) fail. We additionally thank Eric Horvitz,
Jeannette Wing and Harry Shum for their leadership and vision in supporting long term research
in general and this work in particular.

13Note that this definition also covers negations.

38

A Base Camp for Scaling Al

7. APPENDIX 1: SPECIFICATION OF THE MODULE SPECIFICATION LANGUAGE

This section provides the detailed specification of the Module Specification Language (MSL) used
by the Designer to create module scripts for FDL. A brief overview was given above in
[(Overview of the Module Specification Language).

7.1. YAML Basics

YAMLFEI is a serialized data representation format that can be edited easily by humans and parsed
by a program. Our module specification language uses Yaml as a representation medium. In this
section, we discuss the elements of YAML that are used in the example Medication Reminder
Module script.

Scalar is the basic data type, which can represent a single value, e.g. a number or a string. Type
inference is automatically done most of the time in Yaml; Table 15| contains some examples.

Value Type
25 integer
“25”7 string

25.0° float

Yes boolean

Table 15: Examples of YAML type inference.

Mapping and sequence are two basic ways to composite scalars. Mapping is similar to the map or
dictionary data structures in most programming languages; values are referenced by unique keys,
and the key/value pairs are unordered. The key and the value are separated by a colon and a space,
for example

name: Tom
age: 15
married: Yes

is a mapping. In Yaml, the indentation really matters; all entries in a mapping must have the same
indentation.

Sequence is similar to the list data structure in most programming languages, which means the
values are ordered and referenced by the index (position in the list). Each entry begins with a
hyphen and a space. For example

- Tom
- Jerry
- Jack

is a list of three entries. Again, indentation matters; the hyphens must have the name indentation.

An empty sequence or map is indicated by:

Yhttp://yaml.org

39

http://yaml.org

A Base Camp for Scaling Al

MyList: []
MyMap: {}
Complex objects can be represented by a combination of mappings and sequences. For example,

a sequence of instances of a data structure containing the fields “name”, “age”, and “married”
would be:

- name: Tom
age: 15
married: Yes

- name: Jerry
age: 14
married: No

- name: Jack
age: 12
married: No

Again, note that the hyphens are indented at the same level, and each hyphen is the start of an
instance of the structure.

By default, YAML concatenates all lines together in a single value. You can use a special sequence
starting with “|” to preserve linebreaks and whitespace; ‘|-" suppresses the final one linebreak.

Question: This becomes

one line, with one space between '"becomes one".
Question: |-

This remains three lines with

1. Item One

2. Item Two

The comment indicator in Yaml is ‘#; anything from this to the end of the line is ignored.

7.2. Script blocks

A module specification script partitions the specification into four sections, or blocks, listed below.
We will describe the notion of a turn in more detail below, but at a high level, it is a series of
system-User interactions that together aim to acquire a single piece of information from the User,
or to deliver a single piece of information to the User.

Name: A string that defines the name of the module (for example, Event Reminders).

Initialize block: A set of app-independent constants used to streamline the interactions with the
Teacher (and in principle with the User, although most variables used in User mode are set in
the Teach block). For example, our Event Reminders module defines the (OKEnterSentence)
string constant to have the value “OK, then please enter the sentence you would like me to use
here.” and it’s used six times in the Teach block. The Initialize block can also be used to
ask the teacher any questions needed to acquire metadata about the application; this data is
then saved using reserved keys.

Teach block: Both the Teach and Use blocks consist of a series of two kinds of turn: predicate
detecting turns, and parameter value turns. At a high level, the Teach block is a turn-taking

40

A Base Camp for Scaling Al

structure, where the Designer designs a series of questions intended to leverage the Teacher’s
language skills to teach the application the language comprehension and generation skills
that are to be used in User mode. Both turn types can also be embedded in conditional
blocks. In the Events Reminder example, a predicate turn is used to elicit from the Teacher
sentences that exemplify the language that the User is likely to input in order to identify
this application from the pool of apps available to the User; this lets the APA know which
app the User wants to run. In the parameter value turns, the Teacher specifies, for example,
the language used to elicit a name for the series of reminders that the User is creating. The
Designer can also elicit from the Teacher any language that is likely to be repeated (as in the
example above); for example, the Designer might want to extract a general verb phrase from
the Teacher, to refer to the type of reminders created by the app (for example, “take your
medications” for a meds reminder app); this verb phrase is then referred to throughout the
remainder of the script (in both Teach and Use blocks).

Use block: This contains a set of sub-blocks named for the action being performed on the instance.
In the Event Reminder module, the only action defined is create, when creating the reminder.
This could be extended with, for example, edit, which reads an existing reminder and
allows the user to edit it. Each Use sub-block is a turn-taking structure that obtains that
parses free user input in order to execute the action on the entity; for the create action,
this is to create the entity. In the Events Reminder example, a TestPredicateTurn parses
free User input describing their reminders and obtains parsed predicates, and a series of
parameter value turns confirms the values found or asks the User to fill in missing values
(such as the length of time the reminders should run for). Thus, for an individual reminder,
ideally a single predicate detecting turn receives a sentence from the User that contains all
the information needed to create the reminder, and the system then confirms the information
in a single turn. If the user chooses to change some of this information, or if some necessary
information is missing, further parameter value turns are run to gather the needed data.

Note that the natural sequential nature of an MLS script means that one can create variables early
in the script that can be used throughout the rest of the script, in all blocks.

7.3. Script Parameters

Values are obtained from the Teacher or User and stored in parameters; parameters also contain
the values to be presented to the user.

7.3.1 Parameter Names and References

"non "o

The parameter should be named using only A-Z, a-z, 0-9, underscore ("_"), or period ("."), and is
case sensitive. There are some special name formats with the underscore that should be reserved
for a specific purpose; seesection 7.3.2 (Special Parameter Names).

In the following discussion and subsections, we occasionally use as an example a parameter
named par.

A parameter value can be referenced in the subsequent turns (or in the current turn if it is used
after the value is assigned) using the syntax ${par}. The process of converting from this name
representation to its value is referred to as expansion. Depending on the context of the parameter

41

A Base Camp for Scaling Al

reference, the parameter value may be converted to the various types (e.g. to string if used in
screen printing).

Parameter names can be built up from other parameters into a composite name. For example,
${frequency.${i}.period} first obtains the value for ${i}, for example 0, and then forms the
name ${frequency.0.period}, which can then be looked up directly. The bracketing ${} is required if
expansion is to be done, and otherwise should not be present. In particular, when a parameter’s
name is to be used rather than its value, expansion should not be done for the entire name, but it
may have to be done for embedded names if the parameter is a composite. This is discussed in
more detail below.

7.3.2 Special Parameter Names

We suggest reserving names that begin with an underscore for parameters with special meaning.
In particular, names using all uppercase letters with two underscores at both the beginning and
end should indicate “external” values, such as the state of the script, parameters that have a special
meaning to FDL, or a value that an application will look for. For example, section
(Finding the App the User Wants) describes how some special parameters are used to find the
application the user wants to run.

Table |16|shows the current set of special names in FDL.

42

A Base Camp for Scaling Al

Name ‘ Meaning

_ NAME__ The name of the application. Another ap-
plication may look for this.

__ IS _EDITING___ Indicates that the script is being edited

rather than being a newly created script.
This means that some parameter values
may already be present, which will let the
script designer present a more relevant
dialog.

_ ACTION_DESCRIPTION__.action_name

__ACTION_DESCRIPTION__ is the base
name for a collection of parameters of
type STRING, one for each action in
the Use block, that is used by FDL
to give the user a friendly descrip-
tion of what this action does. For ex-
ample, __ACTION_DESCRIPTION__.create
provides a description of the create ac-
tion of the Use block, such as “create a
reminder to go to the gym”.

__ACTION_CONFIRMATION__ .action_name

__ACTION_CONFIRMATION__ is the base
name for a collection of parameters of
type STRING, one for each action in
the Use block, that is used by FDL to
ask the user a question to confirm that
this script and action is really what
the user intends to do. For exam-
ple, __ACTION_CONFIRMATION__.create
provides a confirmation question for the
create action of the Use block, such as
“do you want to create a reminder to go to
the gym?”.

_anything

Indicates a parameter intended to hold a
value for “internal” use by a SetParam-
Values Turn, such as reducing duplicate
strings, rather than being obtained from
the user.

Table 16: Special Parameter Names in FDL.

7.3.3 Parameter Types

Table|17|lists the parameter types currently supported by FDL.

43

A Base Camp for Scaling Al

Name

| Type

‘ Description

STRING

StringValue

The user’s answer is saved as it is without further
language understanding or information extraction.

NUMBER

NumberValue

Extracts a number expression from the user’s input
and saves it as a float value. It supports digit ex-
pressions in English format (e.g. "3.14") or English
cardinals (e.g. "thirty five") for integers only. If the
user’s input starts with "i don’t know" or is "forever”,
the infinity value is assighed. NUMBERs can be
compared to other NUMBERs or to INFINITY; see
jsection 7.3.4 (Conditional Operations on Parameters).

none

NumberValueRange

A NUMBER range such as "2-3". This is created by a
User entering a string during a TestPredicateTurn;
script turns require a single value.

DATE

DateValue

Extracts a Date from the user’s input. This supports
a).NET DateTime.Parse|compatible strings (e.g. "July
21, 2016"), b) special days (e.g. "today", "tomorrow",
"now"), c) days of the week (e.g. "Tuesday"), d) the
day of the next week as in "next Tuesday".

TIME

TimeValue

Extracts a Time from the user’s input. This sup-
ports a) .NET Datelime.Parse compatible strings
(e.g. "8AM"), b) time expressed using English words
(e.g. "three thirty five"), ¢) offset by 12 hours if "pm",

non

"p-m.", "evening", or "afternoon" is present.

INTERVAL

none

IntervalValue

IntervalValueRange

Extracts a time interval from the user’s input. The
supported units include "second", "minute", "hour",
"day", "week", "month" and "year" , and the value
can be either digits (e.g. "3 years") or English words
(e.g. "three years"). We also support "half" (e.g. "one
year and a half"). All interval expressions are stored
as a .NET TimeSpan| object. The number of "months"
and "years" is converted to "days" depending on the
current month and year, i.e. "one month" can be
converted to "28 days" to "31 days". It also supports
an "i don’t know" or "forever" answer from the user,
in which case TimeSpan.MaxValue is used. INTER-
VALSs can be compared to INFINITY; see
[(Conditional Operations on Parameters).

An INTERVAL range such as "2-3 hours". This
is created by a User entering a string during a
TestPredicateTurn; script turns require a single
value.

YESNO

YesNoValue

If you expect the user to answer with either "yes" or
"no", then you could use this parameter type.

NOMINAL

StringValue

If you have a list of all valid answer strings, you
could specify the parameter type ‘'NOMINAL’ and
list the valid strings of the answer.

44

Table 17: Parameter types.

https://msdn.microsoft.com/en-us/library/2h3syy57.aspx
https://msdn.microsoft.com/en-us/library/2h3syy57.aspx
https://msdn.microsoft.com/en-us/library/system.timespan.aspx
https://msdn.microsoft.com/en-us/library/system.timespan.maxvalue.aspx

A Base Camp for Scaling Al

Here is an example of defining a parameter’s name and type, for example in a SetParamValues
or ParamValueTurn:

Param: person_name
Type: STRING

To define a parameter of NOMINAL type, specify the values as a mapping, which should start on
a new line with extra indentation, e.g.:

Param: fruit_category

Type:
NOMINAL: [apple, orange, pear]

7.34 Conditional Operations on Parameters

FDL supports conditional comparisons to provide if-then-else logic for selecting which Turns to
execute. Table[18|lists the conditional operations currently supported by FDL; these are the ones
that were useful in developing the Medication Reminder module, and more may be added in the
future. These comparisons are done in a ScriptConditional Actions Turn.

Operation Supported On Description

= <>, >, <, >, <= NUMBER Boolean result of the comparison.

IS [NOT] INFINITY | NUMBER, INTERVAL | Boolean result indicating whether the
named parameter’s value is or is not in-
finity. If the parameter is not set, an ex-
ception is thrown; check with IS SET first.
IS [NOT] SET all Boolean result indicating whether the
named parameter has or has not been
assigned a value. If the parameter has
been removed by a RemoveParameterVal-
ues Turn, it IS NOT SET.

IS [NOT] NUMBER | all Boolean result indicating whether the
named parameter is or is not a NUM-
BER.

IS [NOT] INTERVAL | all Boolean result indicating whether the
named parameter is or is not an INTER-
VAL.

Table 18: Conditional operations supported on parameters.

Comparisons may be combined with AND and OR (which short-circuit), and parentheses may be
used for precedence.

7.3.5 Arithmetic Operations on Parameters

FDL supports a limited set of binary operations on parameter values; the syntax is similar to
parameter references except that two parameter names (or a parameter name and a value) are

45

A Base Camp for Scaling Al

present in the expression and are separated by an operator. Currently, we support the binary
operators "+" and "-" between a ‘DATE’ and an 'INTERVAL’ parameter, and between a ‘'NUMBER’
parameter and a float value. This is illustrated in Table

Type 1 ‘ Type 2 ‘ Operator ‘ Example

DATE INTERVAL | +,- Assuming a DATE parameter date with value July
21, 2016 and an INTERVAL parameter interval
with value 3 days, then ${date+interval} results
in the DATE value July 24, 2016.

NUMBER | float +,- Assuming a NUMBER parameter i with value 1, then
${i-1} results in the float value 0.

Table 19: Arithmetic operations supported on parameters.

7.4. Script Handlers

A Handler combines a script name with an action name and is the means by which the FDL
system determines which scripts apply to a user’s intended action. For a discussion and example
of how Handlers are used, see section 7.6 (Finding the App the User Wants). Table [20| describes
the Handler properties.

Property ‘ Type ‘ Required ‘ Description

ActionName | string | yes The action to be performed when this predicate fires.

ScriptName | string | yes The name of the script to execute ActionName in when
this predicate fires.

Table 20: Handler properties.

7.5. Turn Types
A Turn in our context is a series of interactions that together aim to acquire a single piece of

information from the user or deliver a single piece of information to the user. This is the atomic
building block of an interactive application.

7.5.1 Prompt

This defines a message that the system will show the Teacher or User. It has no properties; the
value of the Turn itself is the message to be displayed.

Example:

Prompt: Let’s edit your application.

46

A Base Camp for Scaling Al

7.5.2 ParamValueTurn

Presents a question to the Teacher or User and obtains the result value. There are numerous
possible interaction flows, depending upon the presence or absence of the referenced parameter
and properties.

Property ‘ Type ‘ Required ‘ Description

Description string no Provides a description that is shown only
once per execution of the step

Param string yes The name of the parameter being asked for
or confirmed.

Type ParamType | yes The type of the parameter, from
ftion 7.3.3 (Parameter Types).

Default string no A default value to assign to the parameter
if it is not set.

Question string no A question to ask the Teacher or User to
request the parameter value.

Confirm string no A confirmation message to use when the
parameter is set.

Loopback string no If the user does not confirm when asked,
then this is the prompt that is used to repeat
the request for the parameter value. If it is
not present, then the Question property is
used.

MistypeFollowup | string no If the value entered by the user cannot be
parsed into a value of Type, then this is
a custom message to display; if it is not
present, a general message is shown.

Table 21: ParamValueTurn properties.

The FDL system will append “(Y/N)?” to the the Confirm question when it displays it to the
Teacher or User.

Examples:

The simplest ParamValueTurn consists of only Param, Type, and Question properties, where the
system asks the user a question defined in the Question property, converts the answer to the
type specified in the Type property, and assigns the result to the parameter named in the Param
property.
Example:
ParamValueTurn:

Question: Please name the script (e.g. "AMI Medication Tracker").

Param: __NAME__

Type: STRING

If there is a viable default value for the parameter, the script can confirm this value with the

47

A Base Camp for Scaling Al

Teacher or User without asking him or her the initial question. In this case, the ParamValueTurn
would have the Default, Confirm, and Loopback properties. The system first assigns the value
in the Default property to the parameter named in the Param property, and then confirms with
the user using the question in the Confirm property. If the user says "no" to the Confirm question,
then the Loopback question will be asked and the user will be asked to Confirm again. Usually
the Param should be referenced in the Confirm.

Example:
ParamValueTurn:
Default: 3 days
Loopback: Please tell me over what duration you’d like your reminders set?
Confirm: You would like to take medication for ${duration}. Is that correct?
Param: duration
Type: INTERVAL

A single ParamValueTurn can contain both a Question and a Confirm. In this case, the system
first asks the user the Question and saves the value in the Param before Confirming with the user.
If the user denies the confirmation, then user will be asked the the Loopback question if it exists;
otherwise the same Question will be asked again. Either way, the Confirm is asked again and the
process continues.

If you specify a particular type, but the system couldn’t recognize an instance of that type in the
user’s input, then you could also define the MistypeFollowup property to give the user more hints
on what we expect the user to input.

Example:
ParamValueTurn:
Question: When are you going to start taking the medication?
Confirm: You would like to start on ${start_date}. Is that correct?
MistypeFollowup: What date is that? You could enter "today", "tomorrow", or a specific date =
Param: start_date
Type: DATE

Another important feature of ParamValueTurn is that if Param has been initialized in the previous
turns, then the current turn will be skipped, unless the existing value type doesn’t match the required
param type, in which case the system forces the type mapping with the user’s help. For example,
if we define a parameter duration with the type INTERVAL, then the expected value type should
be IntervalValue; if we find the value of this parameter has the value type IntervalValueRange
(seesection 7.3.3 (Parameter Types)), then the system asks the user to select an IntervalValue
from the IntervalValueRange and assigns the updated value to the parameter duration. A
similar dialog occurs if a NUMBER parameter has a value that is a NumberValueRange.

To summarize, the value is assigned to a parameter in the following order:

1 . Existing value assigned in the past, if any;
2 . The expanded Default property of the ParamValueTurn;

3 . The User’s input as response to the Question.

48

A Base Camp for Scaling Al

7.5.3 TrainPredicateTurn

The TrainPredicateTurn leverages the Teacher’s language skills to train the templates needed
to form a LearnedPredicate detector. When the system enters a TrainPredicateTurn it asks the
teacher to type an example phrase that should fire the LearnedPredicate associated with the
application being created. The system then engages in dialog with the Teacher to select the correct
parse, synsets, and their generalizations for the identified terms or compound terms, creates a
template, and associates the predicate with that template. The process of supplying example
sentences continues until the Teacher has no further phrases they wish to use; for example, when
every new phrase the Teacher enters is matched by an existing template.

The TrainPredicateTurn has the following properties:

Property ‘ Type ‘ Required ‘ Description

PredicateName | string | yes Names the LearnedPredicate associated with the
application. The PredicateName property is usually
named for the application, as there is currently only
support for one LearnedPredicate in FDL.

Notes string | no Any additional free-form information associated
with the LearnedPredicate.

Handler struct | yes A structure containing the mapping between action
names and the names of scripts that implement
those actions. See|section 7.4 (Script Handlers)

ActionName string | yes The action to be performed when this predicate
fires.
ScriptName string | yes The name of the script to execute ActionName in

when this predicate fires.

Table 22: TrainPredicateTurn properties.

Example:
- TrainPredicateTurn:
PredicateName: ${event_phrase} # The phrase used to refer to the event
Notes: ""
Handler:

ActionName: "create"
ScriptName: ${__NAME__} # The name of the current script

7.5.4 TestPredicateTurn

The TestPredicateTurn is used in User mode to determine which predicates match input from
the user. The system displays the Question to prompt the User to provide needed information: for
example, for a medications tracker app in the Event Reminder class, the User might be prompted
to input their prescription. The system them parses the User’s input to detect matches with
both parsed and learned predicates. The components of any matching predicates are mapped to
the parameters defined in the PredicateParamMappings field. For example, our built-in parsed
predicates currently identify the frequency, time, event duration, start date, and the duration of

49

A Base Camp for Scaling Al

the reminder sequence (how long the reminder should remain on the calendar). If these predicates
fire due to the user’s input, their slots are then assigned to the corresponding script parameters,
which can then be referenced in subsequent turns; the script can populate a confirmation question
(“You would like your reminder at 7:00 a.m. Is that correct (Y/N)?”) without requiring the user to
first enter that value (“Please tell me what time you would like your reminder”), which must be

done if the slot is not filled.

The TestPredicateTurn has the following properties:

Property

| Type

‘ Required ‘

Description

Question

string

yes

Prompts the user to enter a sentence
describing the event.

Param

string

yes

The name of the parameter that will
store the answer to the Question.

CountParam

string

yes

The name of the parameter that will
store the number of phrases entered
by the user (separated by "then”; see
the discussion in the example).

PredicateParamMappings

struct

yes

A structure containing the names of
the parsed predicates that are ap-
plicable to this application, and for
each, the name of the parameter that
will store the value of that parsed
predicate. See examples below.

PredicateCountParam

NUMBER

yes

The name of the parameter that will
receive the number of parsed predi-
cates found.

Example:

TestPredicateTurn:

Table 23: TestPredicateTurn properties.

Question: Please read me the instructions on your prescription.
Param: description_string

CountParam: count

PredicateParamMappings:
Pred_Freq: frequency
Pred_SequenceDuration: sequence_duration

Pred_EventDuration:
Pred_StartDate:

event_duration
start_date

PredicateCountParam: description_predicate_count

In this example, the user will input a sentence in response to the Question. First, the system
splits the sentence into phrases by splitting on the "then” keyword; this can be extended to other
keywords or syntactic structures. The number of clauses found is stored in the parameter named
by the CountParam property. The system then parses each clause to extract parsed predicates from

it.

50

A Base Camp for Scaling Al

The system creates a set of parameters for each clause, regardless of whether the phrase contained
a parsed predicate or not. For each clause, numbered from 0 to the value in the CountParam
parameter, the system creates a parameter for each parsed predicate, with the ordinal of that
clause appended to the parameter name specified in the TestPredicateTurn. In the above example,
if the user’s sentence contained 3 clauses, the system would create the following parameters
frequency.0, frequency.1, frequency.2, and similar parameters for the other parsed predicates

found in the clause. These parameters are used by a subsequent [NIterations| turn to engage in a
dialog with the User for each clause.

FDL currently supports the built-in parsed predicate types in table

51

A Base Camp for Scaling Al

Name

‘ PropertyName

Description

Pred_Freq
“frequency”

A frequency such as "ev-
ery day", "daily", "twice a
day", "2-3 times a day", etc.
If there is a single value
("twice a day") then an In-
tervalValue is created; oth-
erwise ("2-3 times a day")
an IntervalValueRange is
created, and the User will
be prompted to select a
single value in that range.
Pred_Freq has the follow-
ing three properties.

period
number_of_events_per_period

start_time

The period of the fre-
quency, e.g. daily.

E.g., for "twice daily" this
would be two.

The starting time for each
period; for "daily” this
might be "7 am”.

Pred_SequenceDuration
‘" . 77
sequence_duration

The duration of the entire
sequence; for the Event Re-
minder, this is how long
the reminder should re-
main on the calendar.

Pred_EventDuration
“event_duration”

The duration of a single
event; for the Event Re-
minder, this might be how
long a single appointment
would take.

Pred_StartDate
“start_date’

E.g. for the Event Re-
minder, this is the date of
the first reminder.

Table 24: Built-In Parsed Predicates; the Name column shows, in quotes, the name of the parameter to be given the
predicate value in the Medication Reminder example, and the PropertyName column shows the names the

FDL system assigns to these properties.

Once the TestPredicateTurn is complete, a subsequent series of Turns, usually within an
NIterations Turn, presents confirmation of each parsed predicate that was detected in the
clause, as well as asking for any that were not (and any other values needed). If the User’s
sentence fully specifies all the necessary information (including all required parsed predicates),
then a single confirmation sentence can be presented; in this case it would be necessary to confirm

each individual value only if the User rejects this initial confirmation.

52

A Base Camp for Scaling Al

7.5.5 Nlterations

An NIterations composite turn is similar to a for-loop in most programming languages. It has
the following properties:

The NIterations Turn has the following properties:

Property ‘ Type ‘ Required ‘ Description

IterVar string yes The name of the parameter holding iteration variable
(the "i" in the usual for loop, zero-based).

N string yes The name of the parameter holding the maximum num-
ber of iterations.

Turns Turn list | yes The Turns to be executed on each iteration (the body of
the for-loop).

Table 25: Nlterations properties.

Example:
NIteratioms:
N: 210°
IterVar: i
Turns:
- Prompt: Now ${il}!
is similar to
for (int i = 0; i <= 10; i++) {
printf "Now \%d!" i

To present the iteration number in a more user-friendly way, the system provides a special
parameter ${ordinal} that maps the IterVar value (which is zero-based) to the corresponding
ordinal word (which is one-based). For example, in iteration 0 (i.e. "i = 0"), then ${ordinal} has a
value of "first".

NIterations loops can be nested; the Turns list may contain an inner NIterations turn. In this
case, the ${ordinal} special parameter is scoped to the inner iteration’s IterVar.

It is often possible to set the parameter reference N to a previously assigned NumberValue. For
example, in the prevous example, we define a parameter count as the number of clauses in the
sentence; to iterate over these clauses, the N parameter would be set to ${count}.

Example:
NIterations:
N: ${count}
IterVar: i
Turns:
- Prompt: Let’s confirm the ${ordinal} reminder.
- ParamValueTurn:
Question: Please tell me over what duration you’d like your reminders set.
Param: duration.${i}
Type: INTERVAL

53

A Base Camp for Scaling Al

The NIterations step allows date-sequencing logic. For the first iteration, the frequency start_date
is as set by the user. In subsequent iterations, the start_date is the end date of the previous iteration,
and this can be tracked in a script parameter using the SetParamValues turn.

Example:
SetParamValues:
Param: next_start_date
Type: DATE
Value: ${start_date.${i} + sequence_duration.${i}}

7.5.6 SetParamValues

An SetParamValues turn allows the Designer to set parameter values directly in the script.

The SetParamValues Turn has a list of structures that specify the parameters to be set; each has
the following properties:

Property ‘ Type ‘ Required ‘ Description

Param string yes The name of the parameter that will receive the
value.

Type ParamType | yes The type of the parameter, from [section 7.3.3 (Param{

Value string yes The value to be set, converted to Type.

Table 26: SetParamValues properties.

Example:
SetParamValues:
Param: i
Type: NUMBER
Value: O

7.5.7 RemoveParamValues

An RemoveParamValues turn allows the Designer to remove parameter values directly from the
script.

The RemoveParamValues Turn has a list of the following property:

Property ‘ Type ‘ Required ‘ Description

Param ‘ string ‘ yes ‘ The name of the parameter that will be removed.

Table 27: RemoveParamValues properties.

Example:

54

A Base Camp for Scaling Al

RemoveParamValues:
Param: frequency.${i}.period
Param: i

7.5.8 ScriptConditionalActions

A ScriptConditionalActions is equivalent to an if-else-then dialog flow, based on the boolean
value of a condition written in a simple conditional grammar that allows testing whether a script
parameter is set or has an infinite value, comparing numeric values (=, >, >=, etc.), and parentheses
for precedence.

The ScriptConditionalActions Turn has a list of the following property:

Property ‘ Type ‘ Required ‘ Description

Condition | string yes The condition to evaluate; see [section 7.3.4 (Condi]
tional Operations on Parameters).
IfYesTurns | Turn list | yes The turns to execute if Condition is true; may be a

NoAction] turn.

IfNoTurns | Turn list | yes The turns to execute if Condition is false; may be a

turn,

Table 28: ScriptConditional Actions properties.

Example:

ScriptConditionalActions:
Condition: ${i} > O AND start_date.${i} IS NOT SET AND next_start_date IS SET

IfYesTurns:
- SetParamValues:
- Param: start_date.${i}
Type: DATE
Value: ${next_start_date}
IfNoTurns:
- NoAction

See also [EndlterationAction| and [EndScriptAction]

7.5.9 UserConditionalActions

An UserConditionalActions turn allows the Designer to remove parameter values directly from
the script.

The UserConditionalActions Turn is similar to ScriptConditionalActions, but the condition is
the boolean result of a question presented to the user. For example, in the Reminder application,
if all necessary slots are filled, the user will be presented with a single sentence to confirm; if No
is returned, then the script presents the series of ParamValueTurns.

55

A Base Camp for Scaling Al

Property ‘ Type ‘ Required ‘ Description

Question | string yes The question to ask the user; the user will be allowed
to enter only a yes or no answer.

IfYesTurns | Turn list | yes The turns to execute if the user answers "Yes"; may be
a[NoAction| turn.

IfNoTurns | Turn list | yes The turns to execute if the user answers "No"; may be
a turn.

Table 29: UserConditional Actions properties.

The FDL system will append “(Y/N)?” to the the Question when it displays it to the Teacher or
User.

Example:

UserConditionalActions:
Condition: ${i} > O AND start_date.${i} IS NOT SET AND next_start_date IS SET

IfYesTurns:
- SetParamValues:
- Param: start_date.${i}
Type: DATE
Value: ${next_start_date}
IfNoTurns:
- NoAction

See also [EndIterationAction|and [EndScriptAction|

7.5.10 ParamValueOrConstantTurn

The ParamValueOrConstantTurn is similar to the ParamValueTurn, but also allows the Teacher to
enter a constant value if so doing is more appropriate for the app they are creating. For example,
a Teacher creating a birthday reminder app would not want to have the app ask the user how
often the reminder should fire.

The system will ask the Teacher to select one of three options:

1. Ask the user a question: This will display the question that the user will be asked. If this
option is selected, no confirmation is requested.

2. Ask the user a different question: This will enter into a dialog with the Teacher to specify the
question to be asked.

3. Specify a constant value: This will enter into a dialog with the Teacher to specify the constant
value to be used instead of asking the user a question.

The properties of the ParamValueOrConstantTurn are:

56

A Base Camp for Scaling Al

Property

Type

Required |

Description

Description

string

no

Provides a description that is shown
only once per execution of the step

AskQuestionConfirm

string

yes

The text that will be shown for the first
option above; it presents the question
that the User would be asked.

AskDifferentQuestion

string

yes

The text that will be shown for the sec-
ond option above, allowing the Teacher
to specify a different question.

AskSpecifyConstant

string

yes

The text that will be shown for the third
option above, allowing the Teacher to
specify a constant value.

QuestionLoopback

string

yes

The sentence the system will use to ask
the Teacher to enter the new question
to ask the User.

QuestionConfirm

string

yes

The sentence the system will use to ask
the Teacher to confirm the new ques-
tion to ask the User.

QuestionParam

string

yes

The name of the parameter that will
store the question to ask the User.

QuestionDefault

string

yes

The default question to ask the User.

ConstantLoopback

string

yes

The sentence the system will use to ask
the Teacher to enter the constant value.

ConstantConfirm

string

yes

The sentence the system will use to
ask the Teacher to confirm the constant
value.

ConstantParam

string

yes

The name of the parameter that will
store the constant value.

ParamType

ParamType

yes

The type of the parameter, from [sec
[tion 7.3.3 (Parameter Types).

Table 30: UserConditional Actions properties.

The FDL system will append “(Y/N)?” to the the QuestionConfirm and ConstantConfirm when
it displays them to the Teacher.

Example:

57

A Base Camp for Scaling Al

- ParamValueOrConstantTurn:
Description: I will ask the user how long to keep the reminder in their calendar.
AskQuestionConfirm: I will ask the user: "${ask_sequence_duration_languagel}".
AskDifferentQuestion: Ask the user a different question.
AskSpecifyConstant: Do not ask the User; instead, specify a constant value.
QuestionLoopback: Please enter the new question to ask the user.
QuestionConfirm: You want me to ask the user "${ask_sequence_duration_languagel}".
${_IsThatCorrect}
QuestionParam: ask_sequence_duration_language
QuestionDefault: Please tell me how long to keep the reminder in your calendar.
ConstantLoopback: Please enter the constant value you would like to use here.
ConstantConfirm: You would like to stop the reminders after a constant period of
${constant_sequence_duration}. ${_IsThatCorrect}
ConstantParam: constant_sequence_duration
ParamType: INTERVAL

7.5.11 SetConstantValues

The SetConstantValues Turn sets script variables to constant values (such as those set by
ParamValueOrConstantTurn) if they were not already set (such as by a TestPredicateTurn).

The SetConstantValues Turn has a list of structures that specify the parameters to be set; each
has the following properties:

Property ‘ Type ‘ Required ‘ Description

ConstantParam | string | yes The name of the parameter that contains the con-
stant value.

Param string | yes The name of the parameter to receive the constant
value.

Table 31: SetConstantValues properties.

Example:
- SetConstantValues:
- ConstantParam: constant_sequence_duration
Param: sequence_duration.${i}
- ConstantParam: constant_period
Param: frequency.${i}.period

7.5.12 EndIterationAction

The EndlIterationAction Turn exits an NIterations loop. It contains the following property:

58

A Base Camp for Scaling Al

Property ‘ Type ‘ Required ‘ Description

If true, exits only the innermost iteration; oth-
erwise, exits all loops.

CurrentlterationOnly | bool | yes

Table 32: EndlterationsAction properties.

Example:
- EndIterationAction:
CurrentIterationOnly: true

7.5.13 EndScriptAction

The EndScriptAction Turn exits the script. It contains the following property:

Property ‘ Type ‘ Required ‘ Description

IsSuccess \ bool \ yes \ If true, exits successfully; otherwise exits with an error.

Table 33: EndScriptAction properties.

Example:
- EndScriptAction:
IsSuccess: true

7.5.14 NoAction

The NoAction Turn is a no-op; it is an empty branch in the conditional actions turns and has no

parameters.

7.6. Finding the App the User Wants

When the user wants to use an app to perform an action, the FDL system will ask for a sentence that
describes the action, and will then parse this action and find any matching LearnedPredicates

that have a Handler (see|Script Handlers) for that action. Following are the steps taken by the FDL
system when the user wants to use an app to perform a create action; for example, using the

Medication Reminder app to create a reminder to take medication.

1. The FDL system asks the user to enter a sentence describing the activity to create a reminder
for. It parses this sentence, determines which templates match it, and forms a set of all the
LearnedPredicates that are fired by those templates and have an entry in their Handlers
set for the ActionName create.

(a) If there is only one such LearnedPredicate and it has only one Handler for the create
ActionName, then that app is selected automatically.

59

A Base Camp for Scaling Al

(b) If there is no matching LearnedPredicate, the FDL system presents a list of all available
apps for which one or more LearnedPredicates have a Handler with the create
ActionName. These apps are identified by their scripts’ __ACTION_DESCRIPTION__s.
The user is asked to select an app.

(c) If there is more than one matching LearnedPredicate or one or more matching
LearnedPredicates have more than one Handler with the create ActionName, the
FDL system presents a list of all matching apps, again identified by their scripts’
__ACTION_DESCRIPTION__s. The user is asked to select an app.

When the user selects an app (or if an app is selected automatically because it is the only
matching app), then the FDL system asks the user to confirm the action by presenting the app’s
__ACTION_CONFIRMATION__ question. If the user says “Yes”, then the FDL system loads the script
for that app (as identified by the selected Handler’s ScriptName) and begins the app’s dialog with
the user.

60

A Base Camp for Scaling Al

8. ArrENDIX 2: TAL'S AMERICAN SLANG AND ABBREVIATIONS MAP

During preprocessing, tokens found in the left column in user input data are mapped to the
right (see Section . Teachers can edit this file if they wish: note that here, a teacher added
the mapping “meds” to “medications” for their app (this was not necessary, as otherwise TAL
would ask the teacher what “meds” means the first time the teacher used it, and add it as a new
definition to its taxonomy).

wanna want to gonna going to shoulda should have
coulda could have woulda would have sorta somewhat
kinda somewhat tonite tonight pls please
thx thanks meds medications wont will not
cant can not aren’t are not can’t can not
didn’t did not don’t do not doesn’t does not
hadn’t had not hasn’t has not haven’t have not
he’d he would he’ll he will he’s he is
i'd i would i'll iwill i'm iam
isn’t is not it’d it would it’s it is
it’ll it will i've i have let’s let us
mustn’t must not needn’t need not she’d she would
she’ll she will she’s she is shouldn’t should not
that'd that would that'll that will that’s that is
there’ll there will there’s there is there’ve there have
they’d they would they’ll they will they're they are
they’'ve they have wasn’t was not we'll we will
we’'d we would we're we are we've we have
weren’t were not won't will not wouldn’t would not
you'd you would you'll you will you're you are

you'’ve you have

Table 34: TAL's slang and abbreviations map.

REFERENCES

[1] AppBrain. Number of available apps, 2016. http://www.appbrain.com/stats/
number-of-android-apps.

[2] B.W. Boehm. A spiral model of software development and enhancement. Computer, 21(5):61-
72, 1988.

[3] C.J.C. Burges. Towards the machine comprehension of text: An essay. Technical Report
MSR-TR-2013-125, Microsoft Research, 2013.

[4] D. Crevier. Al: The tumultuous history of the search for artificial intelligence. Basic Books, Inc.,
1993.

[5] C. Fellbaum. WordNet. Wiley Online Library, 1998.

61

http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps

A Base Camp for Scaling Al

[6] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Book in preparation for MIT Press:
http://www.deeplearningbook.org, 2016.

[7] B. Hixon, P. Clark, and H. Hajishirzi. Learning knowledge graphs for question answering
through conversational dialog. In Proceedings of the the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver,
Colorado, USA, 2015.

[8] Z. Hu, X. Ma, Z. Liu, E. Hovy, and E. Xing. Harnessing deep neural networks with logic
rules. In 54th Annual Meeting of the Association for Computational Linguistics, 2016.

[9] S. Kim, R.E. Banchs, and H Li. Exploring convolutional and recurrent neural networks in
sequential labelling for dialogue topic tracking. In 54th Annual Meeting of the Association for
Computational Linguistics, 2016.

[10] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A persona-based neural conversation model.
In 54th Annual Meeting of the Association for Computational Linguistics, 2016.

[11] P. Liang. Learning executable semantic parsers for natural language understanding. Commu-
nications of the ACM, 59, 2016.

[12] Pattie Maes. Agents that reduce work and information overload. Communications of the ACM,
37(7):30-40, 1994.

[13] C.D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S.J. Bethard, and D. McClosky. The Stanford
CoreNLP natural language processing toolkit. In Association for Computational Linguistics
(ACL) System Demonstrations, pages 55-60, 2014.

[14] Erik T Mueller. Commonsense Reasoning. Morgan Kaufmann, 2014.

[15] Karen Myers, Pauline Berry, Jim Blythe, Ken Conley, Melinda Gervasio, Deborah L McGuin-
ness, David Morley, Avi Pfeffer, Martha Pollack, and Milind Tambe. An intelligent personal
assistant for task and time management. Al Magazine, 28(2):47, 2007.

[16] A.Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 427-436. IEEE, 2015.

[17] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345-1359, 2010.

[18] K. Pichotta and R.]. Mooney. Statistical script learning with recurrent neural networks. In
Proceedings of the Workshop on Uphill Battles in Language Processing (UBLP) at EMINLP 2016,
2016.

[19] C. Quirk, P. Choudhury,]. Gao, H. Suzuki, K. Toutanova, M. Gamon, W. Yih, L. Vanderwende,
and C. Cherry. Msr splat, a language analysis toolkit. In Proceedings of the NAACL-HLT 2012:
Demonstration Session, pages 21-24, 2012.

[20] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine
comprehension of text. In Empirical Methods in Natural Language Processing (EMNLP), 2016.

[21] M. Richardson, C.J.C. Burges, and E. Renshaw. Mctest: A challenge dataset for the open-
domain machine comprehension of text. In Empirical Methods in Natural Language Processing
(EMNLP), 2013.

62

http://www.deeplearningbook.org

A Base Camp for Scaling Al

[22] M. Richardson and P. Domingos. Markov logic networks. Machine learning, 62(1-2):107-136,
2006.

[23] Roger C Schank and Robert P Abelson. Scripts, plans, goals, and understanding: An inquiry into
human knowledge structures. Psychology Press, 1977.

[24] P. Simard, D. Chickering, A. Lakshmiratan, D. Charles, L. Bottou, C. Suarez, D. Grangier,
S. Amershi, J. Verwey, and J. Suh. Ice: enabling non-experts to build models interactively for
large-scale lopsided problems. arXiv preprint arXiv:1409.4814, 2014.

[25] C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[26] D.G.R. Tervo, J.B. Tenenbaum, and S.J. Gershman. Toward the neural implememtaion of
structure learning. Current Opinion in Neurobiology, 37, 2016.

[27] A. Trischler, Z. Ye, X. Yuan, J. He, P. Bachman, and K. Suleman. A parallel-hierarchical model
for machine comprehension on sparse data. arXiv preprint arXiv:1603.08884, 2016.

[28] G. Tur and R. De Mori. Spoken language understanding: Systems for extracting semantic information
from speech. John Wiley & Sons, 2011.

[29] H. Wang, M. Bansal, K. Gimpel, and D. McAllester. Machine comprehension with syntax,
frames, and semantics. Volume 2: Short Papers, page 700, 2015.

[30] L. Wang, PN. Bennett, and K. Collins-Thompson. Robust ranking models via risk-sensitive
optimization. In Proceedings of the 35th international ACM SIGIR conference on Research and
development in information retrieval, pages 761-770. ACM, 2012.

[31] Wikipedia. Al Winter, 2016. https://en.wikipedia.org/wiki/AI_winter.

[32] Wikipedia. Predicate (grammar), 2016. https://en.wikipedia.org/wiki/Predicate_
(grammar),

[33] Wikipedia. Wordnet for other languages, 2016. https://en.wikipedia.org/wiki/WordNet#
Other_languages.

[34] J.D. Williams, E. Kamal, H.A. Mokhtar Ashour, J. Miller, and G. Zweig. Fast and easy language
understanding for dialog systems with microsoft language understanding intelligent service

(luis). In 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue, page 159,
2015.

[35] J.D. Williams, N.B. Niraula, P. Dasigi, A. Lakshmiratan, C. Suarez, M. Reddy, and G. Zweig.
Rapidly scaling dialog systems with interactive learning. In Natural Language Dialog Systems
and Intelligent Assistants, pages 1-13. Springer, 2015.

63

https://en.wikipedia.org/wiki/AI_winter
https://en.wikipedia.org/wiki/Predicate_(grammar)
https://en.wikipedia.org/wiki/Predicate_(grammar)
https://en.wikipedia.org/wiki/WordNet#Other_languages
https://en.wikipedia.org/wiki/WordNet#Other_languages

	1 Introduction and Related Work
	1.1 Teacher Assisted Learning
	1.2 Factored Dialog Learning
	1.3 Predicates, Templates, and TAL and FDL compared

	2 Teacher Assisted Learning
	2.1 Design
	2.1.1 Templates
	2.1.2 Predicates
	2.1.3 Text Preprocessing
	2.1.4 The Parsed Components List
	2.1.5 The Template Matching Process
	2.1.6 The TAL Training Process
	2.1.7 Editing the TAL Model
	2.1.8 Testing TAL

	2.2 Experiments: Learning Curves
	2.2.1 Data
	2.2.2 TAL and LUIS: Learning Curve Experiments

	2.3 Experiments: Full Training
	2.3.1 LUIS Baseline Results
	2.3.2 TAL Results
	2.3.3 Comparison
	2.3.4 The Complete TAL Intent Detection Classifier

	3 Factored Dialog Learning
	3.1 The Ask-How-To-Say Dialog Structure
	3.2 The Train-Predicate Dialog Structure
	3.3 Overview of the Module Specification Language
	3.3.1 Script Blocks
	3.3.2 The ``Turn'' in detail
	3.3.3 Other Turn Types in the MSL

	3.4 Case Study: Adapting the Event Reminder Module
	3.4.1 Teacher Task Description
	3.4.2 Teacher Task Results
	3.4.3 Teacher Task Summary
	3.4.4 User Task Description
	3.4.5 User Task Results
	3.4.6 User Task Summary

	4 Discussion
	5 Some Ideas for Future Work
	5.1 Wake Phase Error Correction
	5.2 Dream Phase Error Correction
	5.2.1 Template Error Correction Using Unlabeled Data
	5.2.2 Template Unification

	5.3 Extensibility
	5.3.1 Multiple Languages
	5.3.2 TAL's World Model
	5.3.3 Extending to Large Numbers of Templates and Predicates
	5.3.4 Extending the MSL

	5.4 Other Benefits of Model Transparency
	5.5 The Machine Comprehension of Language

	6 Acknowledgements
	7 Appendix 1: Specification of the Module Specification Language
	7.1 YAML Basics
	7.2 Script blocks
	7.3 Script Parameters
	7.3.1 Parameter Names and References
	7.3.2 Special Parameter Names
	7.3.3 Parameter Types
	7.3.4 Conditional Operations on Parameters
	7.3.5 Arithmetic Operations on Parameters

	7.4 Script Handlers
	7.5 Turn Types
	7.5.1 Prompt
	7.5.2 ParamValueTurn
	7.5.3 TrainPredicateTurn
	7.5.4 TestPredicateTurn
	7.5.5 NIterations
	7.5.6 SetParamValues
	7.5.7 RemoveParamValues
	7.5.8 ScriptConditionalActions
	7.5.9 UserConditionalActions
	7.5.10 ParamValueOrConstantTurn
	7.5.11 SetConstantValues
	7.5.12 EndIterationAction
	7.5.13 EndScriptAction
	7.5.14 NoAction

	7.6 Finding the App the User Wants

	8 Appendix 2: TAL's American Slang and Abbreviations Map

