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Parameterized Animation Compression 
Ziyad Hakura, Jed Lengyel, John Snyder  

Abstract 

Synthetic images can be parameterized by more than time or viewpoint.  We generalize image-based rendering by 

exploiting texture-mapping graphics hardware to decompress ray-traced animations.  The animations are 

parameterized by two or more arbitrary variables allowing view/lighting changes or relative motion of objects.  

Starting with a field of ray-traced images and a description of the shading models, camera parameters, and scene 

geometry, we encode the parameterized animation as a set of per-object parameterized textures.  We present a novel 
method to infer texture maps from the ray-tracer's segmented imagery that provide the best match when applied by 

graphics hardware.  The parameterized textures are encoded as a multidimensional Laplacian pyramid on fixed size 

blocks of parameter space.  This scheme captures the great coherence in parameterized animations and, unlike 

previous work, decodes directly into texture maps that load into hardware with a few, simple image operations.  We 

introduce adaptive dimension splitting in the Laplacian pyramid to take advantage of differences in coherence across 

different parameter dimensions and separate diffuse and specular lighting layers to further improve compression.  
We describe the run-time system and show high-quality results at compression ratios of 200 to 800 with interactive 

play back on current consumer graphics cards. 

1 Introduction 

The central problem of computer graphics is real-time rendering of physically-illuminated, dynamic environments. 

Though the computation needed is far beyond current capability, specialized graphics hardware that renders texture-

mapped polygons continues to get cheaper and faster.  We exploit this hardware to decompress animations 

computed and compiled offline.  Our imagery exhibits the full gamut of stochastic ray tracing effects, including 
indirect lighting with reflections, refractions, and shadows. 

For synthetic scenes, the time and viewpoint parameters of the plenoptic function [Ade91,McM95] can be 

generalized.  We are free to parameterize the radiance field based on time, position of lights or viewpoint, surface 

reflectance properties, object positions, or any other degrees of freedom in the scene, resulting in an arbitrary-

dimensional parameterized animation.  Our goal is maximum compression of the parameterized animation that 

maintains satisfactory quality and decodes in real time. Once the encoding is downloaded over a network, the 
decoder can take advantage of specialized hardware and high bandwidth to the graphics system allowing a user to 

explore the parameter space.  High compression reduces downloading time over the network and conserves server 

and client storage. 

Our approach infers and compresses parameter-dependent texture maps for individual objects rather than 

combined views of the entire scene.  To infer a texture map means to find one which when applied to a hardware-

rendered geometric object matches the offline-rendered image. Encoding a separate texture map for each object 
better captures its coherence across the parameter space independently of where in the image it appears.  Object 

silhouettes are correctly rendered from actual geometry and suffer fewer compression artifacts.  In addition, the 

viewpoint can move from the original parameter samples without revealing geometric disocclusions. 

Figure 1 illustrates our system. Ray-traced images at each point in the parameter space are fed to the compiler 

together with the scene geometry, lighting models, and viewing parameters. The compiler targets any desired type of 

graphics hardware and infers texture resolution, texture domain mapping, and texture samples for each object over 
the parameter space to produce as good a match as possible on that hardware to the “gold-standard” images. Per-

object texture maps are then compressed using a novel, multi-dimensional compression scheme. The interactive 

runtime consists of two parts operating simultaneously: a texture decompression engine and a traditional hardware-

accelerated rendering engine. 
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Figure 1: System Overview 
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Contributions: 

� We introduce the problem of compressing multidimensional animations, not just radiance fields parameterized 

by viewpoint or animations through 1D time.   

� We fully exploit cheap and ubiquitous graphics hardware by rendering texture maps on geometric objects rather 

than view-based images.   We employ an automatic method to allocate storage over objects’ texture maps and 

select texture map resolutions and domains based on the gold-standard images.  We also separate diffuse and 

specular lighting layers to increase compression, using automatic storage allocation over these lighting layers. 

� We present a novel strategy for texture inference from segmented images optimized for decoding on specific 

graphics hardware.  It  uses an optimization approach and introduces a pyramidal regularization term that 
ensures the entire texture is defined, with occluded regions filled smoothly. 

� We present novel methods for general, multidimensional compression using an adaptive Laplacian pyramid that 

allows real-time decoding and high compression ratios.  

� We describe a novel run-time system that caches to speed texture decoding and staggers block origins to 

distribute decompression load.  

� We present realistic, highly specular examples with multiple objects containing thousands of polygons, using a 
PC equipped with a consumer graphics card.  The quality and generality of our examples exceed previous work 

in image-based rendering.  We demonstrate the superiority of our encoding over alternatives like MPEG4 and 

show high-quality results at compression ratios of 200-800 with near real-time (∼2.4Hz) decoders capable of 

hardware implementation.  Faster decoding (∼9Hz) is also possible at reduced quality.  Since the system’s main 
bottleneck is texture decompression, our findings provide incentive for incorporating more sophisticated texture 

decompression functionality in future graphics pipelines. 

Limitations: 

� We assume that a list of the geometric objects and their texture parameterizations are given as input.   

� Efficient encoding relies on parameter-independent geometry; that is, geometry that remains static or rigidly 

moving and thus represents a small fraction of the storage compared to the parameter-dependent textures.  For 

each object, polygonal meshes with texture coordinates are encoded once as header information. 

� The compiler must have access to an image at each point in parameter space, so compilation is exponential in 

dimension.   We believe our compilation approach is good for spaces in which all but one or two dimensions are 

“secondary”; i.e., having relatively few samples.  Examples include viewpoint movement along a 1D trajectory 
with limited side-to-side movement, viewpoint changes with limited, periodic motion of some scene 

components, or time or viewpoint changes coupled with limited changes to the lighting environment.  

2 Previous Work 

Image-Based Rendering (IBR)  IBR has sought increasingly accurate approximations of the plenoptic function 
[Ade91,McM95], or spherical radiance field parameterized by 3D position, time, and wavelength.  [Che93] 

pioneered this approach in computer graphics, using pixel flow to interpolate views.  Levoy and Hanrahan [Lev96], 

and Gortler et al. [Gor96] reduced the plenoptic function to a 4D field, allowing view interpolation with view-

dependent lighting. Layered depth images (LDI) [Sha98,Cha99] are another representation of the radiance field 

better able to handle disocclusions without unduly increasing the number of viewpoint samples.  [Won99] and 

[Nis99] have extended this work to a 5D field that permits changes to the lighting environment.  The challenge of 
such methods is efficient storage of the resulting high-dimensional image fields.   

For spatially coherent scenes, Miller et al. [Mil98] and Nishino [Nis99] observed that geometry-based surface 

fields better capture coherence in the light field and achieve a more efficient encoding than view-based images like 

the LDI or lumigraph.  In related work, [Hei99a] used a surface light field to encode reflected rays in glossy 

walkthroughs, [Stu97] and [Sta99] pre-computed a discrete sampling of the glossy reflection, and [Bas99] used an 

LDI to encode the reflected objects.  Our work generalizes parameterizations based solely on viewpoint and 
automatically allocates texture storage per object.  We also encode an entire texture at each point in parameter space 

that can be accessed in constant time independent of the size of the whole representation. 

Another IBR hybrid uses view-dependent textures (VPT) [Deb96,Deb98,Coh99] in which geometric objects 

are texture-mapped using a projective mapping from view-based images.  VPT methods depend on viewpoint 

movement for proper antialiasing – novel views are generated by reconstructing using nearby views that see each 
surface sufficiently “head-on”.   Such reconstruction is incorrect for highly specular surfaces.  We instead infer 

texture maps that produce antialiased reconstructions independently at each parameter location, even for spaces with 

no viewpoint dimensions.  This is accomplished by generating per-object segmented images in the ray tracer and 
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inferring textures that match each segmented layer.  In addition to our generalized parameterization, a major 

difference in our approach is that we use “intrinsic” texture parameterizations (i.e., viewpoint-independent (u,v) 

coordinates per vertex on each mesh) rather than view-based ones.  We can then capture the view-independent 
lighting in a single texture map rather than a collection of views to obtain better compression.  Furthermore, 

disocclusions are handled without encoding which polygons are visible in which views or gathering polygons 

corresponding to different views in separate passes.  To infer information corresponding to occluded regions of an 

object, we use a pyramidal regularization term in our texture inference (Section 3.2) that provides smooth “hole-

filling” without a specialized post-processing pass.  

 
Interactive Photorealism  Another approach to interactive photorealism seeks to improve hardware shading 

models rather than fully tabulating incident or emitted radiance.  Examples include the work of Diefenbach 
[Dief96], who used shadow volumes and recursive hardware rendering to compute approximations to global 

rendering, Ofek and Rappoport [Ofek98], who extended this work to curved reflectors, and Udeshi and Hansen 

[Ude99], who improved soft shadows and indirect illumination and added a separate compositing pass for specular 

reflections.  Cabral et al. [Cab99] used image-based radiance distributions encoded in reflection maps for more 

photorealistic lighting.  Kautz and McCool [Kau99] computed two texture maps to approximate a BRDF with 

hardware rendering.  Heidrich and Seidel [Hei99b] encoded anisotropic lighting and specular reflections with 
Fresnel effects using hardware texturing.  Even using many parallel graphics pipelines (8 for [Ude99]) these 

approaches can only handle simple scenes, and, because of limitations on the number of passes, do not capture all 

the effects of a full offline photorealistic rendering, including multiple bounce reflections and refractions and 

accurate shadows. 

 

Texture Recovery/Model Matching  The recovery of texture maps from the gold-standard images is closely 
related to surface reflectance estimation in computer vision [Sat97,Mar98,Yu99].  Yu et al. [Yu99] recover diffuse 

albedo maps and a spatially invariant characterization of specularity in the presence of unknown, indirect lighting. 
We greatly simplify the problem by using known geometry and separating diffuse and specular lighting layers 

during the offline rendering.  We focus instead on the problem of inferring textures for a particular graphics 

hardware target that “undo” its undesirable properties, like poor-quality texture filtering.  A related idea is to 

compute the best hardware lighting to match a gold standard [Wal97].  

 

Compression  Various strategies for compressing the dual-plane lumigraph parameterization have been proposed.  
[Lev96] used vector quantization and entropy coding to get compression ratios of up to 118:1 while [Lal99] used a 

wavelet basis with compression ratios of 20:1.   [Mil98] compressed the 4D surface light field using a block-based 
DCT encoder with compression ratios of 20:1.  [Nis99] used an eigenbasis (K-L transform) to encode surface 

textures achieving compression rations of 20:1 with eigenbases having 8-18 texture vectors.  Such a representation 

requires an excessive number of “eigentextures” to faithfully encode highly specular objects.  This prohibits real-

time decoding, which involves computing a linear combination of the eigentextures.  We use a Laplacian pyramid 

on blocks of the parameter space.  This speeds run-time decoding (for 8×8 blocks of a 2D parameter space, only 4 
images must be decompressed and added to decode a texture) and achieves good quality at compression ratios up to 

800:1 in our experiments.  Other work on texture compression in computer graphics includes Beers et al [Bee96], 
who used vector quantization on 2D textures for compression ratios of up to 35:1. 

Another relevant area of work is animation compression.  Standard video compression uses simple block-based 

transforms and image-based motion prediction [Leg91].  Guenter et al., [Gue93] observed that compression is 

greatly improved by exploiting information available in synthetic animations.  In effect, the animation script 

provides perfect motion prediction, an idea also used in [Agr95].  Levoy [Lev95] showed how simple graphics 
hardware could be used to match a synthetic image stream produced by a simultaneously-executing, high-quality 

server renderer by exploiting polygon rendering and transmitting a residual signal to the client.  Cohen-Or et al. 

[Coh99] used view-dependent texture maps to progressively transmit diffusely-shaded, texture-intensive 

walkthroughs, finding factors of roughly 10 improvement over MPEG for scenes of simple geometric complexity. 

We extend this work to the matching of multidimensional animations containing non-diffuse, offline-rendered 

imagery by texture-mapping graphics hardware.  

3 Parameterized Texture Inference 

We infer texture maps using an optimization approach that models how the graphics hardware projects them to the 
screen.  This is done by directly querying the target hardware using a series of test renderings of the actual geometry 

on that hardware (Section 3.2).  Inferred texture maps can then be encoded (Section 4).  To achieve a good 

encoding, it is important to determine an appropriate texture resolution and avoid encoding parts of the texture 

domain that are not visible (Section 3.4).    
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3.1 Segmenting Ray-Traced Images 
Each geometric object has a parameterized texture that must be inferred from the ray-traced images.  These images 

are first segmented into per-object pieces to prevent bleeding of information from different objects across 

silhouettes.  Bleeding decreases coherence and leads to misplaced silhouettes when the viewpoint moves away from 
the original samples.  To perform per-object segmentation, the ray tracer generates a per-object mask as well as a 

combined image, all at supersampled resolution.  For each object, we then filter the relevant portion of the combined 

image as indicated by the mask and divide by the fractional coverage computed by applying the same filter to the 

object’s mask.  A gaussian filter kernel is used to avoid problems with negative coverages. 

A second form of segmentation separates the view-dependent specular information from the view-independent 

diffuse information, in the common case that the parameter space includes at least one view dimension.  This 
reduces the dimensionality of the parameter space for the diffuse layer, improving compression.  As the image is 

rendered, the ray-tracer places information from the first diffuse intersection in a view-independent layer and all 

other information in a view-dependent one.  Figure 2 illustrates segmentation for an example ray-traced image.  We 

use a modified version of Eon, a Monte Carlo distribution ray-tracer [Coo84,Shi92,Shi96]. 

 

(a) Complete Image 
 

(b) Diffuse Layer (c) Specular Layer (d) Diffuse Table Layer (e) Specular Parfait Layer 

Figure 2: Segmentation of Ray-Traced Images.  (a) Complete Image,  (b,c) Segmentation into diffuse and specular layers 

respectively,  (d,e) Examples of further segmentation into per object layers. 

3.2 Least-Squares Method 
A simple algorithm for inferring an object’s texture map from its segmented image maps each texel location to the 

image and then filters the neighboring region to reconstruct the texel’s value [Mar98].  One problem with this 

approach is reconstruction of texels near arbitrarily-shaped object boundaries and occluded regions (Figure 2-d,e). It 
is also difficult to infer MIPMAPs when there are occluded regions whose corresponding regions in the texture 

image are undefined.  Finally, the simple algorithm does not take into account how texture filtering is performed on 

the target graphics hardware. 

A more principled approach is to model the hardware texture mapping operation in the form of a linear system: 
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where vector b contains the ray-traced image to be matched, matrix A contains the filter coefficients applied to 

individual texels by the hardware, and vector x represents the texels from all l-1 levels of the MIPMAP to be 

inferred.  Superscripts in x entries represent MIPMAP level and subscripts represent spatial location. Note that this 
model ignores hardware nonlinearities in the form of rounding and quantization.  While Equation 1 expresses the 

problem for just one color component, the matrix A is common across all color components. 

Each row in matrix A corresponds to a particular screen pixel, while each column corresponds to a particular 

texel in the texture’s MIPMAP pyramid.  The entries in a given row of A represent the hardware filter coefficients 

that blend texels to produce the color at a given screen pixel.  Hardware filtering requires only a small number of 

texel accesses per screen pixel, so the matrix A is very sparse.  We use the hardware z-buffer algorithm to determine 
object visibility on the screen, and need only consider rows (screen pixels) where the object is visible.  Other rows 

are logically filled with zeroes but are actually deleted from the matrix, by using a table of visible pixel locations. 

Filter coefficients should sum to one in any row.1 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3: Obtaining Matrix A. (a) Screen image with single texel in an 8x8 texture is set to full intensity value  (b) Screen 

image when multiple texels in a 64×64 texture image are set to full intensity values, such that alternate 8×8 blocks do not overlap. 

(c) Screen image with 256×256 texture where two of the color components are used for encoding texel identifiers.   

 

Obtaining Matrix A 

A simple but impractical algorithm for obtaining A examines the screen output from a series of renderings, each 

setting only a single texel of interest to a nonzero value (Figure 3a), as follows 

 Initialize z-buffer with visibility information by rendering entire scene 
 For each texel in MIPMAP pyramid, 
  Clear texture, and set individual texel to maximum intensity 
  Clear framebuffer, and render all triangles that compose object 
  For each non-zero pixel in framebuffer, 
   Divide screen pixel value by maximum framebuffer intensity 
   Place fractional value in A[screen pixel row][texel column] 

Accuracy of inferred filter coefficients is limited by the color component resolution of the framebuffer, 
typically 8 bits.   

To accelerate the simple algorithm, we observe that multiple columns in the matrix A can be filled in parallel 

as long as texel projections do not overlap on the screen and we can determine which pixels derive from which 

texels (Figure 3b).  An algorithm that subdivides texture space and checks that alternate texture block projections do 

not overlap can be devised based on this observation.  A better algorithm recognizes that since just a single color 
component is required to infer the matrix coefficients, the other color components (typically 16 or 24 bits) can be 

used to store a unique texel identifier that indicates the destination column for storing the filtering coefficient 

(Figure 3c). 

For trilinear MIPMAP filtering, a given screen pixel accesses four texels in one MIPMAP level, as well as four 

texels either one level above or below having the same texture coordinates.   To avoid corrupting the identifier, we 

must store the same texel identifier in the possible filtering neighborhood of a texel, as shown in Figure 4. By 
leaving sufficient spacing between texels computed in parallel,  A can be inferred in a fixed number of renderings, P,  

                                                           
1 In practice, row sums of inferred coefficients are often less than one due to truncation errors.  A simple correction is to add an 

appropriate constant to all nonzero entries in the row.  A more accurate method recognizes that each coefficient represents the slope of a straight 

line in a plot of screen pixel versus texel intensity.  We can therefore test a variety of values and return the least squares line.    
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where P=6×6×3=108.2  This assumes that the “extra” color components contain at least log ( )
2
n P  bits where n is 

the number of texels. 

T
0
(t)

T
1
(T

0
(t))

t t'

T
0
(t')

t*

skipped samples

 

Figure 4: Trlinear Filtering Neighborhood for Parallel Matrix Inference:  Red dots represent texel samples; blue dots are 

samples in the next higher level of the MIPMAP.  To infer the filter coefficients at a sample t, we must ensure that all samples 

that could possibly be filtered with it to produce a screen pixel output have identical texel identifiers.  The region T t
0
( )  

represents the region of texture space in the same MIPMAP level that could possibly access sample t with bilinear filtering, 

called its level 0 neighborhood.  This region can possibly access samples from the next higher level of the MIPMAP shown in 

blue and labeled T T t
1 0

( )b g , the level 1 neighborhood of t’s level 0 neighborhood.  We must not solve in parallel a texel that 

shares any of these samples in its filtering neighborhood so only texels whose level 0 neighborhood are completely to the right of 

the dashed line are candidates.  For example, the sample labeled t* can not be solved in parallel with t since t*’s level 1 

neighborhood shares two samples with t, shown outlined in yellow.  Even the sample to its right must be skipped since its level 0 

neighborhood still includes shared samples at the next higher MIPMAP level.  Sample t′  is the closest to t that can be solved in 

parallel.  Thus in each dimension, at least 5 samples must be skipped between texels that are solved in parallel. 

Inference with Antialiasing 

To antialias images, we can perform supersampling and filtering in the graphics hardware.  Unfortunately, this 

decreases the precision with which we can infer the matrix coefficients, since the final result is still an 8-bit quantity 

in the framebuffer.  Higher precision is obtained by inferring based on the supersampled resolution (i.e., without 
antialiasing), and filtering the matrix A using a higher-precision software model of the hardware’s antialiasing filter. 

Sub-pixels (rows in the supersampled matrix) that are not covered by the object should not contribute to the 

solution.  As in the segmentation technique of Section 3.1, we filter the matrix A and then divide by the fractional 

coverage at each pixel as determined by the hardware rendering.  Small errors arise because of minor differences in 

pixel coverage between the ray-traced and hardware-generated images.  

Solution Method 

A is an ns× nt matrix, where ns is the number of screen pixels in which the object is visible, and nt is the number of 
texels in the object’s texture MIPMAP pyramid.  Once we have obtained the matrix A, we solve for the texture 

represented by the vector x by minimizing a function f(x) defined via 

 
f x Ax b

f x A Ax bT

( )

( ) ( )

= -

— = -

2

2
 (2) 

                                                           
2 This number is obtained by solving in parallel every sixth sample in both dimensions of the same MIPMAP level, and every third 

MIPMAP level, thus ensuring that possible filtering neighborhoods of samples solved in parallel do not interfere.  For hardware with the power of 
two constraint on texture resolution, there is an additional technical difficulty when the texture map has one or two periodic (wrapping) 

dimensions.  In that case, since 6 does not evenly divide any power of 2, the last group of samples may wrap around to interfere with the first 

group.  One solution simply solves in parallel only every eighth sample. 
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subject to the constraint 0 1£ £xi j

k

,

.  Availability of the gradient,—f x( ) , allows use of the conjugate gradient method 

to minimize f(x) [Pre92].  Since f(x) and —f x( )  are most often evaluated in pairs, we can factor out the computation 

of Ax-b.  The main computation of the solution’s inner loop multiplies A or AT with a vector representing the current 

solution estimate.  Since A is a sparse matrix with each row containing a small number of nonzero elements (exactly 

8 with trilinear filtering), the cost of multiplying A with a vector is proportional to ns.   

Another way to express the same f(x) and —f x( )  is as follows: 

 
f x x A Ax x A b b b

f x A Ax A b

T T

T T

( )

( )

= - ◊ + ◊

— = -

2

2 2
 (3) 

Again, since f(x) and —f x( )  are often evaluated simultaneously, we can factor out the computation of A Ax
T , and 

precompute the constants A A
T , A b

T , and b b◊ .  In this formulation, the inner loop’s main computation  multiplies 

A A
T , an nt×nt matrix, with a vector.  SinceA A

T  is also sparse, though likely less so than A, the cost of multiplying 

A A
T  with a vector is proportional to nt.   We use the following heuristic to decide which set of equations to use: 

 if (2n Kn
s t
≥ ) 

  Use A A
T
 method: Equation (3)  

 else  

  Use A method: Equation (2) 

where K is a measure of relative sparsity of A A
T  compared to A.  We use K =4.  The factor 2 in the test arises 

because Equation (2) requires two matrix-vector multiplies while Equation (3) only requires one. 

The solver can be sped up by using an initial guess vector x that interpolates the solution obtained at lower 
resolution.  The problem size can then be gradually scaled up until it reaches the desired texture resolution [Lue94]. 

This multiresolution solver idea can also be extended to the other dimensions of the parameter space.  Alternatively, 

once a solution is found at one point in the parameter space, it can be used as an initial guess for neighboring points, 

which are immediately solved at the desired texture resolution.  We find the second method to be more efficient. 

Segmenting the ray-traced images into view-dependent and view-independent layers allows us to collapse the 
view-independent textures across multiple viewpoints.  To compute a single diffuse texture, we solve the following 

problem: 
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where matrix ¢A  coalesces the A matrices for the individual viewpoints v0 through vn-1, vector ¢b  coalesces the ray-

traced images at the corresponding viewpoints, and vector x represents the diffuse texture to be solved.  Since the 

number of rows in ¢A  tends to be much larger than the number of columns, we use the A A
T  method described 

earlier in Equation (3).  In addition to speeding up the solver, this method also reduces memory requirements. 

Regularization 

Samples in the texture solution should lie in the interval [0,1].  To ensure this we add a regularizing term to the 

objective function f(x), a common technique for inverse problems in computer vision [Ter86,Lue94,Eng96].  The 
term, called the range regularization, is defined as follows: 
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 (5) 

where d = 1 512 .  The function g approaches infinity at -d and 1+d  and thus penalizes texels outside the range. 

The regularizing term consists of three parts: a summation over all texels in x of the function g, a calibration 

constant giving the regularizing term roughly equal magnitude with f(x), and a user-defined constant,e
b
, that adjusts 

the importance of constraint satisfaction.  We compute —f reg-01  analytically for the conjugate gradient method. 

One of the consequences of setting up the texture inference problem in the form of Equation (1) is that only 

texels actually used by the graphics hardware are solved, leaving the remaining texels undefined.  To support 
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graceful degradation away from the original parameter samples and to improve spatial coherence, all texels should 

be defined.   This can be achieved by adding a second term, called the pyramidal regularization, of the form: 

 f x f x
n

n
xreg f

s

t

reg-pyramid ( ) ( ) ( )= +

F

HG
I

KJ-01 e G  (6) 

where G ( )x  takes the difference between the texels at each level of the MIPMAP with an interpolated version of the 

next coarser level as illustrated in Figure 5.  The factor n n
s t

 gives the regularization term magnitude roughly equal 

with f.3  Again, we compute —f reg-pyramid  analytically.  This regularizing term essentially imposes a filter constraint 

between levels of the MIPMAP, with user-defined strength e f .  We currently use a simple bilinear filter to allow 

fast construction of the MIPMAP during texture decoding.4  We find that the first regularizing term is not needed 

when this MIPMAP constraint is used.  
 

Interpolate

Σ ||Difference||2
Level 0

Level 1

Level 2

Level 3

 

Figure 5: Pyramidal regularization is computed by taking the sum of squared differences between texels at each level of the 

MIPMAP with the interpolated image of the next higher level. 

                                                           
3 The objective function f sums errors in screen space, while the two regularization terms sum errors in texture space.  This requires a scale of the 

regularization terms by ns/nt. 
4 Note that while the solution step occurs during pre-preprocessing, it must account for whatever filter is actually used during the run-time 
processing to produce the best match. 
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3.3 Results with Least-Squares Method 
 

    
 

    
bilinear 
e
b
= 0 03.  

trilinear 
e
b
= 0 03.  

anisotropic 
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b
= 0 03.  

pyramidal reg.  
e f = 01.  

pyramidal reg. 
e f = 0 5.  

forward map 

original 

MSE=4.34 MSE=5.31 MSE=4.81 MSE=4.96 MSE=9.58 MSE=10.72 

(a) Images (Close-up of Parfait Stem and Error Signal) 

 

     
bilinear 
e
b
= 0 03.  
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e
b
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e
b
= 0 03.  

pyramidal reg. 
e f = 01.  

pyramidal reg. 
e f = 0 5.  

forward map 

(b) Inferred Texture Maps 

Figure 6: Texture Inference Results:  (a) shows close-ups of the projected texture, compared to the original rendering on the far 

left.  The white highlight within the red box is a good place to observe differences.  The next row shows the inverted error signal, 

scaled by a factor of 20, over the parfait.  The bottom row contains the mean-squared error (MSE), or sum of squared pixel 

differences from the original image. (b) shows the corresponding texture maps.  Pink regions represent undefined regions of the 

texture. 

 

Figure 6 shows results of our least squares texture inference on a glass parfait object.  The far left of the top row (a) 
is the image to be matched, labeled “original”.  The next three images are hardware-rendered from inferred textures 

using three filtering modes on the Nvidia Geforce graphics system: bilinear, trilinear, and anisotropic.  The 
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corresponding texture maps are shown in the first three columns of the next row (b).  These three examples used 

only range regularization with e
b
= 0 03.  and no pyramidal regularization.  Most of the error in these examples is 

incurred on the parfait’s silhouettes due to mismatch between hardware and ray-traced rendering.  Also note that 

errors from texture inference can only be further degraded by lossy compression.  

Bilinear filtering provides the sharpest and most accurate result because it uses only the finest level MIPMAP 
and thus has the highest frequency domain with which to match the original.   Isotropic MIPMAP filtering produces 

a somewhat worse result, and anisotropic filtering is in between.  Note the increase in texture area filled from the 

finest pyramid level for anisotropic filtering compared to trilinear, especially near the parfait stem.  Better 

anisotropic filtering would decrease the difference between bilinear and anisotropic; the Nvidia chip supports only 

anisotropy factors up to 2.  Note though that bilinear filtering produces this highly accurate result only at the exact 

parameter values (e.g., viewpoint locations) and image resolutions where the texture was inferred.  Even slight 
viewpoint changes away from those samples or decrease in image resolution during playback causes much larger 

errors.  

The next two images show results of pyramidal regularization with anisotropic filtering.  It can be seen that 

e f = 01.  is almost identical to inference with no pyramidal regularization (labeled “anisotropic”), but e f = 0 5.  

causes noticeable blurring.  The benefit of pyramidal regularization is that the entire texture is defined (i.e., the 

occlusion “holes” are all filled), allowing arbitrary movement away from the original viewpoint samples.  Smooth 

hole filling also makes the texture easier to compress since there are no hard boundaries between defined and 

undefined samples.   The regularization term makes MIPMAP levels tend toward filtered versions of each other; we 

exploit this fact by compressing only the finest level result of inference and creating the higher levels using on-the-
fly decimation before the texture is loaded. 

Finally, the far right image in (a) shows the “forward mapping” method in which texture samples are mapped 

forward to the object’s image layer and interpolated using a high-quality filter (we used a separable Lanczos-

windowed sinc function with 16 taps in both dimensions).  To handle occlusions, we first filled undefined samples 

in the segmented layer using a simple boundary-reflection algorithm. Forward mapping produces a blurry and 

inaccurate result because it does not account for how graphics hardware filters the textures (in this case, anisotropic 
hardware filtering was used).  In addition, the reflections used to provide a good interpolation near occlusion 

boundaries fill up undefined texture regions with artificial, high-frequency information that is expensive to encode.  

3.4 Optimizing Texture Coordinates and Resolutions 
Since parts of an object may be occluded or off-screen, only part of its texture domain is useful.  We therefore 

choose texture coordinates that minimize the texture area actually needed to render an object within a block of the 

parameter space (blocking will be discussed further in the next section).  In performing this optimization we have 

three goals: to ensure there is adequate sampling of the visible texture image with as few samples as possible, to 
allow efficient computation of texture coordinates at run-time, and to minimize encoding of the optimized texture 

coordinates.  To satisfy the second and third goals, we choose and encode a global affine transformation on the 

original texture coordinates rather than re-specify texture coordinates at individual vertices.  Just six values are 

required for each object’s parameter space block and texture coordinates can be computed with a simple, hardware-

supported transformation.   The algorithm follows: 
 

1 Reposition branch cut in texture dimensions that have wrapping enabled 
2 Find least-squares most isometric affine transformation  
3 Compute maximum singular value of Jacobian of texture to screen space 
    mapping and scale transformation along direction of maximal stretch 
4 Repeat 3 until maximum singular value is below a given threshold 
5 Identify bounding rectangle with minimum area 
6 Determine texture resolution 

  

We first attempt to reposition the branch cut in any texture dimensions that are periodic (i.e., have wrapping 

enabled).  This adjustment realigns parts of the visible texture domain that have wrapped around to become 

discontiguous, for example, when the periodic seam of a cylinder becomes visible.  A smaller portion of texture area 

can then be encoded.  We consider each of the u and v dimensions independently, and compute the texture 

coordinate extents of visible triangle edges after clipping with the viewing frustum.  If a gap in the visible extents 

exists, a branch cut is performed and texture wrapping disabled for that dimension. 
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We then find the affine transformation,5R u v( , ), minimizing the following objective function, inspired by 

[Mai93]  
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where s
i
 represents the length on the screen of a particular triangle edge, i

0
 and i

1
 represent the edge vertices, and 

W
i
 is a weighting term which sums screen areas of triangles on each side of the edge. This minimization choses a 

mapping from texture space to the screen that is as close to an isometry as possible.  As noted in [Mai93], two 
triangles are isometric when their edges have the same lengths.  Hence, our objective function minimizes difference 

in lengths between triangle edges in texture space and on the screen.  We normalize by the minimum edge length so 

as to equally penalize edges that are an equal factor longer and shorter. Conjugate gradient performs the 

minimization with —f x( )  calculated analytically.  Note that a rotational degree of freedom remains in this 

optimization which is fixed in step 5. 

To ensure adequate sampling of an object’s texture, we check the greatest local stretch (singular value) across 

all screen pixels in the block where the object is visible, using the Jacobian of the mapping from texture to screen 
space.  Since the Jacobian for the perspective mapping is spatially varying even within a single polygon, this 

computation is performed separately at each screen pixel.  If the maximum singular value exceeds a user-specified 

threshold (such as 1.25), we scale the affine transformation by the maximum singular value, divided by this 

threshold, in the corresponding direction of maximal stretch.  This essentially adds more samples to counteract the 

worst-case stretching.  We then iterate until the maximum singular value is reduced below the threshold, usually in a 

very small number of iterations. 
The next step identifies the minimum-area bounding rectangle on the affinely transformed texture coordinates. 

by searching over a set of discrete directions.  The size of the bounding rectangle also determines the optimal texture 

resolution, which may need to be rounded to a power of 2 in current hardware.  Finally, since texture resolution 

substantially impacts performance due to texture decompression and transfer between system and video memory, 

our compiler accepts user-specified resolution reduction factors that scale the optimal texture resolution on a per-

object basis. 

                                                           
5 Note that when a branch cut is not possible over a “wrapped” or periodic dimension, we reduce the affine transformation to a scale 

transformation by fixing the values of b and c to zero.  This ensures that the texture’s periodic boundary conditions are not disturbed.  Note also 
that the translational components of the affine transformation cancel from the objective function. 
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Figure 7: Parameter Block Compression.  An 8×8 block of parameterized textures for a glass parfait object is shown.  In this 

example, dimension p1 represents a 1D viewpoint trajectory while p2 represents the swinging of a light source.  Note the high 

degree of coherence in the texture maps.  One of the textures is shown enlarged, parameterized by the usual spatial parameters, 

denoted u and v.  We use a Laplacian pyramid to encode the parameter space and standard 2D compression such as block-based 

DCT to further exploit spatial coherence within each texture (i.e., in u and v). 

4 Parameterized Texture Compression 

The multidimensional field of textures for each object is compressed by subdividing into parameter space blocks as 

shown in Figure 7.  Larger blocks sizes better exploit coherence but are more costly to decode during playback; we 

use 8×8 blocks for our 2D examples.  

v 

p1 

p2 

u
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Figure 8: Adaptive Laplacian Pyramid 

Adaptive Laplacian Pyramid 
We encode parameterized texture blocks using a Laplacian pyramid [Bur83].   Consider a single ( , )u v  texture 

sample, parameterized by a d-dimensional space p p p
d1 2

, , ,Kl q with n samples in each dimension of the block.  

Starting from the finest (bottom) level with nd  samples, the parameter samples are filtered using a Gaussian kernel 
and subsampled to produce coarser versions, until the top of the pyramid is reached containing a single sample that 

averages across all of parameter space.   Each level of the pyramid represents the detail that must be added to the 

sum of the higher levels in order to reconstruct the signal.  Coherent signals have relatively little information at the 
lower levels of the pyramid, so this structure supports efficient encoding.  

Though the Laplacian pyramid is not a critically sampled representation, it requires just log ( )
2
n  simple image 

additions in order to reconstruct a leaf image.  In comparison, a multidimensional Haar wavelet transform requires 

( ) log ( )2 1
2

d
n-  image additions and subtractions.  Another advantage of the Laplacian Pyramid is that graphics 

hardware can perform the necessary image additions using multiple texture stages, thus enabling “on-the-fly” 

decompression6.  For decoding speed, we reconstruct using the nearest-neighbor parameter sample; higher-order 

interpolation temporally smooths results but is much more expensive. 

The “samples” at each pyramid level are entire 2D images rather than samples at a single ( , )u v  location.  We 

use standard 2D compression (e.g., JPEG [Pen92,Xio96] and SPIHT [Sai96] encodings) to exploit spatial coherence 

over ( , )u v  space.  Each level of the Laplacian pyramid thus consists of a series of encoded 2D images.  Parameter 

and texture dimensions are treated asymmetrically because parameters are accessed along an unpredictable 1D 

subspace selected by the user at run-time.  We can not afford to process large fractions of the representation to 

decode a given parameter sample, a problem solved by using the Laplacian pyramid with fairly small block size.   

In contrast, texture maps are atomically decoded and loaded into the hardware memory and so provide more 

opportunity for a software codec that seeks maximum compression without regard for random access.  We anticipate 
that texture map decoding functionality will soon be absorbed into graphics hardware [Bee96].   In that case, 

whatever compressed representation the hardware consumes is a good choice for the “leaf node” texture maps.   

It is typically assumed in image coding that both image dimensions are equally coherent.  This assumption is 

less true of parameterized animations where, for example, the information content in a viewpoint change can greatly 

differ from that of a light source motion.  To take advantage of differences in coherence across different dimensions, 

we use an adaptive Laplacian pyramid that subdivides more in dimensions with less coherence. Figure 8 illustrates 
all the possible permutations of a 2D adaptive pyramid with four levels, in which coarser levels still have 4 times 

fewer samples as in the standard Laplacian pyramid.  Though not shown in the figure, it is also possible construct 

                                                           

6 Present graphics hardware based on DirectX 6.0 supports additions between unsigned fragment values and signed texels.  However, no graphics 
hardware currently supports more than two stages in the texture pipeline.  We expect this number to increase in the future, as there is logical 

support for up to eight texture blending stages in the DirectX API.  Our present prototype implements image operations using MMX instructions 

on the host processor. 
 



14 

pyramids with different numbers of levels, for example to “jump” directly from an 8×8 level to an 8×1.  We pick the 
permutation that leads to the best compression using a greedy search.  

Automatic Storage Allocation  
To encode the Laplacian pyramid, storage must be assigned to its various levels.  We apply standard bit allocation 

techniques from signal compression [Ger92,p.606-610].  Curves of mean squared error versus storage, called 
rate/distortion curves, are plotted for each pyramid level and points of equal slope on each curve selected subject to 

a total storage constraint.   More precisely, let E r
i i
( ) be the mean squared error (MSE) in the encoding of level i 

when using ri bits.  It can be shown that the minimum sum of MSE over all levels subject to a total storage 

constraint of R; i.e., 

min ( )E r r R
i i

i

i

i

' =Â Â  

occurs when the E E E
m1 2

¢ = ¢ = = ¢
L , where m is the total number of levels and E dE dr

i i
¢ = .  We minimize the 

sum of MSEs because a texture image at a given point in parameter space is reconstructed as a sum of images from 

each level, so an error in any level contributes equally to the resulting error.   A simple 1D root finder suffices to 

find E
i
¢  from which the ri can be derived by inverting the rate/distortion curve at level i. 

There is also a need to perform storage allocation across objects; that is, to decide how much to spend in the 

encoding of object A’s texture vs. object B’s.  We use the same method as for allocating between pyramid levels, 

except that the error measure is E A E
i i i
∫ , where Ai is the screen area and Ei

 the MSE of object i.  This minimizes 

the sum of squared errors on the screen no matter how the screen area is decomposed into objects.7 

A complication that arises is that there can be large variations in MSE among different objects, some of which 

can be perceptually important foreground elements.  We therefore introduce a constraint that any object’s MSE 

satisfy E E
i
£ a where E is the average MSE of all objects and a > 1 is a user-specified constant.   A two-pass 

algorithm is used in which we first minimize E
i

i

Â over objects subject to an overall storage constraint.  Using the 

resulting E , we then eliminate the part of the rate distortion curves of any object that incurs more MSE than 

a E and solve again.  This reallocates storage from objects with low MSEs to objects with above-threshold MSEs in 

such a way as to minimize sum of squared error in the below-threshold objects. 

The above algorithms can also be used as a starting point for manual allocation of storage across objects, so 
that more important objects can be more faithfully encoded.  

For objects with both specular and diffuse reflectance, we encode separate lighting layers for which storage 

must be allocated.  We use the method described above on the entire collection of textures across objects and 

lighting layers.  

Compensation for Gamma Correction 
Splitting an object’s lighting layers into the sum of two terms conflicts with gamma correction, since 

g g g( ) ( ) ( )L L L L
1 2 1 2
+ π +  where Li are the lighting layers and g ( )x x

g
=

1  is the (nonlinear) gamma correction 

function.  Typically, g ª 2 2. .  Without splitting, there is no problem since we can simply match texture maps to a 

gamma-corrected version of the gold standard.  With splitting, we instead infer textures from the original, 

uncorrected layers so that sums are correctly performed in a linear space, and gamma correct as a final step in the 
hardware rendering.  The problem arises because gamma correction magnifies compression errors in the dark 

regions. 

To compensate, we instead encode based on the gamma corrected signals, g ( )L
i
, effectively scaling up the 

penalty for compression errors in the dark regions.  At run-time, we apply the inverse gamma correction function 

g
-

=
1( )x x

g  to the decoded result before loading the texture into hardware memory, and, as before, sum using 

texture operations in a linear space and gamma correct the final result.  We note that the inverse gamma function 

employed, as well as gamma correction at higher precision than the 8-bit framebuffer result, is a useful companion 

to hardware decompression.  

5 Runtime System 

The runtime system performs three functions: decompressing and caching texture images, applying encoded affine 

transformations to vertex texture coordinates, and generating calls to the graphics system for rendering.   

The texture caching system decides which textures to keep in memory in decompressed form. Because the 
user’s path through parameter space is unpredictable, we use an adaptive caching strategy based on the notion of 

                                                           
7 To speed processing, we compute errors in texture space rather than rendering the textures and computing image errors.  We find this provides 
an acceptable approximation. 
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lifetimes.  Whenever a texture image is accessed, we reset a count of the number of frames since the image was last 

used.  When the counter exceeds a given lifetime, L, the memory for the decompressed image is reclaimed.  

Different levels of the Laplacian pyramid have different levels of priority since images near the top are more likely 

to be reused.  Lifetimes are therefore computed as L ab
l

= where a is a constant that represents the lifetime for leaf 

nodes (typically 20), b is the factor of lifetime increase for higher pyramid levels (typically 4) and l represents 

pyramid level.  Note that the number of images cached at each pyramid level and parameter space block changes 
dynamically in response to user behavior.      

If blocks of all objects are aligned, then many simultaneous cache misses occur whenever the user crosses a 

block boundary, creating a computational spike as multiple levels in the new blocks’ Laplacian pyramids are 

decoded.  We mitigate this problem by staggering the blocks, using different block origins for different objects, to 

more evenly distribute decompression load.  

6 Results 

6.1 Demo1: Light × View 

Compression Results  The first example scene (Figure 10, top) consists of 6 static objects: a reflective vase, 
glass parfait, reflective table top, table stand, walls, and floor.  It contains 4384 triangles and was rendered in about 5 

hours/frame on a group of 400Mhz Pentium II PCs, producing gold standard images at 640×480 resolution.   The 2D 

parameter space has 64 viewpoint samples circling around the table at 1.8°/sample and 8 different positions of a 

swinging, spherical light source.8 The image field was encoded using eight 8×8 parameter space blocks, each 

requiring storage 640×480×3×8×8= 56.25Mb/block. 
 Our least-squares texture inference method created parameterized textures for each object, assuming trilinear 

texture filtering. The resulting texture fields were compressed using a variety of methods, including adaptive 2D 

Laplacian pyramids of both DCT- and SPIHT-encoded levels.  Storage allocation over objects was computed using 
the method of Section 4, with a max MSE variation constraint of a = 125. .  The decoded textures were then applied 

in a hardware rendering on the Gullemot 3D Prophet SDR graphics card with Nvidia Geforce 256 chip, 32Mb local 

video memory, and 16Mb nonlocal AGB memory running on a Pentium II 400Mhz PC.   To test the benfits of the 

Laplacian pyramid, we also tried encoding each block using MPEG on a 1D zig-zag path through the parameter 

space.  A state-of-the-art MPEG4 encoder [MIC99] was used.  Finally, we compared against direct compression of 

the original images (rather than renderings using compressed textures), again using MPEG 4 with one I-frame per 
block.  This gives MPEG the greatest opportunity to exploit coherence with motion prediction.   

Figure 10 shows the results at two targeted compression rates: 384:1 (middle row) and 768:1 (bottom row), 

representing target storage of 150k/block and 75k/block respectively.  Due to encoding constraints, some 

compression ratios undershot the target and are highlighted in yellow.  All texture-based images were generated on 

graphics hardware; their MSEs were computed from the framebuffer contents.   MSEs were averaged over an entire 

block of parameter space. 
Both Laplacian pyramid texture encodings (right two columns) achieve reasonable quality at 768:1, and quite 

good quality at 384:1.  The view-based MPEG encoding, labeled “MPEG-view”, is inferior with obvious block 

artifacts on object silhouettes, even though MPEG encoding constraints did not allow as much compression as the 

other examples. The SPIHT-encoded Laplacian pyramid is slightly better than DCT, exhibiting blurriness rather 

than block artifacts (observe the left hand side of the vase for the 768:1 row).  The differences in the pyramid 
schemes between the 384:1 and 768:1 targets are fairly subtle, but can be seen most clearly in the transmitted image 

of the table top through the parfait.  Of course, artifacts visible in a still image are typically much more obvious 

temporally.  [Note to reviewers: Result figures should be carefully observed under bright light.] 

For MPEG encoding of textures we tried two schemes: one using a single I-frame per block (IBBPBBP…BBP) 

labeled “MPEG-texture 1I/block”, and another using 10 I-frames (IBBPBBIBBPBBI…IBBP) labeled “MPEG-

texture 10I/block”.  The zig-zag path was chosen so that the dimension of most coherence varies most rapidly, in 
this case the light position dimension. Though single I-frame/block maximizes compression, it increases decoding 

time.  In the worst case, accessing a parameterized texture requires 23 inverse DCT operations, 22 forward 

predictions, 1 backward prediction and 1 interpolation prediction for the single I/block case.9  We do not believe the 

1I/block encoding is practical for real-time decoding, but include the result for quality comparison.  For the 

10I/block, 4 inverse DCT’s, 2 forward predictions, 1 backward prediction, and 1 interpolative prediction are 

                                                           
8 The specific parameters were light source radius of 8, pendulum length of 5, distance of pendulum center from table center of 71, and angular 

pendulum sweep of 22°/sample. 
9 This analysis is also true for the MPEG-view encoding.  Note that decreasing the number of I-frames per block in MPEG is somewhat 

analogous to increasing the block size, and thus the number of levels, in our pyramid schemes – both trade-off decoding speed for better 
compression. 
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required in the worst case.  This is roughly comparable to our DCT Laplacian pyramid decoding, which also 

requires 4 inverse DCT operation, though pyramid reconstruction involves only 3 image additions rather than more 

complicated motion predictions. 
The 10I/block MPEG-texture results have obvious block artifacts at both quality levels especially on the vase 

and green wallpaper in the background.  They are inferior to the pyramid encodings.  This is true even though we 

were unable to encode the scene with higher compression than 418:1, significantly less than the other examples in 

the bottom row.  This result is not surprising given that MPEG can only exploit coherence in one dimension.  The 

1I/block results are better, but still inferior to the pyramid schemes at the 384:1 target, where the vase exhibits 

noticeable block artifacts.  For the 768:1 target, the quality of MPEG-texture 1I/block falls between the SPIHT and 
DCT pyramids.  Note that the MPEG-texture schemes still use many of the novel features of our approach: 

hardware-targeted texture inference, separation of lighting layers, and optimal storage allocation across objects. 

Figure 11 isolates the benefits of lighting separation and adaptive Laplacian subdivision.  These results were 

achieved with the Laplacian SPIHT encoding at the 384:1 target.  With combined lighting layers, adaptive 

subdivision increases fidelity especially noticeable in the table seen through the parfait (Figures 11a and b); MSE 

across the block is reduced 20%.  This is because textures, especially the parfait’s, change much less over the light 
position dimension than over the view dimension.  In response, the first level of pyramid subdivision occurs entirely 

over the view dimension.  We then separately encode the diffuse and specular lighting layers, still using adaptive 

subdivision (Figure 11c).   While this increases MSE slightly because additional texture layers must be encoded10, 

the result is perceptually better, producing sharper highlights on the vase. 

System Performance  Average compilation and preprocessing time per point in parameter space was as follows: 

texture coordinate optimization .93 sec 

obtaining matrix A 2.15 min 

solving for textures 2.68 min 

storage allocation across pyramid levels  .5 min 

storage allocation across objects 1 sec 

compression 5 sec 

total compilation 5.4 min 

ray tracing 5 hours 

It can be seen that total compilation time is a small fraction of the time to produce the ray-traced images. 
To determine playback performance, we measured average and worst-case frame rates (frames per second or 

fps) for a diagonal trajectory that visits a separate parameter sample at every frame.  The results for both DCT- and 

SPIHT-Laplacian pyramid encodings are summarized in the following table, and used compression at the 384:1 

target: 

Encoding Texture decimation Worst fps Average fps 

undecimated 1.30 2.38 
Laplacian DCT 

decimated 3.51 8.77 

undecimated 0.18 0.39 
Laplacian SPIHT 

decimated 1.03 2.62 

The performance bottleneck is currently software decoding speed. When all necessary textures are cached in 

decompressed form, our system achieves an average frame rate of 34 frames/second.  To improve performance, we 

tried encoding textures at reduced resolution.   Reducing texture resolution by an average factor of 11 (91%) using a 

manually specified reduction factor per object provides acceptable quality at about 9fps with DCT.  [Note to 
reviewers: These are the real-time results shown in the video.]  Decoding speedup is not commensurate with 

resolution reduction because it partially depends on signal coherence and decimated signals are less coherent. 

6.2 Demo2: View × Object Rotation 
In the second example, we added a rotating, reflective gewgaw on the table.  The parameter space consists of a 1D 

circular viewpoint path, containing 24 samples at 1.5°/sample, and the rotation angle of the gewgaw, containing 48 

samples at 7.5°/sample.  Results are shown in Figure 12 for encodings using MPEG-view and Laplacian SPIHT. 
This is a challenging example for our method.  There are many specular objects in the scene, reducing the 

effectiveness of lighting separation (the gewgaw and parfait have no diffuse layer).  The parameter space is much 

more coherent in the rotation dimension than in the view dimension, because gewgaw rotation only changes the 

relatively small reflected or refracted image of the gewgaw in the other objects.   On the other hand, the gewgaw 

itself is more coherent in the view dimension because it rotates faster than the view changes.  MPEG can exploit this 

                                                           
10 Only the table-top and vase objects had separately encoded diffuse and specular layers; they were the only objects with diffuse and reflective 
terms in their shading model.  Thus a total of 8 parameterized textures were encoded for this scene. 
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coherence very effectively using motion compensation along the rotation dimension.  Though our method is 

designed to exploit multidimensional coherence and lacks motion compensation, our adaptive pyramid also responds 

to the unbalanced coherence, producing a slightly better MSE and a perceptually better image. 
To produce these results, we manually adjusted the storage allocation over objects.  Shading on the background 

objects (walls, floor, and table stand) is static since they are diffuse and the gewgaw casts no shadows on them.  

Their storage can thus be amortized over all 18 blocks of the parameter space.  Because they project to a significant 

fraction of the image and can be so efficiently compressed, our automatic method gives them more storage than their 

perceptual importance warrants.   We reduced their allocation by 72% and devoted the remainder to an automatic 

allocation over the foreground objects.   Even with this reduction, the texture-based encoding produces less error on 
the background objects, as can be seen in Figure 12.  

Real-time performance for this demo is approximately the same as for demo1. 

7 Conclusions and Future Work 

Synthetic imagery can be very generally parameterized using combinations of view, light, or object positions, 

among other parameters, to create a multidimensional animation.  While real-time graphics hardware fails to capture 

all the shading effects of a ray tracer running offline, it does provide a useful operation for quickly decoding  such 

an animation compiled beforehand: texture-mapped polygon rendering.  We encode a parameterized animation 

using parameterized texture maps, exploiting the great coherence in these animations better than view-based 
representations.   This paper describes how to infer parameterized texture maps from segmented imagery to obtain a 

close match to the original and how to compress these maps efficiently, both in terms of storage and decoding time.  

Results show that compression factors up to 800 can be achieved with good quality and real-time decoding.  Unlike 

previous work in multidimensional IBR, we also show our methods to be superior to a state of the art image 

sequence coder applied to a sensible collapse of the space into 1D. 
Our simple sum of diffuse and specular texture maps is but a first step toward more predictive graphics models 

supported by hardware to aid compression.  Examples include parameterized environment maps to encode 

reflections, hardware shadowing algorithms, and per-vertex shading models.  We have also done preliminary work 

in using other texture blending operations such as multiplication.  This is useful for separating a high-frequency but 

parameter-independent albedo map from a low-frequency, parameter-dependent incident irradiance field.  In any 

case, we believe that the discipline of measuring compression ratios vs. error for encodings of photorealistic imagery 
is a useful benchmark for proposed hardware enhancements. 

Extending this work to deforming geometry should be possible using parameter-dependent geometry 

compression [Len99].  Another extension is to match photorealistic camera models (e.g., imagery with depth of field 

effects) in addition to photorealistic shading.  This may be possible with accumulation-buffer methods [Hae90] or 

with hardware post-processing on separately rendered sprites [Sny98].  Use of perceptual metrics to guide 

compression and storage allocation is another important extension [Lub95,Sub99].  Further work is also required to 
automatically generate contiguous, sampling-efficient texture parameterizations over arbitrary meshes using a 

minimum of maps. 

Finally, we are interested in measuring storage required as the dimension of the parameterized space grows and 

hypothesize that such growth is quite small in many useful cases.  There appear to be two main impediments to 

increasing the generality of the space that can be explored: slowness of offline rendering and decompression.  The 

first obstacle may be addressed by better exploiting coherence across the parameter space in the offline renderer, 
using ideas similar to [Hal98].   The second can be overcome by absorbing some of the decoding functionality into 

the graphics hardware.  We expect the ability to load compressed textures directly to hardware in the near future.  A 

further enhancement would be to load compressed parameter-dependent texture block pyramids. 
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Figure 10: Demo1 Compression Results 
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Figure 11: Benefits of Adaptive Subdivision and Lighting Separation 
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Figure 12: Demo2 Results 

 


