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ABSTRACT 

Communicating at a natural speed is a significant challenge 

for users of augmentative and alternative communication 

(AAC) devices, especially when input is provided by eye 

gaze, as is common for people with ALS and similar 

conditions. One way to improve AAC throughput is by 

drawing on contextual information from the outside world. 

Toward this goal, we present SceneTalk, a prototype gaze-

based AAC system that uses computer vision to identify 

objects in the user’s field of view and suggests words and 

phrases related to the current scene. We conducted a 

formative evaluation of SceneTalk with six people with 

ALS, in which we evaluated their preference for user 

interface modes and output preferences. Participants agreed 

that integrating contextual awareness into their AAC device 

could be helpful across a diverse range of situations. 
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INTRODUCTION 

Augmentative and alternative communication (AAC) 

systems provide communication support for people with a 

range of physical, cognitive, and other disabilities [5]. 

Designing an effective AAC system requires balancing the 

user’s expressive capability with their ability to quickly and 

reliably operate the device’s user interface.  

Creating effective AAC devices for people with 

neurodegenerative diseases such as Amyotrophic Lateral 

Sclerosis (ALS) is especially challenging, as these 

individuals typically retain their full linguistic abilities but 

often lose the ability to speak and use their hands entirely [2]. 

Many people with ALS use eye gaze to interact with their 

AAC systems [4]. Using gaze for real-time communication 

can be challenging, as eye-typing typically enables users to 

communicate at 10 to 20 words per minute (wpm) [18], while 

spoken conversation occurs at about 180 wpm [28]. Thus, 

improving the speed of AAC input has the potential to 

significantly improve quality of life for people with ALS.  

One way to increase the speed of AAC input is to predict 

likely words and phrases as the user types. Predictions can 

be generated from a language model (e.g., [23]) or derived 

from knowledge of the user’s context, such as their location 

(e.g., [7,12,26]). However, AAC systems may be able to 

infer context from other sources. For example, many 

conversations involve talking about nearby objects, such as 

when commenting on a friend’s outfit, or requesting help 

with a door. 

This paper introduces a new approach to improve the speed 

of AAC input: identifying objects in the user’s environment 

and using information about those objects to generate 

contextual predictions. Our prototype system, SceneTalk, 

uses automated image recognition algorithms [8] to identify 

objects and suggest relevant words and phrases. We present 

findings from a formative study in which six people with 

ALS tested the SceneTalk prototype and provided feedback 

about the usefulness of this approach, as well as their 

preferences for integrating contextual data into an AAC user 
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Figure 1. SceneTalk is a gaze-based AAC system that uses the 

device’s camera to recognize objects. Recognized objects are 

used to suggest relevant words and phrases as the user types. 

The prediction bar at the top of the keyboard combines 

contextual predictions detected in the image (in orange) with 

predictions from a language model (in white). 

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/3064663.3064762


interface. Feedback from this study indicates that using 

objects in the local environment as contextual predictions 

may improve the user experience of gaze-based AAC. 

RELATED WORK 

Slow input speed is one of the most significant barriers to 

AAC adoption and use for people with ALS [21]. Prior 

approaches to speeding up AAC input include reducing 

dwell time [17,20], integrating word and phrase predictions 

[16], and supporting dwell-free eye-typing [15,22]. 

However, the theoretical maximum speed of any keyboard-

based eye-typing method has been estimated to be only 46 

wpm [14], well below the rate of spoken conversation. 

Alternative text entry methods such as Dasher [24,25] may 

offer improved performance, but learning an alternative text 

entry method requires extensive practice.  

A common approach to improving AAC speed is to predict 

likely words using a language model and to suggest them as 

the user types [23]. Researchers have also explored how the 

user’s context can be used to inform predictions. 

Higginbotham et al. [11] found that including task-specific 

predictions in an AAC reduced the number of key presses 

needed to discuss that subject. Marco Polo [7], TalkAbout 

[12], and GLAAC [26] offered predictions relevant to the 

user’s location. AACrobat [10] introduced a secondary 

mobile device application that enabled conversation partners 

to suggest words and phrases as the AAC user typed. 

PhotoTalk [1] enabled individuals with aphasia to 

communicate by sharing photos rather than writing or 

speaking text. Our work introduces a new approach to 

generating contextual predictions: identifying nearby objects 

and suggesting words and phrases related to those objects.  

SCENETALK: AN OBJECT-AWARE AAC SYSTEM 

To explore the potential of object recognition for AAC word 

predictions, we developed SceneTalk, a prototype AAC 

application that identifies objects in the nearby environment 

and uses those objects to suggest relevant words and phrases.  

User Interface 

SceneTalk’s user interface resembles a traditional character-

based AAC system with a QWERTY keyboard (Figure 1). 

Targets are selected via an adjustable dwell time (defaulting 

to 500ms). A Play button speaks out the typed text. Word and 

phrase predictions are shown above the keyboard. A control 

panel at the top right provides controls for activating the 

device camera and retrieving contextual predictions, and 

shows the most recent image captured by the camera.  

Interaction Modes 

Because context-aware AAC has not been widely tested with 

users, and because activating the device camera may cause 

privacy issues if handled incorrectly, we developed three 

interaction modes for interacting with SceneTalk’s 

contextual predictions. We designed these modes to explore 

users’ preferences for automatic or explicit camera control, 

and to test whether users preferred contextual predictions to 

be integrated with linguistic predictions or shown separately. 

The three interaction modes are: 

Always On. The camera captures images automatically at a 

regular interval. Contextual predictions are shown alongside 

linguistic predictions, but are presented in a different color 

and marked with a star symbol (Figure 1). 

Click for Suggestions. The user interface is laid out 

identically to the previous mode. Linguistic predictions are 

updated as the user types. The user may activate the Camera 

button to capture an image and load contextual predictions.  

Pop-Up Menu. The keyboard prediction row shows only 

linguistic predictions. The user retrieves contextual 

predictions by activating the Camera button. Predictions are 

shown separately via a full-screen overlay (Figure 2). 

 

Figure 2. Suggested words (left) and phrases (right) are 

presented over the camera image in Pop-Up Menu mode. 

Recognizing and Labeling Objects 

SceneTalk captures images of the environment using the 

device’s rear-facing camera. SceneTalk typically recognizes 

objects using automated computer vision, but supports 

crowd-based object labeling as a backup method. 

Automated Recognition: SceneTalk uses computer vision 

to recognize objects in the image. Automatic image 

captioning has recently been used to provide alternative 

descriptions of images for blind users [27], but has not 

previously been used to support communication. SceneTalk 

uses the Microsoft Cognitive Services API [19], which is 

based on recent computer vision techniques [8], to identify 

objects. For each image, the API generates a list of nouns and 

adjectives describing the scene (e.g., table, café, sunny), 

along with a confidence value. To identify objects, 

SceneTalk extracts high-confidence nouns from the list. 

Crowd-Based Labeling: SceneTalk also supports crowd-

based object labeling using Amazon Mechanical Turk [3]. In 

this mode, the image is uploaded to a web server, which 

generates a set of Mechanical Turk tasks. Workers are asked 

to mark regions in the image corresponding to objects and to 

provide words or phrases describing each object. Crowd-

based recognition may be useful when automated 

recognition is unavailable, for labeling objects that cannot be 

identified using current automated methods, and for 

identifying objects in low-quality images, such as images 

captured in bright or dim lighting. Crowd workers may also 

compose relevant phrases based on the identified object, 

which is not currently supported by automated approaches. 



For example, if the user captured an image of a light switch, 

a crowd worker might suggest the phrase “Can you turn off 

the lights?” While crowd-based recognition is slower than 

automated recognition, crowd workers can be used to label 

images within minutes for a reasonable cost [6], which may 

still be faster than typing for many gaze-based AAC users, 

particularly for people with ALS, whose mobility restrictions 

may result in relatively infrequent changes of scenery. 

Word and Phrase Predictions 

SceneTalk presents word and phrase predictions as the user 

types, similar to many other AAC systems (e.g., [23]). 

SceneTalk’s predictions combine linguistic predictions 

based on the user’s prior text with contextual predictions 

derived from nearby objects.. Linguistic predictions use a 

word frequency model for determining the initial word and a 

bigram model for determining subsequent words. 

SceneTalk’s current interaction mode determines how 

predictions are displayed, as well as which types of 

predictions are shown. In Always On mode, linguistic and 

contextual predictions are interleaved and appear as the user 

types. In Click for Suggestions mode, the interface shows 

only linguistic predictions while typing. Activating the 

Camera button replaces the linguistic predictions with the top 

six contextual predictions. In Pop-Up Menu mode, only 

linguistic predictions are presented on the keyboard. 

Activating the Camera button causes the predictions menu to 

appear; this full-screen view shows a combination of 

predicted words and phrases (Figure 2). 

SceneTalk can suggest both individual words and complete 

phrases. Phrases can be generated by crowd workers, but 

current automated techniques cannot generate relevant 

phrases. To compensate for this limitation, SceneTalk 

includes a set of stock phrases that can be attached to any 

recognized object. These phrases were identified during our 

formative research with AAC users who have ALS. The 

stock phrases include “Can you tell me about X?”, “Can you 

help me with X?”, “Can you give me X?”, and “Can you 

move X?”. Phrases are shown when the user begins a new 

sentence, or when the user selects the Pop-Up Menu mode. 

FORMATIVE EVALUATION OF CONTEXT-AWARE AAC 

Evaluating AAC systems with representative users presents 

many challenges. Eye-typing for people with ALS can be 

extremely slow and error-prone [4], making it difficult for 

participants to provide extended feedback, magnifying the 

frustration encountered when testing prototypes, and 

reducing the amount of data that can be collected and 

analyzed. Furthermore, eye-typing performance can vary 

significantly throughout the day due to sensor error, user 

fatigue, and side effects from medication [13]. These 

challenges make conducting performance evaluations 

especially difficult for people with ALS. Furthermore, 

people with ALS typically rely upon their AAC devices for 

most of their communication, including communicating 

about physical needs and even life-threatening emergencies. 

Given the critical importance of maintaining access to 

communication, we felt that a field deployment of our 

prototype was beyond the scope of the current work.  

For these reasons, we chose to focus on collecting feedback 

about the usefulness of context-aware AAC, participants’ 

interests and concerns regarding the use of context-aware 

AAC, and participants’ preferences for accessing contextual 

predictions. We conducted two rounds of evaluation: 

preliminary interviews based on paper prototypes, and a 

demonstration and evaluation of our working system. 

Paper Prototype Testing 

Early in our design process, we collected feedback from six 

people with ALS (ages 48-54, 1 female). The research team 

showed participants a paper mockup of SceneTalk, and 

described how the system could detect and describe objects 

in the local environment. We asked participants whether the 

system would be useful to them, and asked them to list 

situations in which they might use such a system. We also 

asked participants whether they would prefer to use context-

aware AAC predictions via a separate application on their 

communication device, as a mode in their current AAC 

device, or completely integrated into their current AAC. 

Each of the six participants expressed enthusiasm about our 

paper prototype: five said that they would use context-aware 

AAC several times per day, and one said that he would use 

it several times per week. Participants stated that they would 

be interested in using context-aware AAC at the doctor’s 

office, supermarket, pharmacy, and around the home. 

Participants were divided about how contextual information 

should be integrated into their existing AAC systems: two 

participants wanted contextual predictions to be integrated 

into the AAC’s keyboard, one preferred to access contextual 

words and phrases via a separate application, and three said 

that they would need to try the application themselves before 

deciding. Feedback from this session was used to guide the 

design of the SceneTalk prototype and its interaction modes. 

Prototype Demonstration and Feedback 

After developing a functioning SceneTalk prototype, we 

presented it to six people with ALS (ages 39-60, 1 female). 

Three participants used a gaze-controlled AAC keyboard, 

one typed using a head mouse, and two still used speech as 

their primary form of communication. Three participants had 

previously provided feedback about the paper prototype. The 

SceneTalk prototype was deployed on a Microsoft Surface 

Pro 3 tablet placed on an adjustable mount. A Tobii EyeX 

tracker was used to track users’ eye gaze. 

Participants used the SceneTalk prototype during a single 30-

minute session in their home or in our research lab. When 

possible, participants directly controlled the prototype 

themselves. However, participants sometimes encountered 

difficulties using our prototype device due to calibration 

issues [9], positioning, and fatigue. When tracking became 

difficult, one of the researchers demonstrated the user 

interface via the Surface Pro’s touch screen. During the 

session, participants experienced each of SceneTalk’s 



interaction modes (Always On; Click for Suggestions; Pop-

Up Menu), presented in random order. Each interface was 

paired with a randomly-chosen scenario (bus stop, coffee 

shop, supermarket). For each scenario, pre-generated words 

and phrases were presented; the words were a subset of those 

automatically produced by the image recognition API, while 

the phrases were manually generated by the research team.  

After the demonstration, participants answered three Likert-

style questions about the prototype (Table 1), indicated their 

preferred interaction mode, and indicated whether they 

preferred word predictions, phrase predictions, or a 

combination of the two. Participants also provided freeform 

subjective feedback about their experience. 

Question Rating 

Overall, how useful were the words and phrases 

suggested by this application? (1=Not at all useful, 

5=Very useful) 

3.7  

(SD=0.8) 

Overall, how likely would you be to use this 

application? (1=Not at all likely; 5=Very likely) 

4 (0.9) 

Assuming the camera can be turned off when 

needed, how do you feel about the application’s 

ability to automatically capture images? (1=Very 

negative; 5=Very positive). 

4.3 (0.5) 

Table 1. Summary of Likert-style questions and responses. 

Overall, participants rated their experience positively: all 

recorded Likert scores were 3 or higher. Participants were 

divided on their preferred interaction mode: two preferred 

Always On, two preferred Click for Suggestions, one 

preferred Pop-Up Menu, and one had no preference. 

Participants were also divided about whether they preferred 

contextual predictions as words, phrases, or a combination of 

the two. Four participants preferred an even balance of words 

and phrases, one preferred mostly phrases with some words, 

and one preferred only words (no phrases).  

DISCUSSION 

Because our participants had communication difficulties, 

they were unable to provide detailed verbal feedback. 

However, nearly all participants expressed frustration with 

the speed of their current AAC, and were enthusiastic about 

being able to more easily discuss items in their environment.  

Participants differed in their preferred interface modes and 

prediction types. This divergence may be due in part to 

participants’ varying abilities, as slower eye-typists may rely 

more heavily on suggested words and phrases. However, 

some design features were appreciated by the majority of 

participants: four of six participants who tested the prototype 

preferred interaction modes that showed predictions above 

the keyboard rather than in a separate window (one had no 

preference), and five of six participants preferred to receive 

both word and phrase predictions. Given the rapid changes 

in ability that can occur for people with ALS [4] and the 

challenges in using gaze-based AAC in certain environments 

due to ambient light and other factors [13], there may be 

some benefit in supporting multiple modes of interaction, or 

adapting the interaction mode to the user’s context, such as 

presenting more predictions if the user appears to be 

experiencing difficulties using the eye tracker, or weighting 

contextual predictions more heavily if the user is in an 

environment in which they are more likely to discuss nearby 

objects, such as in a store or restaurant. 

LIMITATIONS AND FUTURE WORK 

A limitation of the present work is that the system has not 

been evaluated by representative users outside the lab. 

Testing AAC devices in the field presents many challenges, 

and these challenges are often amplified for our chosen 

population of people with ALS. Despite this limitation, we 

believe that our formative evaluation provides strong support 

for including contextual information in future AAC devices. 

Although it was not feasible to replace the AAC devices of 

people with ALS with a research prototype, publishing 

information about this novel interface design may bring these 

concepts to the attention of commercial AAC device makers, 

providing a route to improvements without requiring users to 

rely on a prototype AAC system. 

While we have conducted this work in collaboration with 

people with ALS, our approach to providing contextual AAC 

predictions could be useful to people with a range of abilities. 

For example, people with aphasia could use SceneTalk to 

name objects, and foreign language learners could use 

SceneTalk to practice naming objects in a new language. 

Adapting SceneTalk to new user groups would likely require 

changing the user interface: for example, individuals with 

aphasia may prefer a more visually-oriented user interface, 

as in SceneTalk’s Pop-Up Menu mode, rather than a 

keyboard-based user interface. 

An additional area for future work is to improve SceneTalk’s 

capability to generate relevant phrases. Currently, SceneTalk 

provides phrases from a pre-generated set. Future versions 

could leverage the crowd or a more robust language model 

to present more contextually relevant phrases. For example, 

when identifying a box of tissues, SceneTalk could suggest 

the phrase “I think I am getting a cold.” SceneTalk could also 

identify groups of objects and infer information about the 

location (e.g., seeing pots and pans suggests the user may be 

in a kitchen), and could suggest phrases relevant to multiple 

detected objects (e.g., “Can you put the book in the bag?”).  

CONCLUSION 

Leveraging information about a user’s context to predict 

words and phrases can help to overcome the slow input speed 

and high error rate of gaze-based AAC. SceneTalk 

introduces a new source of contextual data for AAC, that of 

nearby objects. Our formative evaluation of SceneTalk with 

people with ALS indicates that objects in the environment 

can be a valuable source of context, and that these contextual 

predictions may be integrated into the everyday experience 

of typing with an eye-gaze based AAC device. 
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