Visual Comput (2006) 22: 612—-621
DOI 10.1007/s00371-006-0052-0

Rui Wang

Kun Zhou
John Snyder
Xinguo Liu
Hujun Bao
Qunsheng Peng
Baining Guo

objects

ORIGINAL ARTICLE

Variational sphere set approximation for solid

Published online: 17 August 2006
© Springer-Verlag 2006

K. Zhou (?2) - B. Guo
Microsoft Research Asia
{kunzhou,bainguo} @microsoft.com

R. Wang* - X. Liu - H. Bao - Q. Peng

Abstract We approximate a solid
object represented as a triangle mesh
by a bounding set of spheres having
minimal summed volume outside the
object. We show how outside volume
for a single sphere can be computed
using a simple integration over the
object’s triangles. We then minimize
the total outside volume over all
spheres in the set using a variant

of iterative Lloyd clustering that
splits the mesh points into sets and
bounds each with an outside volume-

our method often requires half as
many spheres, or fewer, to obtain
the same error, under a variety of
error metrics including total outside
volume, shadowing fidelity, and
proximity measurement.

Keywords Variational approxi-
mation - Solid objects - Shadow -
Collision detection

State Key Lab of CAD & CG, Zhejiang
University
{rwang,xgliu,bao,peng} @cad.zju.edu.cn

J. Snyder
Microsoft Research
johnsny @microsoft.com

1 Introduction

Object approximation using sets of simple primitives
plays an important role in many time-critical applica-
tions in computer graphics, such as collision, hit, and
proximity detection, view-frustum and occlusion culling,
visibility and ray intersection queries, and shadowing.
Many different geometric primitives have been used in-
cluding spheres [3, 7, 15, 19], axis-aligned bounding boxes
(AABBs) [2], oriented bounding boxes (OBBs) [5, 11],
and discrete oriented polytopes (k-DOPs) [10]. Typically,
a trade-off exists between the primitive’s simplicity and
its fitting flexibility. A sphere set is probably the sim-
plest representation to update for dynamic geometry and

*This work was done while Rui Wang was an intern at Microsoft Research
Asia.

minimizing sphere. The resulting
sphere sets are tighter than those of
previous methods. In experiments
comparing against a state-of-the-art
alternative (adaptive medial axis),

to perform collision-related queries on, and so has found
widespread use in applications.

Our goal is to bound an object as tightly as possible
using a user-specified number of spheres, denoted n;. Pre-
vious methods have involved arbitrary decisions and fit-
ting metrics not directly tied to bounding tightness, and
have been too local/greedy in their fitting approach. Our
solution introduces two contributions: a new metric that
more directly measures tightness of fit, and a global, vari-
ational method that directly minimizes this metric.

Our novel fit function is based on the volume between
the sphere set and the original object, called the outside
volume (Fig. 1¢). In particular, our notion of error ignores
overlaps in the sphere set as long as they occur in the ob-
ject’s interior; only sphere volume “sticking out” of the
object is penalized. Neglecting interior overlap provides
much-needed flexibility and satisfies our intuition that for
many applications, including those related to collision de-

Variational sphere set approximation for solid objects ~ 613

oL X 1)

original clusters outside vol. total vol.
a b C approx. e approx.

Fig.1la-d. Solid approximation (2D). Our approximation (c),
which minimizes outside volume, is more effective than methods
(d) minimizing total volume of the bounding elements (blue and
red circles)

tection and (opaque) visibility, interior overlap is irrele-
vant.

To find the sphere centers and radii, we apply a vari-
ant of the variational approach in [4] using spheres as
the fit primitive and outside volume as the fit function.
The method converges to an approximation minimizing
outside volume. For a given ng, we demonstrate that our
sphere sets are much tighter than those produced by other
methods, and produce better results in a variety of applica-
tions.

2 Related work

Sphere set approximation can be computed by subdividing
an object into an octree and placing spheres at each non-
vacant leaf node [6,12]. The arbitrary subdivision grid
wastes many spheres.

Quinlan [15] uses top-down recursive splitting (RS). It
first covers the surface with uniformly-sized spheres, splits
the resulting sphere set using the longest axis of its bound-
ing box, and then recursively visits the two child lists. RS
is used for constructing sphere-trees for visibility culling
and level-of-detail rendering [18] and for collision detec-
tion on deformable models [9]. An alternative is to merge
similar spheres in a bottom-up fashion [16,21]. Splitting
or merging is done greedily and, thus, suboptimally at
each stage. More fundamentally though, the basic strat-
egy attempts to minimize the total bounding volume rather
than the outside volume (see Fig. 1).

Methods based on the medial axis [1, 7] build a Voronoi
diagram and center spheres at its vertices. Adaptive me-
dial axis approximation (AMAA) [3] extends this idea
using greedy optimization to merge pairs of neighboring
spheres. The approach is superior to other methods, but
still involves many greedy decisions and is not directly
tied to outside volume.

Variational approximation alternates two phases, par-
titioning based on Lloyd clustering [13] and fitting, in
order to find an optimal, piecewise-linear approximation
of the input geometry [4]. Further work [24] extends the
approximating primitives from planar elements to spheres
and cylinders. Our method builds on this work but uses
an entirely different metric (outside volume rather than

integrated surface distance) appropriate for solid object
queries such as collision and visibility rather than sur-
face simplification. As is true for nonlinear optimization
in general, increased searching and better heuristics can
locate better solutions but finding the global minimum
cannot be guaranteed.

3 Sphere set approximation

Surface approximation. Approximation theory deals with
the problem of approximating complicated mathematical
objects with simpler ones. In [4], approximation error is
defined as the distance between the original surface X and
the approximation Y, defined by

iff ldCx, D)7 dx
x| ’

xeX

d(x,Y) = inf ||lx —yl|,
yeY

LP(X,Y) = (D

where ||.|| is Euclidean distance and |.| is surface area.

Solid approximation. The above definition is appropriate
for surfaces not solids. On the other hand, [3, 7] present
a metric suitable for solids that measures the distance to
the sphere surface along the polygon normal direction,
over a set of sample points on the original surface X. Be-
cause the method is based on point samples and projects
distances onto discrete polygon normals, it can easily miss
or underweigh regions of large protrusion. It also neglects
concavities (see Fig. 5). We instead apply a volumetric

SOTV

a outside volume c

Fig. 2a—c. Outside volume, SOV, and SOTV. a The green region
is the outside volume. b A single sphere is divided by the object’s
triangles into two parts: inside (gray) and outside volume or SOV
(green). ¢ One triangle is highlighted (brown) to show its corres-
ponding SOTV. SOV is computed via a sum over SOTVs

614 R. Wang et al.

version of Eq. 1 that measures volume outside the object
but inside an approximating sphere (Fig. 2a,b). More pre-
cisely, for a single sphere S the error metric, called sphere
outside volume (SOV), is defined as

E(X, S) = / f / d(X, y)dy @)
yeS
d(x,y>={(1) i;i

where X is the original object and d(X, y) returns if
a point y is outside X. The global error metric for the en-
tire sphere set is defined by summing E(X, S;) over all
spheres in the set {S;}. S; is defined by the center o; and the
radius 7;.

Unlike the Hausdorff error, this definition is one-
sided: only volume in the sphere set outside the original
mesh counts. This is reasonable, since we are computing
a bounding approximation through which no part of the
original mesh can protrude. Another issue is that our defin-
ition overcounts volume from S; that overlaps outside X.
Neglecting this typically small overlap makes the compu-
tation tractable, because each S;’s SOV can be computed
independently without a set union operation.

4 Computing outside volume

A simple method to compute Eq. 2 is to discretize the
sphere set volume into a regular grid and count the num-
ber of grid cells outside the object. Too many grid cells
are necessary to compute outside volume accurately. We
instead apply an analytic method to compute the volume
by directly integrating it triangle by triangle. For a sphere,
Eq. 2 can be represented as

EX,S)=WT,S), 3)
where T is the triangle set representing the object X, and
V is the volume outside 7 but inside the sphere S. The
outside volume of the entire sphere set approximation then
is:

E(X, S) = Z (T, S) .

i=1

“4)

If a triangle ¢ € T is entirely or partly inside the sphere
S, then volume exists between the sphere shell and the
triangle, denoted V(z, S) and is named sphere-outside-
triangle volume (SOTV) (Fig. 2c). The total SOV is ac-
cumulated by adding or subtracting these SOTVs over all
triangles ¢ € T in the solid object’s mesh.

D Je

a 3 vert. in

2 vert. out d

3 vert. out € 1 vert. out

Fig.3a-d. SOTV computation. Four cases (a—d) of the trian-
gle/sphere relation, based on how many triangle vertices are inside
the sphere, are shown in the top row. The triangle is drawn in red
and the darker green region represents its SOTV. The bottom row
shows how the SOTV is computed in each case

4.1 Computing SOTV

Figure 3 classifies four possible relations between a sphere
= (0, r) and a triangle ¢t € T. Cases (a) and (b) are sim-
ple, while (c) and (d) are somewhat more complicated.
For case (a), SOTV is given by
1
Vit,) = Vai(t, 8) = Viee(t, 0) = (7 2= D),
where Vgyi(t, S) is the volume bounded by the spherical
triangle formed by projecting the vertices of triangle ¢ onto
the sphere S, and Vie((t, ¢) is the volume of the tetrahedron
formed by the sphere center o and the three vertices of the
triangle 7. £2 is the solid angle of the triangle on the sphere,
D is the area of triangle ¢, & is the height of ¢’s plane above
0, and r is the sphere radius. For case (b), the volume is

Vit, S) = 7 h? (r—§>)

For case (c), we find the arc representing the intersec-
tion of the triangle and sphere, and the two points, pg
and p1, where this arc intersects the triangle edges (green
points in Fig. 3c, bottom). The outside volume can be fur-
ther decomposed into one volume corresponding to case
(a) and an additional “swing” volume whose computation
we will describe in more detail later.

Finally, for case (d), the two points of intersection
where the triangle edges exit the sphere, along with the
two triangle vertices inside the sphere, form a quadrilateral
region that can be split into two triangles. One triangle’s
outside volume corresponds to case (a) and the other one
to case (c) (Fig. 3d, bottom).

Swing volume lies between two planes hinged between
the points pg and p; where the triangle edges exit the

Variational sphere set approximation for solid objects 615

Fig. 4a—c. Swing volume computation. a swing volume integral, b
integral slice: S(x), ¢ slice decomposition

sphere (green points in Fig. 3c, bottom). One of the these
planes is that of the triangle and the other contains py,
p1 and the sphere origin o. The angle between these two
planes is denoted ¢.

To compute swing volume, we use a canonical orienta-
tion where the triangle normal aligns to the y-axis while
the vector pg — po aligns to the x-axis. Define [= ||p; —
poll. Without loss of generality, we can assume a unit-
radius sphere (r = 1), and then scale the resulting swing
volume by r3. The normalized swing volume then de-
pends on only two parameters, / and ¢. As a preprocess,
we record a 2D table of swing volumes using numerical
integration based on the formula derived below.

In Fig. 4a, the swing volume is broken into 2D slices
using planes perpendicular to the x-axis. One of these
planes for a particular value of x intersects the sphere in
a circle, shown with a dashed outline in Fig. 4a. This x
plane intersects the swing volume to form aregion we
denote S(x), colored green in the figure. Its area can be
computed by subtracting the area of the triangle (blue)
from the entire sector (yellow), as shown in Fig. 4c.

The entire volume can be defined as an integral of S(x)
over x from xg = _71 to x; = é Figure 4b shows the re-
gion S(x) in a simpler 2D projection where the view is
now perpendicular to the x-axis. The region may be de-
fined in terms of the variable ry and two constants, /o and

Iy, where ry =+/1 —x2, Iy is the distance of the triangle
plane to the sphere center o, and /1 is the distance of the
projection of o onto the triangle plane to the segment from

po to p1:

1\? 1\?
Iy = 1—(5) sin(p), 11 = 1—(5) cos(p)

The swing volume V; can now be expressed as

X1

Vs:/S(x)dx

X0

(- ()

—%(,/1—x2—l§—ll)lo.

The first term in S(x) corresponds to the yellow sector and
the second to the blue triangle.

4.2 Accumulating SOTV into SOV

While accumulating SOTV over mesh triangles, the vol-
ume must be signed according to two factors: whether the
sphere center is inside or outside the object, and whether
the sphere center is behind or in front of the triangle’s
plane.

(a) Sphere center inside object. SOTV is positive if the
sphere center is behind the triangle plane, and negative
otherwise. Total outside volume is thus computed as

Vin(T,)=) sign(n;-(pj—0)) V(z;, 5),
tjﬁS;é@

where #; is a triangle in the mesh T, o is the center of S,
n; is the normal of triangle ¢;, and p; is the projection of
o onto triangle ¢;. The sign function returns —1 if its argu-
ment is negative and 41 otherwise.

(b) Sphere center outside object. In this situation, we in-
vert the signs used in (a) and then subtract the result from
the total sphere volume, yielding

2
Vour (T, §) = 37 +Vin(T, S) .

2D example. Figure 6 shows a 2D example with the cir-
cle center inside the object. Unlike our outside volume
computation in Fig. 5c, the approximate error metric from
[7] does not handle concavities correctly. For example, the
red edge has normal-projected distance of d in Fig. 5b, an
overestimate that effectively ignores the concavity.

The total outside area is accurately computed by
traversing all edges of the 2D polygon to accumulate their
outside areas one by one. Depending on the position of the
circle center relative to the “outward” halfspace of each
polygon edge, each area is signed positive (green) or nega-
tive (blue). Accumulation of 3D volumes with respect to
a sphere is analogous.

Fig.Sa—c. Error metric comparison (2D). a polygon and circle,
b normal-projected metric [7], ¢ outside area

616 R. Wang et al.

i

-.+'_’+ ,=‘

a signed areas b area accumulation

Fig. 6. Outside area accumulation (2D)

5 Minimizing outside volume

To find an optimal sphere set approximation for solid ob-
jects, we minimize Eq. 4 using a variant of the Lloyd clus-
tering algorithm [13]. We discretize the object into a set
of points including points on its surface and within its in-
terior. Lloyd clustering takes place over this set of points
and a sphere is used to bound each of the n; clusters. Clus-
tering iteratively applies three steps: point assignment to
clusters, cluster sphere update, and cluster teleportation,
until error converges. Each point is assigned to the cluster
whose bounding sphere’s outside volume increases least.
Given the cluster’s set of assigned points, its bounding
sphere center and radius are updated by minimizing Eq. 3.
To avoid getting stuck in an undesirable local minimum,
the “teleportation” strategy from [4] is applied.

Preprocessing. A mesh object is discretized into two kinds
of points: inner points and surface points. Inner points are
generated by voxelizing the object into a regular grid and
eliminating grid points outside the object. A grid size is
manually chosen to ensure the object’s interior is sampled
well. Points on the mesh surface are generated by sorting
triangles by their areas and sampling points randomly in
proportion to these areas [23]. The inner grid points and
surface samples are combined and regarded as the volu-
metric representation to be partitioned in clustering.

To initialize the cluster spheres, we randomly choose
n inner points for the sphere centers o; and set their radii
ri =0.

Point assignment. A point p is assigned to the cluster it
is closest to, based on outside volume (Fig. 7). More pre-
cisely, the cluster’s bounding sphere radius is enlarged in
order to include p, and the enlarged SOV is computed. p
is assigned to that cluster whose outside volume increases
least. In case of atie, p is assigned to the cluster whose
sphere center is closest.

We use a flood fill (stack-based) algorithm to order the
set of points for cluster assignment. The algorithm starts
from the cluster centers and progresses to adjacent points.
Once a point is assigned, the bounding sphere radius of its
cluster is updated, and its adjacent points are pushed onto
the stack. Assignment terminates when the stack is empty.

’ U /

e

initial clusters b potential assignment

P Sp

¢ increased outside volume d final assignment

Fig.7. Point assignment by outside volume. Although point p is
closer to cluster Sp’s center than to S;, the outside volume increases
less by assigning it to Sy

Unlike VQ [13], whose point assignment step is order-
independent and simply assigns points to the closest clus-
ter, our point assignment cannot guarantee a decrease in
outside volume. In practice, it almost always achieves one.
If point assignment yields an error increase, sphere tele-
portation is triggered (see below). If this fails to decrease
error, the algorithm terminates.

The above (naive) algorithm for point assignment can
be accelerated. Naive point assignment computes n X 7
SOV queries, where n is the number of points and 7
the number of clusters. We can significantly reduce this
number by observing that cluster bounding sphere cen-
ters o; remain fixed during point assignment, only their
radii »; are progressively enlarged as more points are as-
signed. The current outside volume of each cluster sphere
is thus only a function of its current radius. As points are
assigned, we keep track of the outside volume for each
cluster sphere as a function of the points’ distance to o;.
In other words, we build a table of the relation between
radius and SOV for each cluster based on its fixed cen-
ter o;.

To assign a new point p, for each cluster C; we look up
a (previously assigned) point ¢ in its table that is closer to
o; than p, yielding a lower bound on p’s outside volume.
By subtracting C;’s current outside volume from this, we
obtain a lower bound on the outside volume increase with-
out performing a new SOV query.

Using this method, we compute lower bounds on
outside volume increase for assigning p to each clus-
ter C;. If no g closer than p exists in C;’s table, then we
must compute the actual SOV for p with respect to o;.
We then compute actual SOV (and trivially, outside vol-
ume increase) for the cluster having the smallest lower
bound. Clusters whose lower bounds are larger can be
culled without the need to perform an expensive SOV

query.

Variational sphere set approximation for solid objects 617

Sphere fitting. Once we have a new cluster assignment, we
independently update the bounding spheres of each cluster
C;. Starting from its old parameters, the cluster bound-
ing sphere S; = (0;, r;) updates its center and radius in
order to best approximate the points assigned to cluster
C;. The best center and radius are determined using Eq. 3,
via

argminoi V(T, S;) (5)

while constraining r; to continue bounding all the cluster’s
assigned points.! The minimal o; is found using Powell’s
multidimensional minimization [14].

Sphere teleportation. Like many variational methods, the
algorithm easily gets stuck in a local minimum. To avoid
this, we employ sphere teleportation, which is similar to
the “region teleportation” in [4]. Teleportation is triggered
when insufficient error improvement occurs in cluster as-
signment/update iterations. The sphere having the max-
imum overlap ratio (and is thus most redundant) is chosen
as the teleportation source and the largest error sphere is
chosen as the teleportation destination. Overlap ratio is de-
fined as the ratio of volume shared with at least one other
sphere in the set to the total volume. After teleportation,
the teleportation source sphere is deleted and the destina-
tion sphere is split into two. The two points farthest from
each other in the maximum error cluster are chosen as the
two initial sphere centers. Another iteration of point as-
signment and cluster update is then computed to evaluate
this teleportation. If the new error is less, the teleportation
is accepted.

6 Applying sphere sets

Animating sphere sets can be achieved by “skinning”
based on mean value coordinates [22]. A sphere set is
fit to the rest pose and the sphere centers updated as
the model moves using a linear combination of the de-
formed vertex positions (see [17]). Bounding sphere radii
can remain fixed for typical motions of articulated charac-
ters.

Sphere hierarchies can be built using a simple bottom-
up approach, using our algorithm’s sphere sets as its leaf
nodes. Hierarchy levels are constructed one at a time from
the leaves up to the root, based on Lloyd clustering. Each
cluster stores its current bounding sphere. Clustering it-
eratively assigns spheres to the closest cluster, based on
the distance from the sphere center to the cluster center,
and then updates the cluster’s bounding sphere. Its center
is initially taken as the average center over all spheres as-
signed to it and then optimized using Powell’s method to

! Actually, to ensure that the sphere set bounds the triangle mesh, each
sphere is enlarged as a post-process to bound the edge mid-points and
triangle centers of all triangles entirely or partially inside the sphere [8].

reduce its radius. After convergence, each cluster is made
a parent node in the hierarchy; the spheres assigned to it
become its children. The next hierarchy level above can
then be computed by recursively clustering over the list of
parent nodes just computed. The average branching ratio
of the hierarchy is chosen by the user.

7 Results

To our knowledge, AMAA [3] is the state-of-the-art
method for sphere set approximation (see Fig. 8). We com-
pare our results to AMAA results, based on visual and
geometric error, and in applications of shadow computa-
tion and proximity query. We use the author’s software,
available at http://isg.cs.tcd.ie/spheretree/.

Figure 15 shows some individual objects and assem-
bled scenes, using shadow rendering from [17]. More ex-
amples are shown in Fig. 16. The construction time for one
of the models, the “Armadillo”, using clustering over 5000
points is documented in Fig. 9. Our computation time is
not much larger than AMAA’s, but yields a significantly
better approximation.

Visual and geometric error. Figure 16 compares our ap-
proximation to AMAA using three different sphere set
sizes: ng = 32, ny = 64, and ny; = 128. Geometric error
is measured by relative outside volume, E,, the sphere

5 E,.=2.78,n,=128 E,.=0.52,n,=64 FE,=0.35,n,=64
RS [15] ¢ AMAA [3] d our approx.

Fig. 8. Method comparison on the “Armadillo”

1800 r
1600 7
2 1400
Ei)/
s 1200 //
] i
$ 1000 j
£ 800
g 600
2400 - AMAA
200 —4— our approx
0 1 1 1 1 1 1 J
0 20 40 60 80 100 120 140

number of spheres

Fig. 9. Sphere-set construction time

618 R. Wang et al.

AMAA

-

our approx. €

«»

a original mesh b

Fig. 10. Sphere set shadows, ny = 48

20.00%
18.00%
16.00%
14.00% ‘\
12.00%
10.00%

8.00%
600% LU
\:\‘k!—
0 20 40 60 80 100 120 140
number of spheres n,

- AMAA

—$— Our approx.

relative RMS error

4.00%
2.00%
0.00%

Fig. 11. Graphs of shadow error

set’s outside volume divided by the original mesh’s vol-
ume. Figure 17 graphs E, as a function of ng. Although
our method’s curve does not appear to be much lower than
AMAA’s in terms of absolute error, it should be noted that
both curves flatten out dramatically after an n; greater than
20-40 spheres. The absolute error value is much less im-
portant than how many spheres are required to achieve it.
Intersecting the two curves with horizontal lines of con-
stant error, it can be seen that AMAA often requires many
more spheres than our approach to achieve the same error
—two or three times as many in some cases (e.g. Armadillo

graph).

Shadow application. The sphere set can be used as a proxy
for rendering the original mesh [18] or its shadows
[17]. We compare results using sphere sets to cast shad-
ows from distant, environmental light rendered using
diffuse PRT [20]. A ground plane is used to “catch”
shadows underneath the objects and the resulting image
differences are analyzed in terms of RMS error over
all pixels and all orientations of the lighting environ-
ment. Image results are presented in Fig. 10 (the top row
shows the original view, while the bottom row shows
the ground plane images) and error graphs in Fig. 11.
Shadows from our sphere sets are significantly closer

a original mesh b our approx. ¢ AMAA
Fig. 12. Proximity query scene
60.0%
55.0% ! & AMAA
50.0% L
45.0% .\ —— our approx. | |
40.0% \\

| 35.0% \\
30.0% \‘

25.0%
20.0%
15.0%
10.0% : : s - - |
0 20 40 60 80 100 120 140
number of spheres n;

Fig. 13. Proximity query error

> O

actual using sphere set

Fig. 14. Outside distance

to the ground truth shadows, allowing us to use fewer
spheres in order to achieve results similar to AMAA (see

graphs).

Proximity application. We also tested sphere set approxi-
mations in proximity queries, using a pair of “armadillo”
models (Fig. 12). The experiments are based on outside
distance queries (Fig. 14) that measure the distance of
a line segment spent either outside the model (a) or outside
the sphere set (b). The line segments for the queries were
generated using 3000 random pairs of points on the two
models, sampled uniformly in the mesh area. The aver-
age difference between the actual outside distance and the
sphere set outside distance, e, is a good measure of the
tightness of the sphere approximation and is graphed in
Fig. 13.

By performing the distance query over line segments,
we are able to perform aunion over the sphere set by
tracking 1D intervals representing sphere entry and exit
points and counting the nesting levels. The outside dis-

Variational sphere set approximation for solid objects

e

T. Rex, ns=64 b

————”

Battle scene

kh)

Bunny, ns=60 c

‘

Fig. 15. Sphere set approximation for different objects and scenes

i \F’%

Diplodocus, n;=64

1]
o b

A

Human, n.=256

Dinosaur scene

3 gL,

E.=034 E,.=0.25

AMAA our approx.

Armadillo

ﬁt “

s

E, =055 E,=0.31

AMAA our approx.
Dragon

E,. =050 E, =035

AMAA our approx.

Lion

¥
e Ei

E, =043 E, =0.30
AMAA our approx.
Female

Fig. 16. Sphere set comparison with the AMAA method

tance query thus eliminates overcountmg of overlapped nclusion
outside volume, unlike our definition in Eq. 4. As in the 8 Conclusio
other applications, our method significantly beats AMAA.

For example, our method with ny =32 spheres has less
average error than AMAA’s with ng = 64.

We have tested our variational approach on many models,
both simple and complex. Our method out-performs al-

619

620 R. Wang et al.
"Armadillo” o "Dragon”
180% -
’ . 400%
1o0% — AMAA atn '\ AMAA ‘
120% —— OUr approx. 300% h ~=Our-approx,
« 100% ~250%
~80% = 2005 \\
60% 1509%
20% -
SUK’J’_
0% . J UG; «
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
number of spheres n, number of spheres n,
"Lion" "Female"
2500 2‘?8& : ! AMAA
250%—q———— & ---
225% —y AMAA 350% \ ~~ OUr approx.
2006% —— OUur approx. 200% ',\
175% \ 350% —%
3 150% F300% —\ g
125% 250% I\
100% 3
N
50% 100% —~——
25% 50% v —y
0% - . - : . - 0% : !
0O 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

number of spheres n;

ternatives such as the octree and medial-axis methods,
as we have demonstrated using visual and quantitative
comparisons and in applications involving shadowing and
proximity detection. In many cases, our algorithm’s sphere
sets work as well as the current best alternative ones with
only 33%—75% more spheres.

Our algorithm’s effectiveness is based on two factors.
One is a suitable definition of error, which we formulate in
terms of outside volume. Our error metric considers only
the volume of the sphere set outside the input geometry
and neglects how much the spheres overlap in the object’s
interior. This is appropriate for solid object approxima-
tion in applications based on intersection and proximity.
The second factor is to solve the resulting minimization
problem using variational partitioning and fitting, which

number of spheres n;

Fig. 17. Graphs of relative out-
side volume vs. ng

provides a more direct and more global solution than pre-
vious methods.

Our method’s extensive computation limits it to sphere
sets having no more than a few hundred spheres. Fortu-
nately, object approximation with such a limited number
of spheres suffices for many interesting real-time applica-
tions, as we have shown. To generate larger sphere sets,
heuristics such as simple Lloyd (L?) clustering can be
used to form initial bounding spheres and then a few iter-
ations of outside-volume minimizing cluster iteration can
be applied.

Acknowledgement This project was partially supported by the 973
Program of China (no. 2002CB312104), NSFC (no. 60021201) and
the Specialized Research Fund for the Doctoral Program of Higher
Education of China (no. 20030335083).

References

1. Amenta, N., Choi, S., Kolluri, R.K.: The 6.
power crust. In: SMA ’01: Proceedings of
the 6th ACM Symposium on Solid
Modeling and Applications, pp. 249-266.

ACM Press, New York (2001) 7.

2. van den Bergen, G.: Efficient collision
detection of complex deformable models
using AABB trees. J. Graph. Tools 2(4), 8.
1-13 (1997)

3. Bradshaw, G., O’Sullivan, C.: Adaptive
medial-axis approximation for sphere-tree
construction. ACM Trans. Graph. 23(1), 9.
1-26 (2004)

4. Cohen-Steiner, D., Alliez, P., Desbrun, M.:
Variational shape approximation. ACM
Trans. Graph. 23(3), 905-914 (2004) 10.

5. Gottschalk, S., Lin, M.C., Manocha, D.:
OBBTree: A hierarchical structure for rapid
interference detection. In: Proc. of ACM
SIGGRAPH 1996, pp. 171-180 (1996)

Hubbard, P.: Interactive collision detection. 11. Kirishnan, S., Pattekar, A., Lin, M.,

In: Proceedings of the 1993 IEEE Manocha, D.: Spherical shells:
Symposium on Research Frontiers in A higher-order bounding volume for fast
Virtual Reality, 14(2), 24-31 (1993) proximity queries. In Proceedings of the
Hubbard, P.: Collision detection for 1998 Workshop on the Algorithmic
interactive graphics applications. PhD Foundations of Robotics, pp. 122-136. Rice
thesis, Brown University (1995) University (1998)

Hubbard, P.: Approximating polyhedra with ~ 12. Liu, Y., Noborio, J., Arimoto, S.:

spheres for time-critical collision detection. Hierarchical sphere model HSM and its
ACM Trans. Graph. 15(3), 179-210 application for checking an interference
(1996) between moving robots. In Proceedings of
James, D.L., Pai, D.K.: BD-tree: the IEEE International Workshop on
output-sensitive collision detection for Intelligent Robots and Systems,

reduced deformable models. ACM Trans. pp. 801-806 (1988)

Graph. 23(3), 393-398 (2004) 13. Lloyd, S.: Least squares quantization in
Klosowski, J.T., Held, M., Mitchell, J., PCM. IEEE Trans. Inform. Theory
Sowizral, H., Zikan, K.: Efficient collision IT-28(2), 129-137 (1982)

detection using bounding volume 14. Press, W., Teukolsky, S., Vetterling, W.,

hierarchies of k-DOPs. IEEE Trans. Visual.
Comput. Graph. 4(1), 21-36 (1998)

Flannery, B.: Numerical Recipes in C: The
Art of Scientific Computing. Cambridge

Variational sphere set approximation for solid objects

621

University Press, New York
(1992)

15. Quinlan, S.: Efficient distance computation
between non-convex objects. In
Proceedings IEEE International Conference
on Robotics and Automation,
pp. 3324-3329 (1994)

16. Ranjan, V., Fournier, A.: Union of spheres
(UoS) model for volumetric data. In: SCG
’95: Proceedings of the 11th Annual
Symposium on Computational Geometry,
pp. 402-403. ACM Press, New York (1995)

17. Ren, Z., Wang, R., Snyder, J., Zhou, K.,
Liu, X., Sun, B., Sloan, P., Bao, H., Peng,
Q., Guo, B.: Real-time soft shadows in
dynamic scenes using spherical harmonic

exponentiation. ACM Trans. Graph. 25(3),
977-986 (2006)

18. Rusinkiewicz, S., Levoy, M.: QSplat: A
multiresolution point rendering system for
large meshes. In: Proc. ACM SIGGRAPH
2000, pp. 343-352 (2000)

19. Ruspini, D.C., Kolarov, K., Khatib, O.: The
haptic display of complex graphical
environments. In: Proc. of ACM
SIGGRAPH 1997, pp. 345-352 (1997)

20. Sloan, P., Kautz, J., Snyder, J.:
Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency
lighting environments. ACM Trans. Graph.
21(3), 527-536 (2002)

21. Tam, R.C., Fournier, A.: Image
interpolation using unions of spheres.
Visual Comput. 14, 401-414 (1998)

22. Tao, J., Schaefer, S., Warren, J.: Mean
value coordinates for closed triangular
meshes. ACM Trans. Graph. 24(3),
561-566 (2005)

23. Turk, G.: Generating random points in
triangles. In: Graphics Gems, pp. 24-28.
Academic Press Professional, San Diego,
CA (1990)

24. Wu, J., Kobbelt, L.: Structure recovery via
hybrid variational surface approximation.
Comput. Graph. Forum 24(3), 277-284
(2005)

RUI WANG received his BS degree in computer
science from Zhejiang University in 2001. He is
currently a PhD candidate at the State Key Lab-
oratory of CAD & CG of Zhejiang University.
His research interests are image-based modeling,
machine learning and geometry approximation.

KUN ZHOU is a researcher/project leader of the
graphics group at Microsoft Research Asia. He
received his BS and PhD degrees in computer
science from Zhejiang University in 1997 and
2002, respectively. His current research focus
is geometry processing, texture processing and
real-time rendering. He holds over 10 granted
and pending US patents. Many of these tech-
niques have been integrated in Windows Vista,
DirectX and XBOX SDK.

JOHN SNYDER is a principal researcher at Mi-
crosoft Research. He received a BS from Clark-
son University in 1984, a PhD from the Cal-
ifornia Institute of Technology in 1991, and
has been at Microsoft Research since 1994. His
research interests include geometry representa-
tion and processing and real-time algorithms for
global illumination.

XINGUO L1U received a BS in 1995 and a PhD
in 2001 from the Department of Applied Math-
ematics at Zhejiang University. He is currently
at the State Key Lab of CAD & CG, and is
a Professor of the Computer Science School at
Zhejiang University. Before joining CAD & CG
in April 2006, he was a researcher in the Internet
Graphics Group in Microsoft Research Asia. His
main research interests are in appearance mod-
eling, real-time rendering, geometry processing
and deformable objects.

HUJUN BAO received his BS and PhD degrees in
applied mathematics from Zhejiang University in
1987 and 1993, respectively. His research inter-
ests include modeling and rendering techniques
for large scale of virtual environments and their
applications. He is currently the director of State
Key Laboratory of CAD & CG of Zhejiang Uni-
versity. He is also the principal investigator of
avirtual reality project sponsored by the Min-
istry of Science and Technology of China.

QUNSHENG PENG is a professor of computer
graphics at Zhejiang University. His research
interests include realistic image synthesis, com-

puter animation, scientific data visualization, vir-
tual reality, bio-molecule modeling. Prof. Peng
graduated from Beijing Mechanical College in
1970 and received a PhD from the Department
of Computing Studies, University of East Anglia
in 1983. He is currently serving as a member of
the editorial boards of several international and
Chinese journals

BAINING GUO is the research manager of the
Internet Graphics Group at Microsoft Research
Asia. Before joining Microsoft, Baining was
a senior staff researcher in Microcomputer Re-
search Labs at the Intel Corporation in Santa
Clara, California, where he worked on graphics
architecture. Baining received his PhD and MS
degrees from Cornell University and his BS
from Beijing University. Baining is an associate
editor of IEEE Transactions on Visualization and
Computer Graphics. He holds over 30 granted
and pending US patents.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

