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Abstract

In this paper, we propose a new data structure for ap-

proximate nearest neighbor search. This structure aug-

ments the neighborhood graph with a bridge graph. We pro-

pose to exploit Cartesian concatenation to produce a large

set of vectors, called bridge vectors, from several small

sets of subvectors. Each bridge vector is connected with

a few reference vectors near to it, forming a bridge graph.

Our approach finds nearest neighbors by simultaneously

traversing the neighborhood graph and the bridge graph

in the best-first strategy. The success of our approach stems

from two factors: the exact nearest neighbor search over a

large number of bridge vectors can be done quickly, and the

reference vectors connected to a bridge (reference) vector

near the query are also likely to be near the query. Experi-

mental results on searching over large scale datasets (SIFT,

GIST and HOG) show that our approach outperforms state-

of-the-art ANN search algorithms in terms of efficiency and

accuracy. The combination of our approach with the IV-

FADC system [18] also shows superior performance over

the BIGANN dataset of 1 billion SIFT features compared

with the best previously published result.

1. Introduction

Nearest neighbor (NN) search is a fundamental prob-

lem in machine learning, information retrieval and compu-

tational geometry. It is also a crucial step in many vision

and graphics problems, such as shape matching [13], ob-

ject retrieval [29], feature matching [8, 35], texture synthe-

sis [23], image completion [16] and so on. Recently, the

nearest neighbor search problem attracts more attentions in

computer vision because of the popularity of large scale and

high-dimensional multimedia data.

The simplest solution to NN search is linear scan, com-

paring each reference vector to the query vector. The search

complexity is linear with respect to both the number of ref-

erence vectors and the data dimensionality. Apparently, it is

too time-consuming and does not scale well in large scale
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and high-dimensional problems. Algorithms, including the

KD tree [3, 5, 6, 12], BD trees [3], cover tree [7], nonlin-

ear embedding [17] and so on, have been proposed to im-

prove the search efficiency. However, for high-dimensional

cases it turns out that such approaches are not much more

efficient than linear scan and cannot satisfy the practical re-

quirement. Therefore, a lot of efforts have been turned to

approximate nearest neighbor (ANN) search. In the follow-

ing, we will review representative ANN search algorithms

and then present the proposed approach.

1.1. Related work

A lot of algorithms have been developed to solve the

ANN search problems. The KD trees [6, 12] have been

modified to find ANNs by using the best-first search

scheme [3, 5]. Various trees, such as BD tress [3], met-

ric trees [9, 24, 26, 46], hierarchical k-means tree [28],

and randomized KD trees [20, 33, 43], have been proposed.

FLANN [27] aims to find the best configuration of the hi-

erarchical k-means trees and randomized KD trees, and has

been shown to work well in practice.

Locality sensitive hashing (LSH) [10] has been shown

to achieve good theory guarantee in finding near neighbors

with probability, but it is reported not as good as KD trees in

practice [27]. Multi-probe LSH [25] adopts the search algo-

rithm similar to priority search, achieving a significant im-

provement. Recently, various hashing algorithms are pro-

posed by learning hash functions using metric learning-like

techniques, including learnt binary reconstruction [21], ker-

nelized LSH [22], and shift kernel hashing [30], spectral

hashing [44], product quantization [18], iterative quantiza-

tion [14], complementary hashing [45] and order preserving

hashing [41].

Recently neighborhood graph search has been attracting

a lot of interests [1, 2, 5, 15, 31, 32, 38] because of its sim-

plicity and good search performance. The data structure is a

directed graph connecting each vector and its nearest neigh-

bors. The basic procedure of neighborhood graph search

starts from one or several seeding vectors, and puts them

into a priority queue with the distance to the query being

the key. Then the process proceeds by popping the top one

in the queue, i.e., the nearest one to the query, and expand-



ing its neighborhood vectors (from neighborhood graph),

among which the vectors that have not been visited are

pushed into the priority queue. This process iterates till a

fixed number of vectors are accessed. Using neighborhood

vectors of a vector as candidates has two advantages. One is

that extracting the candidates is very cheap and only takes

O(1) time. The other is that if one vector is close to the

query, its neighborhood vectors are also likely to be close to

the query. The main research efforts consists of two aspects.

One is to build an effective neighborhood graph [1, 31].

The other is to design efficient and effective ways to guide

the search in the neighborhood graph, including presetting

the seeds created via clustering [31, 32], picking the candi-

dates from KD tress [2], iteratively searching between KD

trees and the neighborhood graph [38]. In this paper, we

present a more effective way, combining the neighborhood

graph with a bridge graph, to search for approximate nearest

neighbors.

The inverted index algorithms are widely used for very

large datasets of vectors (hundreds of million to billions)

due to its small memory cost. Such algorithms usually

load the inverted index (and possibly extra codes) into

the memory and store the raw features in the disk. A

typical inverted index is built by clustering algorithms,

e.g., [4, 18, 28, 34, 39], and is composed of a set of inverted

lists, each of which corresponds to a cluster of reference

vectors. Other inverted indices include hash tables [10], tree

codebooks [6] and complementary tree codebooks [37].

1.2. Our approach

In this paper, we propose a new data structure for approx-

imate nearest neighbor search. This structure augments the

neighborhood graph with a bridge graph that is able to boost

approximate nearest neighbor search performance.

Inspired by the product quantization technology [4, 18],

we adopt Cartesian concatenation (or Cartesian product), to

generate a large set of vectors, which we call bridge vec-

tors, from several small sets of subvectors to approximate

the reference vectors. Each bridge vector is then connected

to a few reference vectors that are near enough to it, form-

ing a bridge graph. Combining the bridge graph with the

neighborhood graph built over reference data vectors yields

an augmented neighborhood graph. The ANN search proce-

dure starts by finding the nearest bridge vector to the query

vector, and discovers the first set of reference vectors con-

nected to such a bridge vector. Then the search simulta-

neously traverses the bridge graph and the neighborhood

graph in the best-first manner using a shared priority queue.

The advantages of adopting the bridge graph lie in two-

fold. First, computing the distances from bridge vectors to

the query is very efficient, for instance, the computation for

1000000 bridge vectors that are formed by 3 sets of 100 sub-

vectors takes almost the same time as that for 100 vectors.

Second, the best bridge vector is most likely to be very close

to true NNs, allowing the ANN search to quickly reach true

NNs through bridge vectors. Note that different from ap-

plications to fast distance computation [18] and code book

construction [4], the goal of Cartesian product in this paper

is to build a bridge to connect the query and the reference

vectors through bridge vectors.

We evaluate the proposed approach by the feature match-

ing performance on SIFT and HOG features, and the per-

formance of searching similar images over tiny images [36]

with GIST features. We show that our approach achieves

significant improvements compared with the state-of-the-art

in terms of accuracy and search time. We also demonstrate

that our approach in combination with the IVFADC sys-

tem [18] outperforms the state-of-the-art over the BIGANN

dataset of 1 billion SIFT vectors [19].

2. Approach

The database X contains N d-dimensional reference

vectors, X = {x1,x2, · · · ,xN}, xi ∈ R
d. Our goal is

to build an index structure using the bridge graph such that,

given a query vector q, its nearest neighbors can be quickly

discovered. In this section, we first describe the index struc-

ture and then show the search algorithm.

2.1. Data structure

Our index structure consists of two components: a bridge

graph that connects bridge vectors and their nearest refer-

ence vectors, and a neighborhood graph that connects each

reference vector to its nearest reference vectors.

Bridge vectors. Cartesian concatenation is an opera-

tion that builds a new set out of a number of given sets.

Given m sets, {S1,S2, · · · ,Sm}, where each set, in our

case, contains a set of di-dimensional subvectors such that∑m

i=1
di = d, the Cartesian concatenation of those sets is

defined as follows,

Y = ×m
i=1

Si , {yj = [yT
j1

y
T
j2

· · · yT
jm

]T |yji ∈ Si}.

Here yj is a d-dimensional vector, and there exist
∏m

i=1
ni

vectors (ni = |Si| is the number of elements in Si) in

the Cartesian concatenation Y . Without loss of generality,

we assume that n1 = n2 = · · · = nm = n for conve-

nience. There is a nice property that identifying the nearest

one from Y to a query only takes O(dn) time rather than

O(dnm), despite that the number of elements in Y is nm.

Inspired by this property, we use the Cartesian concatena-

tionY , called bridge vectors, as bridges to connect the query

vector with the reference vectors.

Computing bridge vectors. We propose to use product

quantization [18], which aims to minimize the distance of

each vector to the nearest concatenated center derived from

subquantizers, to compute bridge vectors. This ensures that



the reference vectors discovered through one bridge vector

are not far away from the query and hence the probability

that those reference vectors are true NNs is high.

It is also expected that the number of reference vectors

that are close enough to at least one bridge vector should be

as large as possible (to make sure that enough good refer-

ence vectors can be discovered merely through bridge vec-

tors) and that the average number of the reference vectors

discovered through each bridge vector should be small (to

make sure that the time cost to access them is low). To this

end, we generate a large amount of bridge vectors. Such a

requirement is similar to [18] for source coding and differ-

ent from [4] for inverted indices.

Augmented neighborhood graph. The augmented neigh-

borhood graph is a combination of the neighborhood graph

Ḡ over the reference database X and the bridge graph B
between the bridge vectors Y and the reference vectors X .

The neighborhood graph Ḡ is a directed graph. Each node

corresponds to a point xi, and is also denoted as xi for con-

venience. Each node xi is connected with a list of nodes

that correspond to its neighbors, denoted byAdj[xi].

The bridge graph B is constructed by connecting each

bridge vector yj in Y to its nearest vectors Adj[yi] in X .

To avoid expensive computation cost, we build the bridge

graph approximately by finding top t (typically 100 in our

experiments) nearest bridge vectors for each reference vec-

tor and then keeping top b nearest (typically 5 in our exper-

iments) reference vectors for each bridge vector, which is

efficient and takes O(Nt(log t+ b)) time.

The bridge graph is different from the inverted multi-

index [4]. In the inverted multi-index, each bridge vector

y contains a list of vectors that are closer to y than all other

bridge vectors, while in our approach each bridge is associ-

ated with a list of vectors that are closer to y than all other

reference data points.

2.2. Query the augmented neighborhood graph

To make the description clear, without loss of general-

ity, we assume there are two sets of n subvectors, S1 =
{y1

1,y
1
2, · · · ,y1

n} and S2 = {y2
1,y

2
2, · · · ,y2

n}. Given a

query q consisting of two subvectors q
1 and q

2, the goal

is to generate a list of T (T ≪ N ) candidate reference

points from X where the true NNs of q are most likely to

lie. This is achieved by traversing the augmented neighbor-

hood graph in a best-first strategy.

We give a brief overview of the ANN search procedure

over a neighborhood graph before describing how to make

use of bridge vectors. The algorithm begins with a set of

(one or several) vectors Ps = {p} that are contained in the

neighborhood graph. It maintains a set of nearest neighbor

candidates (whose neighborhoods have not been expanded),

using a min-priority queue, which we call the main queue,

with the distance to the query as the key. The main queue
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Figure 1. An example illustrating the search process. Y → X :

the bridge graph, and X → X : the neighborhood graph. The

white numbers are the distances to the query. Magenta denotes

the vectors in the main queue, green represents the vector being

popped out from the main queue, and black indicates the vectors

whose neighborhoods have already been expanded.

initially contains the vectors in Ps. The algorithm proceeds

by iteratively expanding the neighborhoods in a best-first

strategy. At each step, the vector p∗ with top priority (the

nearest one to q) is popped from the queue. Then each

neighborhood vector in Adj[p∗] is inserted to the queue if

it is not visited, and at the same time it is added to the result

set (maintained by a max-priority queue with a fixed length

depending on how many nearest neighbors are expected).

To exploit the bridge vectors, we present an extraction-

on-demand strategy, instead of fetching all the bridge vec-

tors to the main queue, which leads to expensive cost in

sorting them and maintaining the main queue. Our strategy

is to maintain the main queue such that it consists of only

one bridge vector if available. To be specific, if the top vec-

tor p∗ in the main queue is a reference vector, the algorithm

proceeds as usual, the same to the above procedure with-

out using bridge vectors. If the top vector is a bridge vector,

we first insert its neighborsAdj[p∗] into the main queue and

the result set, and in addition we find the next nearest bridge

vector (to the query q) and insert it to the main queue. The

pseudo code of the search algorithm is given in Algorithm 1

and an example process is illustrated in Figure 1.

Before traversing the augmented neighborhood graph,

we first process the bridge vectors, and compute the dis-

tances (the square of the Euclidean distance) from q
1 to

the subvectors in S1 and from q
2 to the subvectors in S2,

and then sort the subvectors in the order of increasing dis-

tances, respectively. We denote the sorted subvectors as

{y1

i1
, · · · ,y1

in
} and {y2

j1
, · · · ,y2

jn
}. As the size n of S1

and S2 is typically not large (e.g., 100 in our case), the com-

putation cost is very small (See details in Section 4).

The extraction-on-demand strategy needs to visit the

bridge vector one by one in the order of increasing dis-

tance from q. It is easily shown that dist2(q,y) =
dist2(q1,y1)+dist2(q2,y2), where y is consists of y1 and

y
2. Naturally, yi1,j1 , composed of y1

i1
and y

2

i1
, is the near-

est one to q. The multi-sequence algorithm (correspond-

ing to ExtractNextNearestBridgeVector() in Algorithm 1)

proposed in [4] is able to fast produce a sequence of pairs



Algorithm 1 ANN search over the augmented neighborhood graph

/* q: the query; X : the reference data vectors; Y : the set of bridge

vectors; G: the augmented neighborhood graph; Q: the main queue;

R: the result set; T : the maximum number of discovered vectors; */

Procedure ANNSearch(q, X , Y , G, Q, R, T )

1. /* Mark each reference vector undiscovered */

2. for each x ∈ X do

3. Color[x]← white;

4. end for

5. /* Extract the nearest bridge vector */

6. (y, D)← ExtractNextNearestBridgeVector(Y);

7. Q← (y, D);
8. t← 0
9. /* Start the search */

10. while (Q 6= ∅ && t 6 T ) do

11. /* Pop out the best candidate vector and expand its neighbors */

12. (p, D)← Q.pop();

13. for each x ∈ Adj[p] do

14. if Color[x] = white then

15. D← dist(q,x);
16. Q← (x, D);
17. Color[x]← black; /* Mark it discovered */

18. R← (x, D); /* Update the result set */

19. t← t+ 1;

20. end if

21. end for

22. /* Extract the next nearest bridge vector if p is a bridge vector */

23. if p ∈ Y then

24. (y, D)← ExtractNextNearestBridgeVector(Y);

25. Q← (y, D);
26. end if

27. end while

28. return R;

(ik, jl) so that the corresponding bridge vectors are visited

in the order of increasing distances to the queryq. The algo-

rithm is very efficient and producing the t-th bridge vector

only takes O(log(t)) time. Slightly different from extract-

ing a fixed number of nearest bridge vectors once [4], our

algorithm automatically determines when to extract the next

one, that is when there is no bridge vector in the main queue.

3. Experiments

Setup. We perform our experiments on three large datasets:

the first one with local SIFT features, the second one with

global GIST features, and the third one with HOG features,

and a very large dataset, the BIGANN dataset of 1 billion

SIFT features [19].

The SIFT features are collected from the Caltech 101
dataset [11]. We extract maximally stable extremal regions

(MSERs) for each image, and compute a 128-dimensional

byte-valued SIFT feature for each MSER. We randomly

sample 1000K SIFT features and 100K SIFT features, re-

spectively as the reference and query set. The GIST fea-

tures are extracted on the tiny image set [36]. The GIST

descriptor is a 384-dimensional byte-valued vector. We

sample 1000K images as the reference set and 100K im-

ages as the queries. The HOG descriptors are extracted

Table 1. The parameters of our approach and the statistics. #ref-

erence means the number of reference vectors associated with the

bridge vectors, and α means the average number of unique refer-

ence vectors associated with each bridge vector.
size #partitions #clusters #reference α

SIFT 1M 4 50 715K 11.4%
GIST 1M 4 50 599K 9.59%
HOG 10M 4 100 5730K 5.73%

from Flickr images, and each HOG descriptor is a 512-

dimensional byte-valued vector. We sample 10M HOG

descriptors as the reference set and 100K as the queries.

The BIGANN dataset [19] consists of 1B 128-dimensional

byte-valued vectors as the reference set and 10K vectors as

the queries.

We use the accuracy score to evaluate the search quality.

For k-ANN search, the accuracy is computed as r/k, where

r is the number of retrieved vectors that are contained in

the true k nearest neighbors. The true nearest neighbors are

computed by comparing each query with all the reference

vectors in the data set. We compare different algorithms by

calculating the search accuracy given the same search time,

where the search time is recorded by varying the number

of accessed vectors. We report the performance in terms of

search time vs. search accuracy for the first three datasets.

Those results are obtained with 64 bit programs on a 3.4G
Hz quad core Intel PC with 24G memory.

Empirical analysis. The index structure construction in

our approach includes partitioning the vector into m sub-

vectors and grouping the vectors of each partition into n
clusters. We conduct experiments to study how they influ-

ence the search performance. The results over the 1M SIFT

and 1M GIST datasets are shown in Figure 2. Consider-

ing two partitions, it can be observed that the performance

becomes better with more clusters for each partition. This

is because more clusters produce more bridge vectors and

thus more reference vectors are associated with bridge vec-

tors and their distances are much smaller. The result with

4 partitions and 50 clusters per partition gets the best per-

formance as in this case the properties desired for bridge

vectors described in Section 2.1 are more likely to be satis-

fied.

Comparison. We compare our approach with state-

of-the-art algorithms, including iterative neighborhood

graph search [38], original neighborhood graph search

(AryaM93) [2], trinary projection (TP) trees [20], vantage

point (VP) tree [46], Spill trees [24], FLANN [27], and in-

verted multi-index [4]. The results of all other methods are

obtained by well tuning parameters. We do not report the re-

sults from hashing algorithms as they are much worse than

tree-based approach, which is also reported in [27, 43]. The

neighborhood graphs of different algorithms are the same,

and each vector is connected with 20 nearest vectors. We

construct approximate neighborhood graphs using the algo-

rithm [42]. Table 1 shows the parameters for our approach,
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Figure 2. Search performances with different number of partitions

and clusters over (a) 1M SIFT and (b) 1M GIST. xy: y means

#partitions and x is #clusters.

together with some statistics.

The experimental comparisons are shown in Figure 3.

The horizontal axis corresponds to search time (millisec-

onds), and the vertical axis corresponds to search accuracy.

From the results over the SIFT dataset shown in the first

row of Figure 3, our approach performs the best. We can

see that, given the target accuracy 90% 1-NN and 10-NN,

our approach takes about 2

3
time of the second best algo-

rithm, iterative neighborhood graph search.

The second row of Figure 3 shows the results over the

GIST dataset. Compared with the SIFT feature (a 128-

dimensional vector), the dimension of the GIST feature

(384) is larger and the search is hence more challenging. It

can be observed that our approach is still consistently bet-

ter than other approaches. In particular, the improvement is

more significant, and for the target precision 70% our ap-

proach takes only half time of the second best approach,

from 1 to 100 NNs. The third row of Figure 3 shows the

results over the HOG dataset. This data set is the most diffi-

cult because it contains more (10M ) descriptors and its di-

mension is the largest (512). Again, our approach achieves

the best results. For the target accuracy 70%, the search

time in the case of 1 NN is about 4

7
of the time of the sec-

ond best algorithm.

All the neighborhood graph search algorithms outper-

form the other algorithms, which shows that the neighbor-

hood graph structure is good to index vectors. The supe-

riority of our approach to previous neighborhood graph al-

gorithms stems from that our approach exploits the bridge

graph to help the search. Inverted multi-index does not pro-

duce competitive results because its advantage is small in-

dex structure size but its search performance is limited by

an unfavorable trade-off between the search accuracy and

the time overhead in quantization. It is shown in [4] that

inverted multi-index works the best when using a second-

order multi-index and a large codebook, but this results in

high quantization cost. In contrast, our approach benefits

from the neighborhood graph structure so that we can use a

high-order product quantizer to save the quantization cost.

In addition, we also conduct experiments to compare the

source coding based ANN search algorithm [18]. This al-

gorithm compresses each data vector into a short code using

product quantization, resulting in the fast approximate dis-
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Figure 4. Search performances comparison with IVFADC [18]

over (a) 1M SIFT and (b) 1M GIST. The parameters M (the num-

ber of inverted lists visited), L (the number of candidates for re-

ranking) are given beside each marker of IVFADC.

tance computation between vectors. We report the results

from the IVFADC system that performs the best as pointed

in [18] over the 1M SIFT and GIST features. To compare

IVFADC with our approach, we follow the scheme in [18]

to add a verification stage to the IVFADC system. We clus-

ter the data points into K inverted lists and use a 64-bits

code to represent each vector as done in [18]. Given a query,

we first find its M nearest inverted lists, then compute the

approximate distance from the query to each of the candi-

dates in the retrieved inverted lists. Finally we re-rank the

top L candidates using Euclidean distance and compute the

1-recall [18] of the nearest neighbor (the same to the defini-

tion of the search accuracy for 1-NN). Experimental results

show that K = 2048 gets superior performance. Figure 4

shows the results with respect to the parameters M and L.

One can see that our approach gets superior performance.

Experiments over the BIGANN dataset. We evaluate

the performance of our approach when combining it with

the IVFADC system [18] for searching very large scale

datasets. The IVFADC system organizes the data using in-

verted indices built via a coarse quantizer and represents

each vector by a short code produced by product quantiza-

tion. During the search stage, the system visits the inverted

lists in ascending order of the distances to the query and

re-ranks the candidates according to the short codes. The

original implementation only uses a small number of in-

verted lists to avoid the expensive time cost in finding the

exact nearest inverted indices. The inverted multi-index [4]

is used to replace the inverted indices in the IVFADC sys-

tem, which is shown better than the original IVFADC im-

plementation [18].

We propose to replace the nearest inverted list identifi-

cation using our approach. The good search quality of our

approach in terms of both accuracy and efficiency makes it

feasible to handle a large number of inverted lists. We quan-

tize the 1B features into millions (6M in our implementa-

tion) of groups using a fast approximate k-means clustering

algorithm [40], and compute the centers of all the groups

forming the vocabulary. Then we use our approach to as-

sign each vector to the inverted list corresponding to the

nearest center, producing the inverted indices. The residual

displacement between each vector and its center is quan-
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Figure 3. Performance comparison on (a) 1M 128-dimensional SIFT features, (b) 1M 384-dimensional GIST features, and (c) 10M

512-dimensional HOG features. k is the number of target nearest neighbors.

tized using product quantization to obtain extra bytes for

re-ranking. During the search stage, we find the nearest in-

verted lists to the query using our approach and then do the

same reranking procedure as in [4, 18]

Following [4, 18] we calculate the recall@T scores of

the nearest neighbor with respect to different length of the

visited candidate list L and different numbers of extra bytes,

m = 8, 16. The recall@T score is equivalent to the accu-

racy for the nearest neighbor if a short list of T vectors is

verified using exact Euclidean distances [19]. The perfor-

mance is summarized in Table 2. It can be seen that our

approach consistently outperforms Multi-D-ADC [4] and

IVFADC [18] in terms of both recall and time cost when

retrieving the same number of visited candidates. The su-

periority over IVFADC stems from that our approach sig-

nificantly increases the number of inverted indices and pro-

duces space partitions with smaller (coarse) quantization

errors and that our system accesses a few coarse centers

while guarantees relatively accurate inverted lists. For in-

verted multi-index approach, although the total number of

centers is quite large the data vectors are not evenly divided

into inverted lists. As reported in the supplementary mate-

rial of [4], 61% of the inverted lists are empty. Thus the

quantization quality is not as good as ours. Consequently, it

performs worse than our approach.

4. Analysis and discussion

Index structure size. In addition to the neighborhood

graph and the reference vectors, the index structure of our

approach includes a bridge graph and the bridge vectors.

The number of bridge vectors in our implementation is

O(N), with N being the number of the reference vectors.

The storage cost of the bridge vectors are then O( m
√
N),

and the cost of the bridge graph is also O(N). In the case

of 1M 384-dimensional GIST byte-valued features, without

optimization, the storage complexity (125M bytes) of the

bridge graph is smaller than the reference vectors (384M
bytes) and the neighborhood graph (160M bytes). The cost

of KD trees, VP trees, and TP trees are ∼180M , ∼180M ,

and ∼560M bytes. In summary, the storage cost of our in-

dex structure is comparable with those neighborhood graph

and tree-based structures.

In comparison to source coding [18, 19] and hashing

without using the original features, and inverted indices



Table 2. The performance (recall for the top-1, top-10, and top-

100 candidates after reranking and average search time in millisec-

onds) comparison between IVFADC [19], Multi-D-ADC [4] and

Our approach (Graph-D-ADC). IVFADC uses inverted lists with

K = 1024, Multi-D-ADC uses the second-order multi-index with

K = 2
14 and our approach use inverted lists with K = 6M

System List len. R@1 R@10 R@100 Time

BIGANN, 1 billion SIFTs, 8 bytes per vector

IVFADC 4 million 0.100 0.280 0.600 960
Multi-D-ADC 10000 0.165 0.492 0.726 29
Multi-D-ADC 30000 0.172 0.526 0.824 44
Multi-D-ADC 100000 0.173 0.536 0.870 98
Graph-D-ADC 10000 0.199 0.562 0.802 24
Graph-D-ADC 30000 0.201 0.584 0.873 39
Graph-D-ADC 100000 0.201 0.589 0.896 90

BIGANN, 1 billion SIFTs, 16 bytes per vector

IVFADC 4 million 0.220 0.610 0.890 1135
Multi-D-ADC 10000 0.324 0.685 0.755 30
Multi-D-ADC 30000 0.347 0.777 0.891 47
Multi-D-ADC 100000 0.354 0.813 0.959 109
Graph-D-ADC 10000 0.374 0.764 0.831 24
Graph-D-ADC 30000 0.391 0.829 0.924 39
Graph-D-ADC 100000 0.395 0.851 0.964 92

(e.g. [4]), our approach takes more storage cost. However,

the search quality of our approach in terms of accuracy and

time is much better, which leaves users for algorithm selec-

tion according to their preferences to less memory or less

time. Moreover the storage costs for 1M GIST and SIFT

features (< 1G bytes) and even 10M HOG features (< 8G
bytes) are acceptable in most today’s machines. When ap-

plying our approach to the BIGANN dataset of 1B SIFT

features, the index structure size for our approach is about

14G for m = 8 and 22G for m = 16, which is similar with

Multi-D-ADC [4] (13G for m = 8 and 21G for m = 16)

and IVFADC [18] (12G for m = 8 and 20G for m = 16).

Construction complexity. The most time-consuming pro-

cess in constructing the index structure in our approach is

the construction of the neighborhood graph. Recent re-

search [42] shows that an approximate neighborhood graph

can be built inO(N logN) time, which is comparable to the

cost of constructing the bridge graph. In our experiments,

using a 3.4G Hz quad core Intel PC, the index structures of

the 1M SIFT data, the 1M GIST data, and the 10M HOG

data can be built within half an hour, an hour, and 10 hours,

respectively. These time costs are relatively large but ac-

ceptable as they are offline processes.

The algorithm of combining our approach with the IV-

FADC system [18] over the BIGANN dataset of size 1 bil-

lion requires the similar construction cost with the state-of-

the-art algorithm [4]. Because the number of data vectors

is very large (1B), the most time-consuming stage is to as-

sign each vector to the inverted lists and both take about 2
days. The structure of our approach organizing the 6M cen-

ters takes only a few hours, which is relatively small. These

construction stages are all run with 48 threads on a server

with 12 AMD Opteron 1.9GHz quad core processors.

Search complexity. The search procedure of our approach

consists of the distance computation over the subvectors,

the traversal over the bridge graph and the neighborhood

graph. The distance computation over the subvectors is

very cheap and takes small constant time (about the distance

computation cost with 100 vectors in our experiments).

Compared with the number of reference vectors that are re-

quired to reach an acceptable accuracy (e.g., the number is

about 4800 for accuracy 90% in the 1M 384-dimensional

GIST feature data set), such time cost is negligible.

Besides the computation of the distances between the

query vector and the visited reference vectors, the addi-

tional time overhead comes from maintaining the prior-

ity queue and querying the bridge vectors using the multi-

sequence algorithm. Given there are T reference vec-

tors that have been discovered, it can be easily shown

that the main queue is no longer than T . Consider the

worst case that all the T reference vectors come from the

bridge graph, where each bridge vector is associated with

α unique reference vectors on average (the statistics for α
in our experiments is presented in Table 1), we have that
T
α

bridge vectors are visited. Thus, the maintenance of the

main queue takes O((1 + 1

α
)T logT ) time. Extracting T

α

bridge vectors using the multi-sequence algorithm [4] takes

O(T
α
log(T

α
)). Consequently the time overhead on average

is O((1 + 2

α
)T logT − T

α
logα) = O(T logT ).

Figure 5 shows the time cost of visiting 10K reference

vectors in different algorithms on two datasets. Linear scan

represents the time cost of computing the distances between

a query and all reference vectors. The overhead of a method

is the difference between the time cost of this method and

that of linear scan. We can see that the inverted multi-index

takes the minimum overhead and our approach is the sec-

ond minimum. This is because our approach includes extra

operations over the main queue.

Relations to source coding [18] and inverted multi-

index [4]. Product quantization (or generally Cartesian con-

catenation) has two attractive properties. One property is

that it is able to produce a large set of concatenated vectors

from several small sets of subvectors. The other property is

that the exact nearest vectors to a query vector from such a

large set of concatenated vectors can be quickly found us-

ing the multi-sequence algorithm. The application to source

coding [18] exploits the first property, thus results in fast

distance approximation. The application to inverted multi-

index [4] makes use of the second property to fast retrieve

concatenated quantizers. In contrast, our approach exploits

both the two properties: the first property guarantees that

the approximation error of the concatenated vectors to the

reference vectors is small with small sets of subvectors, and

the second property guarantees that the retrieval from the

concatenated vectors is very efficient and hence the time

overhead is small.
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Figure 5. Average time cost of visiting 10K reference vectors. The

time overhead (difference between the average time cost and the

cost of liner scan) of our approach is comparably small.

5. Conclusions

The key factors contribute to the superior performance of

our proposed approach include: (1) Discovering NN candi-

dates from the neighborhood of both bridge vectors and ref-

erence vectors is very cheap; (2) The NN candidates from

the neighborhood of the bridge vector have high probability

to be true NNs because there are a large number of effec-

tive bridge vectors generated by Cartesian concatenation;

(3) Retrieving nearest bridge vectors is very efficient. The

algorithm is very simple and is easily implemented. The

power of our algorithm is demonstrated by the superior

ANN search performance over large scale SIFT, HOG, and

GIST datasets, as well as over a very large scale dataset,

the BIGANN dataset of 1 billion SIFT features through the

combination of our approach with the IVFADC system.
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