Distributed Optimization for Machine Learning

Martin Jaggi *EPFL Machine Learning and Optimization Laboratory*mlo.epfl.ch

Machine Learning Methods to Analyze Large-Scale Data

Machine Learning?

software that can

learn from data

Machine Learning Example

The Learning Algorithm

 $oldsymbol{x}_i \in \mathbb{R}^d$

Perceptron

Support-Vector-Machine

(Rosenblatt 1957)

(Cortes & Vapnik 1995)

Machine Learning Systems

Machine Learning Systems

What if the data does not fit onto one computer anymore?

Machine Learning Systems

The Cost of Communication

 $oldsymbol{v} \in \mathbb{R}^{100}$

* Reading *v* from memory (RAM)

100 ns

- Sending v to another machine 500'000 ns
- * Typical Map-Reduce iteration 10'000'000'000 ns

Challenge

Usability Parallel Programming is Hard

* no reusability of good single machine algorithms & code

Problem class

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^n} f(A\boldsymbol{\alpha}) + g(\boldsymbol{\alpha})$$

CoCoA - Communication Efficient Distributed Optimization

Optimization: Primal-Dual Context

$$A_{ ext{loc}}\Deltaoldsymbol{lpha}_{[k]}+oldsymbol{w}$$

$$\min_{oldsymbol{lpha} \in \mathbb{R}^n} \left[\mathcal{O}_{\!A}(oldsymbol{lpha}) := f(oldsymbol{A}oldsymbol{lpha}) + g(oldsymbol{lpha}) \right]$$

primal Lasso dual L2-reg SVM/Log-Regr primal L1-reg SVM/Log-Reg

correspondence

$$\boldsymbol{w} := \nabla f(A\boldsymbol{\alpha})$$

$$\min_{\mathbf{w} \in \mathbb{R}^d} \left[\mathcal{O}_B(\mathbf{w}) := g^*(-A^\top \mathbf{w}) + f^*(\mathbf{w}) \right]$$

Distributed Experiments

Sparse Linear Regression

ataset	Training	Features	Sparsity
rl	2,396,130	3,231,961	3.5e-3%
osilon	400,000	2,000	100%
ddb	19,264,097	29,890,095	9.8e-5%
ebspam	350,000	16,609,143	0.02%

NIPS 2014, ICML 2015, arxiv.org/abs/1611.02189

Spark Code:
github.com/gingsmith/proxcocoa

- + TensorFlow
- + Apache Flink

Challenge

Leveraging Memory Hierarchy

Which data to put in which memory?

Leveraging Memory Hierarchy

duality gap as selection criterion

Experiments

RAM GPU, 30GB dataset

Conclusion

- * try to improve usability of large-scale ML
- * full adaptivity to the communication cost, memory hierarchy and bandwidth
- * re-usability of good single machine solvers
- * accuracy certificates

Open Research

- limited precision operations for efficiency of communication and computation
- * asynchronous and fault tolerant algorithms
- * multi-level approach on heterogenous systems
- * more re-usable algorithmic building blocks
 - for more systems and problems

Project:

Distributed Machine Learning Benchmark

Goal:

Public and Reproducible Comparison of Distributed Solvers

github.com/mlbench/mlbench

Apache

Google

Apache

HPC

Thanks!

mlo.epfl.ch

Celestine Dünner, Virginia Smith, Simone Forte, Chenxin Ma, Martin Takac, Dmytro Perekrestenko, Volkan Cevher, Michael I. Jordan, Thomas Hofmann