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ABSTRACT 

Web search engines utilize behavioral signals to develop search ex-
periences tailored to individual users. To be effective, such person-
alization relies on access to sufficient information about each user’s 
interests and intentions. For new users or new queries, profile in-
formation may be sparse or non-existent. To handle these cases, and 
perhaps also improve personalization for those with profiles, search 
engines can employ signals from users who are similar along one 
or more dimensions, i.e., those in the same cohort.  In this paper we 
describe a characterization and evaluation of the use of such cohort 
modeling to enhance search personalization. We experiment with 
three pre-defined cohorts—topic, location, and top-level domain 
preference—independently and in combination, and also evaluate 
methods to learn cohorts dynamically. We show via extensive ex-
perimentation with large-scale logs from a commercial search en-
gine that leveraging cohort behavior can yield significant relevance 
gains when combined with a production search engine ranking al-
gorithm that uses similar classes of personalization signal but at the 
individual searcher level. Additional experiments show that our 
gains can be extended when we dynamically learn cohorts and tar-
get easily-identifiable classes of ambiguous or unseen queries. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – search process, selection process, clustering. 

Keywords 

Cohort modeling; Personalization; Web search.  

1. INTRODUCTION 
Personalization of search results has been investigated in detail in 
domains such as Web search and beyond [24][27][31]. The ability 
to tailor search results to a particular individual enables a wealth of 
opportunity to better satisfy their particular information needs. Per-
sonalization models are typically learned from observed short- and 
long-term search behavior (such as queries and result clicks), which 
is either used directly [32] or is converted into a different represen-
tation (e.g., a set of topical categories) to build more general models 
and improve personalization coverage [5][24]. Despite the value of 
personalization, one drawback is that it requires sufficient user in-
formation to perform effectively; users must be willing to share 
their search history and the search engine must attain sufficient in-
formation on user interests to build accurate profiles. Even short-
term personalization depends on the long-term behavior for the first 
query in the session when no other activity has been observed [5]. 

It is known that users frequently submit the same query to find the 
information they have searched previously. Teevan et al. [29] found 

that approximately 33% of query instances in their case study were 
an exact repeat of a query submitted by the same user at a previous 
time. For such refinding queries, the results clicked by individual 
users in their search history provide a strong signal to identify the 
correct result for each user when that query is repeated [32]. The 
remaining 67% queries are new, and it can be challenging to im-
prove their search quality via personalization given limited history.  

One way in which these issues can be addressed is by finding co-

horts of searchers who share one of more attributes with the current 
searcher. Attributes that could be used to form cohorts include lo-
cation, topical interest, and domain preferences, all easily accessi-
ble to search engines via users’ long-term search histories. Given a 
user, we can leverage the search behavior of other members of their 
cohort(s) to enhance personalization by providing signals if suffi-
cient information is unavailable or as an additional signal to build 
richer personalization models if they already exist. Cohorts have 
been used effectively in applications such as collaborative filtering 
(CF) [12], where groups of similar users (based on factors such as 
liking the same item [19]) can yield relevant recommendations. Co-
horts have also shown some limited utility in retrieval settings. 
Groupization has shown promise in laboratory settings [30], task 
models to find those engaged in similar tasks have yielded strong 
results [37], and there have even been attempts to use CF more di-
rectly in search result ranking [25]. However, there has been no de-
tailed study of applying cohort models to enhance Web-scale search 
personalization. We address that shortcoming in this paper. 

We propose the construction and application of user cohorts to en-
hance Web search personalization. Our initial method creates pre-
defined cohorts on three types: topic, location, and top-level do-
main preference (e.g., .gov, .edu). Rather than limiting ourselves to 
these pre-defined sets, we also propose clustering methods capable 
of learning the cohorts and dynamically assigning users to one or 
more clusters. We demonstrate through extensive experimentation 
with search engine log data that our cohort modeling methods can 
yield significant relevance improvements over a production ranker 
that already included personalization targeting the current searcher. 
We show that these gains are even larger when we target particular 
queries (e.g., those with high ambiguity) and particular users (e.g., 
those with no query-relevant history). 

We make the following contributions with this paper: 

• Describe a method to generate pre-defined cohorts using infor-
mation readily available to search engines, specifically topic, 
location, and top-level domain preference. 

• Demonstrate that modeling user interests within these cohorts 
can enhance state-of-the-art search personalization methods, 
leading to significant gains in search relevance. 

• Demonstrate that there are particular sets of easily-identifiable 
queries (e.g., ambiguous or new queries for a user), for which 
cohort modeling can be particularly effective. 

• Propose methods to dynamically learn cohorts rather than using 
pre-defined sets, and demonstrate strong relevance gains. 

The remainder of the paper is structured as follows. In Section 2 we 
present related work in areas such as personalization, collaborative 
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filtering, and cohort identification and use. Section 3 describes the 
pre-defined cohorts and the modeling process, as well as various 
definitions of important attributes such as click-through rate and 
smoothing, as well as how we can apply clustering methods to learn 
cohorts dynamically rather than using a pre-defined set. Section 4 
describes the datasets. Section 5 describes our methods and exper-
imental results, and Section 6 reports the results of learned cohorts. 
Section 7 discusses our findings, their implications, and concludes. 

2. RELATED WORK 
There are three relevant areas of related work: (1) personalization 
of search engines based on short- and long-term searcher interests, 
(2) collaborative filtering, and (3) mining the search behavior of 
other users to complement and enhance search personalization. 

Large-scale behavioral data from search engines has been mined 
extensively to improve result relevance in the aggregate across all 
users [1][15]. Search preferences are personal and research on per-
sonalizing retrieval [22][31] has shown that implicitly collected in-
formation such as browser history, query history, and desktop in-
formation, can be used to improve the relevance of search results 
for a particular individual. Short-term behavior from within the cur-
rent search session has been used for tasks such as result ranking 
[39] or predicting future search interests [34][35]. Teevan et al. [31] 
showed that their personalization algorithm improved as more data 
was available about the current user. Long-term behavior has been 
used for personalizing search by constructing longitudinal models 
of user interests [24], including using the previous queries associ-
ated with the pursuit of similar information needs [27]. Models can 
use different sources, ranging from specific query-URL pairs which 
have high precision but low coverage [32] to more general methods 
that use topical representations of user search interests [24]. 

When there is insufficient data about the current user, the search 
behavior of other related users may be beneficial in modeling user 
interests and intentions. Teevan et al. [30] explored the similarity 
of query selection, desktop information, and explicit relevance 
judgments across a small group of work colleagues grouped along 
two dimensions: (1) the longevity of their personal relationship, and 
(2) how explicitly the group was formed. They found that some 
groupings provide insight into what members considered relevant 
to queries related to the group focus, but that it can be challenging 
to identify valuable groups implicitly. White et al. [37] address this 
issue by implicitly modeling the search task of the user, finding 
others who have attempted a similar task, and using their on-task 
behavior to enhance relevance. Although they used cohorts (loca-
tion, topic expertise, and search engine entry point) as part of their 
ranking experiments, they observed limited gain in their experi-
mental setting and how they chose to model and integrate cohorts. 

Collaborative filtering (CF) [12] can also be used to find people 
with similar interests and leverage their activities and preferences 
to help the current user. The lack of sufficient personal information 
(sometimes referred to as the “cold start” problem) has been studied 
in research on CF and on recommender systems [20]. This research 
has shown that a number of sources can be used to generate recom-
mendations from others in a given community, including agree-
ment in item ratings [19] and social network memberships [16].  

There are three predefined cohorts that we focus on in our study: 
topical interests, domain preferences, and geographic location. We 
now describe relevant related work in each area, beginning with 
topical interest, some of which leverages CF to find similar users. 

Topic information can be used directly to improve search engine 
ranking [4]. Sugiyama et al. [25] addressed sparseness in user term-
weight profiles by applying CF techniques to attain term weights 

based on those of users with similar profiles. Similar approaches 
have used click-through data to personalize result rankings and 
backed-off to the clicks of others [2][26]. Almeida and Almeida [2] 
used Bayesian algorithms to cluster users of an online bookstore 
into communities based on links clicked within the site and found 
that the popularity of links within different communities could be 
used to customize result rankings. Lee [17] proposed a system that 
uses data mining to uncover patterns in users’ queries and browsing 
to generate recommendations for users with similar queries. These 
techniques perform matching with other users based on individual 
queries or URLs, severely limiting coverage. Freyne and Smyth 
[10] addressed this concern by connecting different communities 
based on the degree to which their queries and result clicks overlap. 

Alternative methods have been proposed that are query independ-
ent. Smyth [23] suggested that click-through data from users in the 
same “search community” (e.g., a group of people who use a spe-
cial-interest Web portal or work together) could enhance search. He 
provided evidence for the existence of search communities by 
showing that a group of co-workers had a higher query similarity 
threshold than general Web users. Ieong et al. [14] showed that 
searchers exhibited domain preferences, where they favored partic-
ular sources when selecting results. White et al. [38] found that do-
main experts preferred different top-level domains than novices, 
with more focus on educational (.edu) and governmental (.gov) 
sites, whereas novices preferred commercial (.com) sites. 

Turning to location, Mei and Church [18] found that geographic 
location might serve as a reasonable proxy for community, since 
they observed that grouping users based on the IP address similarity 
could improve relevance. Cheng and Cantú-Paz [10] developed 
models for personalized click prediction in online advertising that 
leveraged demographic and location features to improve prediction 
accuracy. Bennett et al. [3] showed the effectiveness of location-
based personalization, whereby models of searcher interests for 
particular locations can be learned and used in concert with the 
searcher’s current location to improve relevance. White and 
Buscher [36] automatically identified users with local expertise 
(knowledge of a specific city or town) from search log data, and 
showed that the interests of these local users was both different and 
that there were differences in the quality of the entities they visited 
(restaurants reserved in this case), with locals selecting higher-rated 
venues. Weber and Castillo [33] estimated searcher demographics 
by joining search location with census data and demonstrated vari-
ations in search behavior for different demographic groups. 

Our research extends previous work in the following ways. First we 
devise pre-defined searcher cohorts focused on attributes readily 
available at scale to Web search engines: specifically topic, loca-
tion, and top-level domain preference. Second, we experiment with 
applying cohort models both in isolation and in combination to en-
hance personalization across all queries. Third, we analyze the per-
formance of our methods in a number of additional search scenarios 
(e.g., ambiguous or unseen queries), and demonstrate strong rele-
vance gains. Finally, we propose methods to learn cohorts via clus-
tering, removing the need to use pre-defined sets. We show that 
employing this method allows us to further enhance personalization 
effectiveness over using our pre-defined cohort modeling methods. 

3. COHORT MODELING 
We now describe the construction of our cohort models, beginning 
with the nature of the data, but also including features computed.  

Upon submission of a query to a search engine, a list of search re-
sults is retrieved and ranked for the user. The user examines the list 
and decides the next action on the results: click or not click. Search 
engine logs capture much of this interaction. In our study, we use 



logs sourced from the popular Microsoft Bing search engine. An 
entry in the search log comprises a tuple , where  

is a user selected from the universe of users ,  is a query in the 

universe set of queries , and  is from the universe of documents 

(search results) ,  is a binary value that 1 is a click and 0 other-

wise, and  is the timestamp. Such tuples can be created for each of 
the top-ranked search results returned by the search engine.   

The click-through rate (CTR) of a query-document pair  is 
the ratio of the number of clicks on the document to the number of 
impressions in which that result is shown for the search query. CTR 
is commonly used to measure the probability of a click given a 
query-document pair, i.e., . Given this, plus the sim-
plicity and general applicability of CTR, it seems appropriate to fo-
cus on applying it for this first study of cohort modeling. 

In our approach we focus on a subset of result clicks suggesting that 
searchers are satisfied with the particular search results that they 
selected. We refer to these in this paper as satisfied (SAT) clicks. 

Definition 1 (SAT Click): As defined in [12], SAT clicks have an 
associated dwell time of 30 or more seconds between search engine 
actions, or it is the last action in a search session (presumed SAT).  

Using SAT clicks rather than all clicks can provide a more accurate 
CTR signal since accidental or misinformed clicks are excluded. 
Therefore, rather than simply counting the number of clicks divided 
by the number of impressions, we can compute CTR as:  

 (1)

Users may search for different information under the same query. 
This can also be reflected in a CTR tailored to each searcher. We 
use an individual’s click-through rate  to estimate the 
degree of satisfaction of the user with a document given a query: 

 (2)

Armed with this important definition, we can now proceed to define 
the features that we use in our cohort models. 

3.1 Contextual Features 
As mentioned earlier, we represent users by contextual features cor-
responding to domain preference, location, and topical interests. 

Top-Level Domain: The domain name of a URL represents its net-
working context, the administrative autonomy, and authority. A re-
cent study showed that searchers exhibit a preference for particular 
domains irrespective of relevance [14]. The number of unique do-
main names across the broad range of information needs in our da-
taset is intractable. We therefore used the top-level domain (TLD). 
TLD includes generic domain extensions such as .com, .net, .org; 
sponsored extensions such as .mil, .asia, .edu; and country codes 
such as .us, .uk, .fr.  Related work on domain expertise in search 
revealed that there were differences in the TLDs selected depend-
ing on user domain expertise level (experts preferred .edu and .gov, 
whereas novices preferred .com) [38]. The TLD may therefore of-
fer some insight into the subject matter expertise of the searcher, 
which can be useful in performing richer personalization. 

We limit our study on search logs collected in the United States 
geographic locale, but we observe many clicks on URLs with other 
country code domain extensions. This information could be used to 
estimate the native language of users or simply countries with 
which they have an interest. There are many TLDs, and because 
many are fairly new or visited infrequently (at least from search 
results), we do not observe many clicks related to them.  

We include all general and sponsored TLDs (23 in total), and also 
select 11 country code TLDs which are registered in the first and 
second year of availability, since we observe the number of Web 
pages and clicks of a TLD is related to its time in existence. We 
then randomly sample 3% search logs during a two-month period 
and examine the number of SAT clicks on selected TLDs. TLDs 
with < 1000 SAT clicks, e.g., .arpa, .post, .tel, are excluded. We 
retained the remaining 31 popular TLDs and use “other” for all 
other cases. This set of TLDs is used to construct our cohorts.  

Location: The location of a user may also reveal their search inter-
ests and intentions [3]. We estimated the location of the user at 
query time using reverse IP geocoding. Since a user may not be 
confined to a particular city, but will generally remain within a 
state, we compute location preference for each user at the state 
level. There are 51 U.S. state features. When we failed to identify 
the location of a user, we categorize their location as “other”. 

Topic: We utilize the Open Directory Project (ODP, dmoz.org), a 
human-generated hierarchical taxonomy of Websites, as our topical 
ontology. This has been used extensively in previous work on per-
sonalization to model search interests at a level beyond queries and 
documents [5][24]. Topics are assigned to URLs using the content-
based classifier described and evaluated in [4]. The user’s degree 
of interest in a topic is then inferred from the number of clicks of 
URL results under that topic in their click history. ODP contains 15 
top-level categories such as “Arts”, “Sports”, etc. To manage the 
size of the feature space, we focus on top-level categories only. 

Given features explained above, we define a cohort as a group of 
users sharing a contextual feature. The total number of selected fea-
tures is 99. In other words, we define 99 cohorts of users based on 
shared contextual features. A user can be a member of multiple co-
horts. We model cohort membership to indicate how likely a user 
is to be a member. It is also used to measure how strongly to weight 
the user contribution to the cohort when aggregating cohort clicks. 

We denote  as the -th cohort of a particular type,  as cohorts 

of top-level domains,  as cohorts of locations, and  of ODP 
categories (topic). Since the following calculations for each of the 
three cohort types are the same, we ignore the superscript in the 
cohort notation for simplicity. 

Definition 2 (Cohort Membership): The cohort membership vec-
tor for user  is defined as a -tuple ( ) = [ ( , 1), ( , 2), …, 

( , )], in which  is the number of cohorts, and  repre-

sents the degree of membership for the user in -th cohort (say, 

“California”). ( ) is normalized such that  

The cohort membership is drawn from a multinomial distribution 
of SAT clicks, and calculated as follows: 

 (3) 

Example 1: Suppose that there are only three cohorts: California, 
Washington, and Oregon. If we observe three SAT clicks when the 
user is in California and one SAT click in Washington, the cohort 
membership across the three states would be [0.57, 0.29, 0.14]. 

3.2 Cohort CTR  
Definition 3 (Cohort CTR): Given a cohort type (e.g., Topic), the 
cohort CTR for a query and URL document  is a -tuple 

c-ctr(d,q)=[ ], in which 

 is the number of cohorts, and  is the probability that 

users in -th cohort will click document  for the query . It is a 
weighted aggregation of individual CTR as follows: 



 (4)

Cohort CTR is used to measure the cohort preference on the docu-

ment  given the query . It weights a user’s clicks by their cohort 
membership. Users who exhibit strong preference to the cohort will 
contribute more to the cohort CTR, e.g., for a California state co-
hort, a user residing in that state for a long duration will have a 
higher influence factor than a user who only visits occasionally.  

Example 2: Suppose that there are only three cohorts: California, 
Washington and Oregon, and two users a and b. The cohort mem-

bership vector for  is ( ) = [0.57, 0.29, 0.14], for  is ( ) = 
[0.1, 0.1, 0.8]. Given the query [osu], considering two search results 

= “osu.ppy.sh”, and  = “oregonstate.edu”, the number of SAT 

clicks by user is  = [5, 1] for  and  respectively, and the 

number of SAT clicks by user b  is  = [1, 5]. For simplicity, we 
assume number of impressions on each document for each user is 
100. By Equation (4), we can compute the cohort CTR for the result 

 as c-ctr( , ) = [0.044, 0.039, 0.016], and for  as c-ctr( , ) 
= [0.0159, 0.02, 0.044]. This demonstrates that the California co-
hort prefers the result , and that the Oregon cohort prefers , 
given the query [osu]. Note that the global CTRs for both results 

are the same, i.e., ctr( , ) = ctr( , ) = (5+1)/(100+100). 

There are two intuitions behind our model. First, users in a cohort 
with shared contextual features are likely to be coherent in search 
intentions and click preferences (an assertion supported by our pre-
liminary investigations – not reported here for space reasons). Sec-
ond, a common approach for handling the problem of insufficient 
individual historical data is to leverage global CTR. However, 
global CTR treats clicks from all users equally, and therefore has 
limited potential to help in personalization. Our approach identifies 
and separates cohort clicks from global clicks. When estimating 
an individual’s click preference, we can learn more from clicks by 
cohorts of similar users, who have higher impact on the estimation, 
and are better aligned with the target user. We show in our later 
experiments that cohort modeling can outperform global CTR. 

3.3 Smoothing Cohort CTR 
CTR is one of the most informative metrics to measure search result 
quality. However, CTR estimates are sometimes noisy when obser-
vations are scarce. For example, if we only observe one impression 
for a pair , and a single SAT click on the document , we 

will obtain . This is an inaccurate estimate of the true 
click probability, and is caused by data sparseness. These instances 
are common in logs, especially for tail queries that occur rarely.  

To handle this situation, we apply smoothing methods to estimate 
CTR. We add a pseudo count that counts SAT clicks  times 

during  impressions. The smoothed CTR is computed as follows. 

 (5) 

After smoothing, extreme cases should have lower CTR than URLs 
with sufficient SAT clicks and impressions, but higher than those 
with no SAT clicks. Based on this expectation, we sample hundreds 
of instances and manually validate the output to tune  and . Fol-

lowing several experiments we set  = 0.001, and  = 1000. 

When calculating cohort CTR for a given cohort , we then 

smooth cohort CTR with smoothed global CTR as follows: 

 

 
(6)

We set =10 through similar manual validation. For unobserved or 

scarcely observed  the cohort CTR is aligned with a 

smoothed global CTR of .     

3.4 Cohort Features   
For a user, the click probability on a URL document can be esti-
mated from the click history of similar people. Given the cohort 
model, we now derive cohort features, which infer individual click 
probabilities that are associated with the user’s cohort membership.  

Definition 4 (Cohort Features): Consider a user  with cohort 

membership , and the cohort CTR for a query document pair 

c-ctr(d,q), we derive cohort features  as an -tuple: 

[ ], where  is the 

number of cohorts, and  is the click probability in the 

-th cohort. The probability is computed as follows:  

 (7) 

Example 3: Following the setting in Example 2, that c-ctr( , )  = 
[0.044, 0.039, 0.016], given a new user with  = [0.56, 0.22, 

0.22], the cohort features for document , query  which is [osu] 

and the user , is  = [0.02464, 0.00858, 0.00352].  

When a user submits a query , we estimate their click preference 

on a document  depending on their cohort membership  

and the cohort click probability . The weight of cohort 

membership controls how much we can infer about this user’s click 
behavior based on a cohort’s click behavior. If a user belongs to the 
California cohort with a weight of 0.9 and the Washington cohort 
with a weight of 0.1, the estimation of their click probability there-
fore relies mainly on the cohort California, and only slightly on the 

cohort Washington. We create cohort features for each  
tuple, and let the ranking algorithm decide the ranking of URL can-
didates based on these cohort signals.  

4. DATASETS 
To evaluate the effectiveness of our cohort model for enhancing 
personalization, we apply it to extend a personalization model on 
the Microsoft Bing commercial search engine. The existing person-
alization approach is built upon the standard search engine that re-
trieves the most relevant documents via querying. This is a state-
of-the-art personalization method that employs a number of short- 
and long-term topical, location, and domain preference features, 
some that are similar to prior work, e.g., [3][5][24][32][35]. These 
features are derived and used by the engine at the individual level. 
In addition to these personalized features, the model uses a global 
CTR feature for each query and document pair. This ranker in pro-
duction serves as a strong baseline for our cohort experiments.  

We evaluate our methods retrospectively using logs from Bing con-
taining search behavior and the original (sometimes personalized) 
result ranking from the engine. We mined over two months of logs 
from the US English geographic locale, and extracted events com-
prising tuples of: query, an ordered list of the top-10 search results 
returned by the engine, and clicks on those results. The order of the 
URLs for a query was produced by the baseline ranker which em-
ployed personalization for some queries as described above. We re-
ranked results using our enhanced model. This methodology allows 
us to estimate the effectiveness of our cohort modeling approach. 

4.1  All Queries  
Cohort features, which are based on click history, are good indica-
tors of document relevance for given queries. However, the volume 
of URL documents is large, and many documents are not selected 
or displayed many users. Although we incorporated smoothing 
techniques to overcome such sparseness, we found in practice that 



constructing features at a higher level further addresses this chal-
lenge. For instance, we can replace URL documents in our cohort 
models by URL domains and re-rank using the same personaliza-
tion approach. Specifically, the symbol  is used to represent a 
URL domain rather than a URL document. A domain is part of a 
URL, e.g., URL=http://www.cnn.com/politics, domain=cnn.com.  

As stated above, we use the production ranker from the search en-
gine as the baseline for comparison. We then train a new model, 
with cohort features added. Bing search logs for a two-month pe-
riod (March 31 2013 to May 28 2013) are used to construct cohort 
membership vectors and cohort CTRs. We refer to this time seg-
ment as the profiling period. Cohort features are then built for 

  tuples in logs from the following week (May 29 2013 to 
June 4 2013), which is then divided into training, validation and 
testing periods. The first three days were used for training, the next 
two days were used for validation, and the last two days were used 
for testing. The performance is evaluated by re-ranking top results 
returned from the baseline ranker. This method has been used suc-
cessfully in prior studies of search personalization at scale [3][24].  

Table 1 presents the statistics on the datasets used, including the 
number of search queries (impressions), the number of distinct que-
ries, the number of distinct URL domains, and the number of users 
in our dataset. Besides the comparison on all queries, we also clas-
sified queries into various segments to facilitate a more detailed 
analysis of the performance of our cohort modeling methods. 

4.2 New Queries in User Search History  
Previous studies have shown that although searchers frequently 
submit repeated queries for refinding purposes, there are also a 
large fraction of user queries that are new [21][29]. A new query 
from a particular user means by definition that user has not submit-
ted it previously (at least not in an observable period, such as the 
two months used for profile building). Given their frequency, new 
queries are a particular subset where search engines could offer sig-
nificant benefit, but since there is no user history it is not clear what 
support they can offer on an individual level. This means that they 
must resort to global models of all users’ on-query behavior. These 
are queries where cohort modeling may offer particular assistance.  

Definition 5 (New Queries): In our experiment, for each user, que-
ries that are shown in the testing period but not in the profiling, 
training and validation periods are defined as new queries. In con-
trast, queries that appear in all periods are defined as old queries.  

In our analysis, we identify new queries for each user and separate 
them from old queries to evaluate the re-ranking performance of 
cohort models. To simplify the determination of new queries, we 
focus on exact match of queries on training and testing periods. The 
derivation and application of more sophisticated matching methods 
(e.g., semantically-equivalent queries), is a separate research prob-
lem and is reserved for future work. Some preprocessing steps are 
applied, including converting queries to lowercase, removing sur-
plus whitespace, and deleting punctuation while preserving the n-
grams for terms joined by punctuation (e.g., asp.net).  

4.3 Popularity of Queries 
Our cohort model leverages group click preferences to estimate in-
dividual click preferences. For a user who submitted a query, we 
identified a cohort of other users who are similar. However, if only 
a small number of users in the group submitted the same query, the 
prediction of cohort preference for the query will be biased and not 
representative of the full cohort. As part of our re-ranking experi-
ments, we wanted to better understand the impact of query popu-
larity on re-ranking performance when cohorts were utilized. 

Definition 6 (Popular Queries): The popularity of a query is de-
termined by the number of distinct users who submitted the query 
during the profiling period, which is denoted by	:6	. Search has a 
long tail effect that many tail queries are submitted only one or two 
times, by a small number of users. Cumulatively, there are a large 
number of such queries. We divided queries into two datasets: (1) 
popular: :6	 ≥ 10, and (2) unpopular: :6 < 10. Approximately 
30% of distinct queries are popular per our definition. 

4.4 Query Entropy 
As mentioned earlier, some queries have almost uniform click pref-
erence among all users, for example, [facebook] or [amazon] have 
high CTR on their associated sites. For these cases, individual, co-
hort, and global preferences are consistent. Thus the cohort model 
has limited potential to improve retrieval performance for such que-
ries. We measure the diversity of clicks among users for each query 
by computing the query entropy as follows: 

@
�� = 	−B ���; 
�, ��
∑ ���; 
�, ��C log G ���; 
�, ��

∑ ���; 
�, ��C H
C

 (8)

where ���; 
�, ��is from Equation (5). 

We focus on top five URL domains returned as search results or-
dered by global CTR. As a result, the maximum entropy value is ��I
5� ∼ 1.6, and the minimum is zero. If clicks of all users led to 
the same destination, the value of the entropy will be zero, indicat-
ing the query has the smallest variation in click behavior. A high 
value of entropy indicates the query has large variations. Click en-
tropy has been used in many studies to evaluate the complexity of 
queries, e.g., [16]. However, by assuming that the same search re-
sults are shown to all users who submitted the same query, its im-
plementation in those studies only considers the number of clicks 
and ignores the impression counts. Our data comprises logs of a 
search engine equipped with personalization. Consequently, URL 
documents have unequal chance of being shown. Therefore we take 
advantage of CTR and consider both clicks and impressions.  

To examine how the performance of our cohort model relates to the 
level of query entropy, we separate queries into three subsets: low 

entropy, medium entropy and high entropy. The corresponding en-
tropy ranges are [0, 0.2), [0.2, 1.2), and [1.2, 1.6).  The motivation 
is that for queries with small entropy on global CTR, it is less likely 
that cohort click preference differs from global click preference. 
For queries with large entropy, global clicks are diverse, thus we 
expect that cohorts can differentiate clicks, and therefore offer bet-
ter personalized search results. 

4.5 Acronym Queries 
Many acronyms are ambiguous and associate with more than one 
meanings. For example the intent behind [msg] may differ depend-
ing on the user location, e.g., users in New York City may be more 
likely to mean Madison Square Garden, whereas the likely intent 
elsewhere in the United States could be monosodium glutamate. As 
such, search engine performance can be improved on acronym que-
ries via personalization that considers the location of the searcher 

Table 1. Data sets used in experiments. All dates from 2013. 

Data 
Cohort  

Profiling 

Training and 

Validation 
Testing 

Date range 03/31–05/28 05/29–06/02 06/03–06/04 

#impressions 1,016,333,942 11,615,957 5,352,460 

#distinct queries 248,419,356 4,096,337 2,192,327 

#distinct domains 25,704,086 3,116,209 2,087,303 

#users 23,378,476 1,144,715 739,281 

 



as part of the ranking process [24]. To understand the effect of ac-
ronym queries on the performance of our models, we used a set of 
acronyms defined in previous work [28]. From these data, we se-
lected 432,564 acronyms which had a length of 2, 3 and 4 charac-
ters. The average number of meanings per acronym was 2.91. We 
then intersected these with the two days of logs used for testing in 
our study, resulting in around 11,000 distinct query matches. 

5. METHODS AND FINDINGS  
We now describe our experimental results. As mentioned earlier, 
our baseline is the current production ranker in the commercial 
search engine .Our cohort model extends it by integrating cohort 
features. Comparing the models let us estimate changes in person-
alization effectiveness attributable to the cohort modeling. 

5.1 Ranking Models 
Using the dataset described in the previous section, we train a 
LambdaMART-based ranking model [39] to re-ranking the top ten 
search results. LambdaMART is an extension of LambdaRank [8] 
which is based on boosted decision trees. It has been shown to be 
one of the best algorithms for learning to rank. Indeed, an ensemble 
model in which LambdaMART rankers were the key component 
won Track 1 of the 2010 Yahoo! Learning to Rank Challenge [9]. 
Our cohort features are insensitive to ranking algorithm, thus any 
reasonable learning-to-rank algorithm should also observe rele-
vance gains as we do. We trained four ranking models using three 
types of predefined cohort features introduced earlier, specifically: 

1. A model with ODP cohorts only (ODP); 
2. A model with top-level domain cohorts only (TLD); 
3. A model with location cohorts only (Location), and; 
4. A model with all three cohorts, concatenated together (ALL). 

We also construct cohort models dynamically by clustering users 
based on contextual features. In Section 6, we describe the cohort 
clustering methods and experiment with varying the number of 

clusters (cohorts), denoted as � in the remainder of this paper. 

5.2 Metrics 
As described earlier, we collected two months of search logs to con-
struct user profiles, and the next one week of logs for training, val-
idation, and test. Evaluating personalization at scale is challenging; 
since users can have different intentions for the same query, em-
ploying third-party relevance labels may be insufficient. To address 
this concern, we exploit user clicks to obtain personalized relevance 
judgments for each query-document pair retrieved for a query. 
Clicks can be classified into various types by their associated dwell 
times on the landing page. If the dwell time is too short, the searcher 
may be dissatisfied with the search result. In this study, we label 
URLs with a SAT click (defined earlier) positively, and other URLs 
negatively. This method for generating click-based relevance judg-
ments has been used in prior personalization studies [5][24][37]. 

We measure the quality of re-ranking using mean reciprocal rank 
(MRR) and mean average precision (MAP). In both cases, the mean 
is the average across all impressions, including those where the 
ranking does not change as a result of the treatment. MAP considers 
cases where there are multiple SAT clicks (better for informational 
queries); MRR is focusing only on the rank of the first SAT click. 

MAP is the mean of the average precision scores for each query, 

M�� = 1
:
∑ �������� 
��!��
��N*O1 ∑ !��
��NPO1

 (9)

where   is the number of URLs in the impression, ranging from 4 
to 10. !��
�� is an indicator function returning 1 if the URL at rank 

� is relevant, otherwise 0. �������� 
�� is the precision at cut-off � 
in the ranked list. 

MRR targets the rank of the first relevant document in the result 
list. It is the average of the reciprocal ranks over all queries, 

M!!	 = 1
:B 1

�7 �
��Q
 (10)

where �7 �
�� is the rank position of the first URL document that 

received satisfied click for the query �.  

Due to proprietary concerns, we do not report absolute metric val-
ues. Instead, we report relative changes from the cohort model ver-
sus the baseline: RM!!	 = 100 ∙ 
M!!
��ℎ���� − M!!
87���� 
and RM�� = 100 ∙ 
M��
��ℎ���� −M��
87���.  
5.3 Research Questions 
To understand the effect of cohorts in personalized search, we an-
swer the following questions in the remainder of the paper: 

1. Can our method enhance the baseline generally, for all queries?  
2. Can we identify particular classes of queries that benefit from 

our cohort modeling, and to what extent? 
3. Can we improve relevance further by learning cohorts (rather 

than the pre-defined cohorts defined earlier)? (See Section 6). 

We now present the results of our analysis on all queries and on 
each of the query subsets described in the previous section.  

5.4 Findings 
We now present the findings of our study, grouped by dataset. 

5.4.1 All Queries 
We begin with the first question: in general, can cohort models im-
prove the retrieval performance when used in addition to existing 
personalization method(s)? This helps us understand the overall im-
pact of the cohort modeling on search engine performance. Table 2 
reports the MAP/MRR gains of our model versus the baseline (the 
production ranker) along with the standard error of the mean 
(SEM). The findings presented in the table show our cohort model 
significantly outperforms the baseline (with paired t-tests). Results 
that received SAT clicks by users are promoted by the cohort by 
the ranking (as can be seen with the low reranked@1 percentage in 
Table 2). All types of cohorts are informative. In particular, TLD 
yields the largest gain, perhaps because it captures differences in 
expertise of interests (e.g., people selecting en.wikipedia.org rather 
than a commercial domain). Location cohorts may have achieved 
the lowest gain because firstly, the baseline already covered the in-
dividual location preference; secondly we use state to represent lo-
cation and it could mask important intra-state movements. A finer 
grained representation of location may be required, but we also 
need to consider how best to do that in a scalable manner while 
ensuring that there are sufficient numbers of users in each cohort. 
Note that although the changes may appear small, they are averaged 
over all queries, including many whose performance is unchanged. 

A trend that we observe in Table 2 that is mirrored in all of our 
findings is that ALL performs as well or less well than the other 
models. This model re-ranks slightly more results (Rerank@1 in 
Table 2), meaning that its application is less focused. Also, the pres-
ence of multiple cohorts may make the ALL cohort signal noisier. 

Table 2. Gains in MAP and MRR over baseline (±±±±SEM).  

Cohort Rerank@1 ∆MAP±SEM ∆MRR±SEM 

ODP 0.91% 0.0181±0.00130 0.0187±0.00142 

TLD 0.96% 0.0224±0.00140 0.0229±0.00144 

Location 0.90% 0.0111±0.00138 0.0113±0.00141 

ALL 0.98% 0.0193±0.00140 0.0211±0.00145 

 



Given the promising gains observed across all queries, we now turn 
our attention to the various query subsets that were introduced ear-
lier in the paper. In the remainder of this section we present results 
on each of those subsets defined in Section 4. Since the perfor-
mance of both of the MRR and MAP metrics is similar, we focus 
on a single metric (MRR) for the remaining analysis. 

5.4.2 New Queries  
In our dataset, the average ratio of distinct new queries of all queries 
is about 70% per user, consistent with previous work [25].  It indi-
cates that users submit a large portion of new queries that are not 
recorded by the search engine previously (at least not in the past 
two months, which may be all the engine has access to for a user at 
query time given profile size limitations at scale). Thus personali-
zation based solely on an individual history is insufficient. 

Our cohort model utilizes search and click history of similar users 
to alleviate the challenge of insufficient data. We split the testing 
data into two subsets composed of old queries and new queries for 
each user respectively. Figure 1 shows the performance difference 
over the baseline for each type of cohorts. In this figure and others 
in this section, the value of zero denotes the original performance 
of the baseline. The figure shows that indeed our model works well 
on new queries that have not been observed previously (at least in 

the profiling period) from a given user. We observe statistically sig-
nificant gains for new queries across all predefined cohorts (all p < 
0.001). When queries are repeated, the baseline with individual 
search history may work well, and adding cohort features had little 
or even slightly negative effect by introducing noise from other 
searchers’ activity (as is evidenced by the blue bars and negative 
MRR changes). It is also interesting to observe that the ODP (topic) 
cohort performed best for new queries. One possible explanation 
for this finding is that queries without an exact match that appear 
in the users’ history are most likely to be informational, and there-
fore benefit most from users with similar topical interests. 

5.4.3 Query Popularity 
We are also interested in the effect of query popularity on the per-
formance of the cohort modeling, in order to understand how sen-
sitive our model to the size of cohorts. Figure 2 shows MRR gains 
on the popular and unpopular query sets, as described earlier. The 
performance gain on popular set is much larger than that in unpop-
ular set. Again all differences are significant given the extent of the 
gains and large sample sizes (p < 0.001). The results match our ex-
pectation. When a query is searched by many users, we can distin-
guish cohort preference accurately. However, if a query is searched 
by only few people, the estimation is less accurate. 

5.4.4 Query Entropy 
We conjectured that since a large entropy implies diverse clicks on 
URLs, separating and assigning weights on clicks by cohorts can 
help identify an individual’s preference more accurately. Therefore 
we expect queries with large entropy will obtain large benefit from 
the cohort model. Figure 3 presents the MRR gain over the baseline 
for the three query entropy bins: low, medium, and high. 

The results shown in the figure confirm our intuition regarding 
where personalization enhancements might help. On all types of 
cohorts, the query set with low entropy received smallest gain over 
the baseline. Queries with medium and high entropy obtained larger 
performance increases (all statistically significant, p < 0.001). This 
suggests that one strategy to realize strong gains from the cohorts 
may be to bypass low entropy queries and only apply cohort models 
on queries with medium or higher entropy. As observed in other 
analyses in this section, we also observe that the Location cohorts 
achieved the smallest gain, and even resulted in a loss for low en-
tropy queries. As mentioned earlier, one explanation is the use of 
state-level cohort features, which may be too coarse to capture in-
dividual click preferences. More work is required to determine how 
best to represent and apply location for cohort modeling. 

5.4.5 Acronym Queries 
As mentioned earlier, acronym queries such as [acl], [atm], etc. are 
a specific set of ambiguous queries where personalization may help 
[24]. We examine the effectiveness of our cohort modeling meth-
ods on the subset of acronym queries described earlier in Section 4. 
Table 3 shows the MAP and MRR gains over the baseline for this 
query set (all significant at p < 0.001). The results clearly demon-
strate extremely strong gains in performance for the subset of acro-
nym queries for each of the cohort types studied. Although this may 
only be a relatively small query set (around 11k distinct queries), it 
is encouraging to see the significant gains in acronym queries. 

 

Figure 1. Gains in MRR over baseline for each cohort type  

for new and old queries from each user (±±±±SEM). 

 

Figure 2. Gains in MRR over baseline for each cohort type  

for differences in the popularity of the query (±±±±SEM). 

 

Figure 3. Gains in MRR over baseline for each cohort type  

for different query entropy bins (±±±±SEM). 
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Table 3.  Gains in MAP and MRR over baseline  

for acronym queries (±SEM). 

Cohort ∆MAP±SEM ∆MRR±SEM 

ODP 0.1566±0.0562 0.1622±0.0568 

TLD 0.1585±0.0568 0.1519±0.0578 

Location 0.1450±0.0535 0.1552±0.0544 

ALL 0.1212±0.0544 0.1265±0.0553 

 



It is clear from the findings presented in the section so far that there 
are a broad range of different query classes for which the cohort 
modeling performs well. However, the performance of the ALL 
model was generally slightly lower than the other models. There 
may be a better way to combine the cohorts and in the next section 
we describe an approach to learn cohorts dynamically. 

6. LEARNED COHORT MODELS 
The results in the previous section show that our cohort modeling 
techniques using pre-defined features can more accurately estimate 
users’ individual click preferences (as represented via an increased 
number of SAT clicks) than our competitive baseline method. A 
challenge of this approach is the tradeoff between the number of 
cohorts and the predictive power of cohorts on individuals. One can 
define more granular cohorts, for instance, including second or 
even lower levels of ODP, and changing locations from state to city 
or even the ZIP-code level. However, more cohorts result in fewer 
users in one cohort and less reliable CTR estimation. To overcome 
this challenge, we propose an alternative that generates cohorts au-
tomatically via clustering. The objective is to construct homogene-
ous clusters (cohorts) given a large number of features. 

6.1 Clustering Method 
In this section, we discuss how we learn cohorts automatically us-

ing �-means clustering. Each user is represented by a vector of con-

textual features V6 ∈ !C, which is concatenated from the three sets 
of pre-defined cohort features on topic, location and top level do-
main. The dimension of the feature vector is 99 in our setting. The 
objective of the method is to assign users into cohorts. Given large 
data volumes, a map-reduce implementation of �-means algorithm 
is applied to cluster users into k clusters (cohorts). We then define 
two implementations of customized cohort membership vector. 

Definition 7 (Learned Membership, Hard): Given learned �-co-
horts, a particular user’s cohort membership vector is defined as a � -tuple '
�� 	= 	 [(
�, 1�, (
�, 2�, … , (
�, ��] . Membership in 
the �-th cohort depends on whether the user is assigned to the �-th 

cluster. That is, (
�, �� = 1 if the user is in the �-th cluster, other-

wise (
�, �� = 0. 

Definition 8 (Learned Membership, Soft): Given learned k-co-
horts, a particular user’s cohort membership vector is defined as a �-tuple '
�� 	= 	 [(
�, 1�, (
�, 2�, … , (
�, ��]. The membership 
to �-th cohort is determined by the minimum Euclidean distance be-

tween the user and the centroid. Let centroids learned by �-means 

be {\1, \2, … , \]} . Ideally the Gaussian Mixture Model could 
achieve the goal with additional computational overhead. In this 
large-scale study, we leverage the �-means results and assign clus-
ter membership as follows: 

(-�, �". = �-�"_V6. = exp	
− 192 �-V6, \".2�
∑ �V�
− 192 �
V6 , \*�2�]{*O1}

 (11) 

where �
V6, \"�  is Euclidean distance between the user vector 

V6	and the centroid \" , and 9 is estimated from the average dis-

tance between centroids. This is a simplified implementation of the 
Gaussian Mixture Model having identity covariance. 

With the hard membership assignment, each user has only one non-
zero cohort membership, which may be preferable on many clusters 
with large �. For users with diverse preferences, it is natural to al-
low multiple cluster membership. Therefore soft membership may 
produce higher performance gain since it is capable of better cap-
turing within-user variance in interests and intentions. 

6.2 Evaluating Clustered Cohorts 
We compare the performance of re-ranking by clustered cohorts 
against the model with predefined ALL cohorts. We evaluate MRR 
change on a selected subset of queries. The subset of queries is new 
queries with entropy larger or equal to 0.2. This is set on which we 
observed a large performance gain with predefined cohort model, 
so it was a competitive dataset on which to assess the learned co-
horts. We experiment learned cohorts using select probes of � ∈ 

{5, 10, 30, 50, 70}, with soft assignment of cohort membership, 
which is expected to be more performant. Figure 4 displays the ex-

perimental results at varying value of �. Error bars denote standard 
error of the mean. Note that the baseline ranker (where MRR gain 
= 0) already contained global CTR as a feature, which is equivalent 

to �=1. We therefore do not report performance at �=1 in Figure 4. 

The figure shows that we can observe the largest MRR gain by the 

clustered cohorts model when �=10. The MRR gains are slightly 
larger than the model with predefined cohorts in �=30, 50, and 

slightly smaller in �=5. The MRR gain decreases sharply when � 

becomes too large, e.g., 70. We did not perform a full sweep of � 
given resource constraints, but the findings are still informative and 

the gains over predefined at �=10 are significant (p < 0.001). There 
may be a region 10	 < � < 30 where we may realize larger gains 
and we will explore that region in more detail in future work.   

We also evaluated the model on other subsets of queries and ob-
served similar results: the largest gain is obtained in small � and 

largest � has smaller gain than the predefined cohorts model. One 
possible explanation for this is that the user features are sparse and 
that as � increases, the reliability the cohort signal in each cluster 
degrades. The fact that we can obtain strong performance by reduc-
ing the dimensionality of the features from 99 to 10 is promising 
for large-scale deployment (since it means compact user profiles). 
It also reveals the opportunity of profiling users with more subtle 
and sparse features than projecting to a few principal dimensions, 
as was done in the case of the pre-defined cohorts.  

As mentioned previously, we can employ either hard or soft clus-
tering, depending on whether we want users to reside within a sin-
gle cohort only (hard) or appear in multiple cohorts potentially with 
different weights (soft). The implications of this include the nature 
of the profile stored by a search engine. In the analysis above, we 
employed soft clustering. One concern we had regarding hard clus-
tering is that it may lead to an inaccurate CTR estimation for users 
who are far from the cluster centroid. To better understand the im-
pact of this decision, we compare the performance of models with 
cohorts by hard-clustering, soft-clustering and predefined features 

.  

Figure 4. Gains in MRR over the baseline for clustered  

cohorts versus pre-defined cohorts for different d. Note  

that this is for the New, e
f� ≥ 0.2 query set (±±±±SEM). 
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w.r.t. the baseline as in the other experiments presented in the paper 
thus far. Table 4 presents the findings of this analysis. 

Table 4 shows that, as expected, cohorts generated using hard mem-
bership achieved the smallest performance gain, and are worse than 
those from predefined cohorts. Soft membership performs signifi-
cantly better; other differences are not significant. This suggest that 
finding weights to assign to each cohort is important for estimating 
individual preference. Users also have variations inside a cohort, 
and their preferences cannot simply be generalized by one cohort. 

6.3 Preference Analysis 
Given that we have these different ways to identify cohorts, we 
were interested in understanding the relationship between existing 
search engine results and global/cohort preference. To show that 
our performance improvement on personalization is not simply 
caused by gathering more features for the ranking algorithm, we 
conduct analysis on search logs and investigate whether cohorts 
manifest unique preference, which is directed by users in the co-
hort. For a query with many candidate results, global CTR can offer 
a ranking of URL candidates. We refer to this here as global choice. 
In each identified cohort, cohort CTR can yield a ranking as well, 
and we refer to this as cohort choice. We focus on the difference 
between global choice and cohort choice of the top-ranked result.  

Definition 9 (DiffTop): DiffTop for query � is an �-tuple vec-

tor 	�
�� 	= 	 [��gg
�, �1�, ��gg
�, �2�, … , ��gg
�, �4�] . Each 
value is a binary value to indicate whether a cohort has unique pref-
erence. We denote the top ranked URL domain � by the cohort 

choice of #-th cohort as �hi , and by global choice as �j . If �hi ≠�j , we set ��gg-�, �". = 1, otherwise 0. 

Among selected logs in profiling period, we choose queries with at 
least two distinct URL domains clicked, and count how many are 
inconsistent in the cohort choice and global choice. We find that 
2% of distinct queries demonstrated unique preference by at least 
one cohort. The ratio appears small, but considering the query vol-
ume is large, and the fact that we focus on clicks on domain level 
in the top position only, it is still a strong signal of  cohort potential. 

There are cases that the values of cohort CTR for the top and the 
second top URL domains are very similar, e.g., equally small. This 
means that the top and the second top URL domains have similar 
cohort preference. To address such subtle scenarios, we defined a 
weighted DiffTop measure as follows. 

Definition 10 (Weighted DiffTop): The weighted DiffTop for 

query � is a �-tuple (_�
�� 	= 	 [(_��gg
�, �1�, (_��gg
�, �2�, … ,(_��gg
�, �4�].	Each value measures the degree of unique 
preference by the cohort. We define the decrease delta (Δ) to meas-
ure the difference in the click probability between the top and the 
second top URL domain as follows: 

Δ-�1, �2, �, �". = ���; -�1, �, �". − ���; -�2, �, �".
���; -�1, �, �".  (12) 

where �1 is the url domain in top position, and �2 the one is the 

second position. The DiffTop is then weighted by Δ as follows: 

(_��gg-�, �". = 	��gg-�, �". ∙ Δ-�1, �2, �, �". (13) 

If Δ equals zero, the top candidate has less cohort dominance, thus 
DiffTop a weaker signal about unique preference for this cohort. 

To compare across cohorts, we average weighted DiffTop across 

queries for each cohort as �-�". = ∑ (_��gg
�, �"�Q ��gg
�, �"�⁄ . 

Such weight is then aggregated for a particular cohort type. Taking 

ODP cohorts for example, �
�&� = ∑ �-�"." /�, where � is the 

number of cohorts of type ODP. 

If the average value is large, it implies that members of the cohort 
behave differently than non-members. We compare cohorts by 
ODP, TLD, Location features, also include clustered cohorts with �=10. Figure 5 shows the aggregated weighted DiffTop value. At 
least two insights can be made. The first is that all cohorts have high 
average DiffTop weights in general. This shows that our selected 
features are useful in distinguishing cohort choice and global 
choice. The second is that ODP and Clustered cohorts are more in-
formative than TLD and Location, perhaps because they are denser.  

7. DISCUSSION AND CONCLUSIONS 
We have proposed an approach for using cohorts of searchers sim-
ilar along one or more dimensions to enhance Web search person-
alization. To understand the value of these cohorts we performed 
an extensive set of experiments with predefined cohorts as well as 
cohorts dynamically learned from behavioral data, and for different 
query sets, including acronyms and queries previously unseen from 
a given user. These are scenarios where we would like to be able to 
employ personalization but often it does not succeed given insuffi-
cient data about the interests of individual users. The results of our 
experiments have clearly demonstrated the value of cohorts, espe-
cially for ambiguous and new queries from users, where our ob-
served gains over a production ranker appear to be most significant. 

In our experiments, we used a competitive baseline a ranking algo-
rithm that already had personalization signals based on a number of 
personal and contextual features for individual searchers. Despite 
such attention to representing the individual user’s interests, the co-
hort-based models presented in this paper were still able to enhance 
the strong personalization baseline and achieve significant gains. 
This is promising as it suggests that we can learn how to integrate 
the cohort signals and make decisions about when to use them in 
combination with individual signals when both are present, or in 
isolation when only cohort signals are available. That said, further 
experiments are necessary with other personalization models to as-
sess the generalizability of our findings to other settings. 

The pre-defined cohorts have the disadvantage that they require 
system designers to select important features manually in advance. 
Using unsupervised clustering we circumvented this problem and 
learned cohorts dynamically. We are pleased that using cluster-gen-
erated cohorts that outperformed the pre-defined cohorts. However, 
the success of any clustering method is dependent on the features 
that are used. In this paper we used a set of features associated with 
topical preference, location, and top-level domain preference, but 

Table 4. Gains in MAP and MRR over baseline for different 

clustering methods (hard (d=10) vs. soft) and vs. pre-defined. 

Metric 
Hard 

Membership 

Soft 

Membership 

Predefined 

Cohorts ∆MAP 0.0731±0.0158 0.1143±0.0170 0.0932±0.0172 ∆MRR 0.0737±0.0165 0.1173±0.0177 0.0905±0.0180 

 

Figure 5. Average DiffTop weight for each cohort (±±±±SEM). 
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there are other viable alternatives (e.g., demographics, social net-
work cliques) and we need to explore their effectiveness in detail. 

We have shown that that best performance from cohorts learned via �-means clustering is attained when we set �=10. In a production 
search engine handling millions of users and billions of queries, the 
amount of space that can be devoted to each user is minimal. We 
have shown that for each user we would only have to store a small 
amount of additional information about their cohorts in each user’s 
profile, e.g., a single membership bit for each of the 10 cohorts.   

Overall, it is clear that there is significant potential value from mod-
eling cohorts in search personalization. Unlike most existing work 
that learn from each of similar individuals, our approach focuses on 
learning from the whole group(s). Our modeling has two main com-
ponents: cohort construction and cohort behavior modeling. One 
direction of future work is enhancing each of these components, for 
example, leveraging other sources of data beyond query-click logs 
(e.g., browsing signals, social network information) for cohort con-
struction, and considering relationships between cohort members 
(e.g., group dynamics) for cohort behavior modeling. Another di-
rection is investigating generalized cohort models (e.g., employing 

a Bayesian framework with a cohort prior �-�".), and other clus-

tering algorithms (e.g., hierarchical clustering).  
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