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Abstract—With the rapid growth of video content, video sum-
marization, which focuses on automatically selecting important
and informative parts from videos, is becoming increasingly
crucial. However, the problem is challenging due to its subjective-
ness. Previous research, which predominantly relies on manually
designed criteria or resourcefully expensive human annotations,
often fails to achieve satisfying results. We observe that the side
information associated with a video (e.g., surrounding text such
as titles, queries, descriptions, comments, and so on) represents
a kind of human-curated semantics of video content. This side
information, although valuable for video summarization, is over-
looked in existing approaches. In this paper, we present a novel
Deep Side Semantic Embedding (DSSE) model to generate video
summaries by leveraging the freely available side information.
The DSSE constructs a latent subspace by correlating the hidden
layers of the two uni-modal autoencoders, which embed the
video frames and side information, respectively. Specifically, by
interactively minimizing the semantic relevance loss and the
feature reconstruction loss of the two uni-modal autoencoders,
the comparable common information between video frames and
side information can be more completely learned. Therefore,
their semantic relevance can be more effectively measured.
Finally, semantically meaningful segments are selected from
videos by minimizing their distances to the side information in
the constructed latent subspace. We conduct experiments on two
datasets (Thumb1K and TVSum50) and demonstrate the superior
performance of DSSE to several state-of-the-art approaches to
video summarization.

Index Terms—Video summarization, Deep learning, Side Se-
mantics, Embedding.

I. INTRODUCTION

REMENDOUS popularity of video websites like

YouTube, Yahoo Video, and social networks like Face-
book, Google+ have stimulated massive growth of video
contents over the Internet. In order to manage the growing
number of videos on the web and also to extract effective
information from them, more attentions have been paid to
video summarization, a mechanism which aims to produce
a short summary of a video, so as to give users a synthetic
and useful visual abstract of video content. In general, there
are two different forms of video summarization: static video
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(a) Video and its key frames selected by human annotator

Side semantic information

Title: How to lock your bike. The RIGHT way!

Query: Videos about lock up bikes

Description: Here, our host, Amanda, teaches YOU how to properly lock
your bike. With the help of a U-Lock or a Chain lock, this can be done fairly
easily.

Comment: Instead of using a cable with your D lock, just use a second lock,
the thief will have to cut two locks instead of only one.

(b) Side semantic information around video

Fig. 1. An example of video from Youtube and its side semantic information.
(a) is the video and five key frames selected by human annotator, (b) shows
the side semantic information like video title, user query, video description,
user comment of video in (a).

summarization and dynamic video summarization. Static sum-
mary involves a set of key frames from video and there is no
restriction with time and sequence issue. Dynamic summary
contains a small portion of the video shots concatenated by
chronological order and more like a shorter version of the
original video. In addition, video thumbnail, which is the first
thing a user sees when browsing or searching for videos, can
be thought as a special kind of video summary at the highest
level of abstraction, with only a single frame included.

Video summarization is a challenging problem because of
its subjectiveness — users have their own preferences over
the summaries. Nevertheless, Gong et al. showed that there
exists a high inter-annotator agreement of the summaries of
the same video given by different evaluators [1]. It is therefore
possible to select the important and informative parts from
videos that can basically satisfying the majority of preferences.
To solve this problem, unsupervised approaches [2]-[21] often
picked frames or shots from videos with some manually
designed criteria such as visual attention, representativeness
and importance. However, handcrafted criteria often fail to
suit diverse videos on the web. In contrast to unsupervised
ones, supervised approaches [1], [22]-[27] taught the system
to directly learn from human-created summaries how to select
subsets, so as to meet evaluation metrics derived from human-
perceived quality. Although effective sometimes, they relied on
heavily human annotations which are hard to obtain.

In reality, humans are very good at summarizing information
and experiences in words. After people watch a video, it
is common for them to summarize the video content and
share with each other by words, and what they say can be
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seen as the summary of video in textual form. Different
people may express different contents, but the main topic
and semantic meaning are still the same. Frames or shots
that are most relevant to the common expression from people
are really “summary worthy” since they reflect the semantic
information from video and represent what people concern.
It is not realistic to get textual summaries of videos directly
from people, but as shown in Fig. 1, there are some side
information (e.g., surrounding text such as titles, queries,
descriptions, comments, and so on) associated with videos.
The side information, regarded as the indirect feedback from
people, represents a kind of human-curated semantics of video
content. Although valuable for video summarization, the side
information is often neglected by previous approaches.

In this paper, we investigate the problem of video summa-
rization with side semantic information. Some recent works
have attempted to use titles and queries associated with videos
to infer the importance of video frames. Song et al. leveraged
video titles to search images from the web. They hoped
to get useful visual information from these web images to
find representative parts from videos [28]. Liu et al. directly
mapped the visual feature to a fixed textual space through a
linear transformation [29], therefore video thumbnails can be
selected by measuring their distances to the side information
in textual space. When generating video summaries with
the guidance of side formation, the critical problem is to
select semantically meaningful video parts that are tightly
correlated with side information. Therefore, how to effectively
measure the semantic relevance between video frames and side
information is essential. However, previous works [28], [29]
did not give enough consideration to this point, leading to the
following problems.

Firstly, there exists both common information and modality
specific information in videos and their surrounding texts,
whereas Liu et al. [29] ignored that the modality specific
information is harmful to semantic relevance measurement. As
shown in Fig. 1, even though the video and its descriptions
share common information such as “bike” and “lock”, there
are still some characteristics that cannot be correlated. For
example, “The RIGHT way!” is textual-specific information
that is difficult to capture in the video. While wall and street
are visual-specific information that cannot be depicted in the
text. Intuitively, it’s the common information, rather than
modality specific information that helps us to match relevant
items from two different sources. Therefore, constructing a
new latent subspace where only the common information
can be preserved is a better choice for semantic relevance
measurement.

Secondly, the loss of common information in latent subspace
will also cause performance degradation when matching video
frames and side information, which is overlooked in [28]—[31].
For example, also as shown in Fig. 1, there are “bike, lock and
street” depicted in a video frame, and there are “bike, lock
and people” described in the video title. When embedding
the video frame and title to latent subspace without any other
constrain, there might be only partial finite field “bike” (or
“lock™) covered. This incomplete common information can
lead to incomprehensive measurement of similarity. Hence,

preserving more complete common information (both “bike”
and “lock”) in the latent subspace will make a more robust
semantic relevance measurement.

To tackle the two problems mentioned above, we propose a
Deep Side Semantic Embedding (DSSE) model which serves
as a bridge between the diverse side semantic information
and visual content. In our DSSE, two uni-modal autoencoders
are used to encode the visual features of video frames and
textual features of side information, respectively. By correlat-
ing the hidden layers of the two uni-modal autoencoders, we
construct a latent subspace through interactively minimizing
two novel loss terms, the semantic relevance loss and the
feature reconstruction loss. The semantic relevance loss based
on the hidden representations enables common information to
be learned in the latent subspace. At the same time, the feature
reconstruction loss of the two autoencoders will force common
information to be preserved as much as possible. In addition,
the feature reconstruction loss can also maintain the internal-
similarity in visual and textual domains, which will indirectly
benefit the propagation of semantic relevance between the two
domains.

Moreover, we further employ a largely available click-
through based video and image datasets to train a more
effective DSSE model. Users predominantly tend to click
on videos that are relevant to their queries when browsing
videos in search engines, and thumbnails are the only visual
contents that could be seen before they click on the video.
The stronger the correlation between the video thumbnail
and the user query, the higher the click rate. So the se-
mantic relevance between video thumbnails and queries can
be naturally indicated by the click number. In this paper,
we use the {video thumbnail, query, click number} triads
generated from click-through based datasets to help to train
our DSSE model. It is worth noting that we just choose query
here, as it is one kind of side information. Any other side
information (title, description, comment etc.) available can also
be used.

By jointly integrating the semantic relevance loss and the
feature reconstruction loss, and also with the help of large
scale click-through training data, our DSSE model constructs
a latent subspace where the semantic relevance between the
video frames and side information can be more effectively
measured. Finally, we generate a summary by minimizing
the distances between the selected video frames and side
semantic information in the latent subspace. We conduct two
sets of experiments: video thumbnails selection and dynamic
video summarization on two datasets ThumblK [29] and
TVSum50 [28] separately. Experimental results show that our
DSSE outperforms several state-of-the-art methods in video
summarization task.

II. RELATED WORK

Conventional unsupervised video summarization methods
generate summaries by leveraging handcrafted criteria based
on low-level visual or motion cues [2]-[21]. The primary
criteria include coverage or representativeness [7]-[11], visual
quality [12], visual attention [2], [13], influence [14], [15],
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Fig. 2. Framework of video summarization by learning deep side semantic embedding. (a) Click-through bipartite graph between queries and videos. (b)
Deep side semantic embedding model: A latent subspace is constructed by simultaneously minimizing the semantic relevance loss and feature reconstruction
loss of the matched query and video thumbnail pairs. (c) Video frames and side information are embedded to the learned latent semantic subspace, then
the distance in the latent subspace is directly taken as the relevance between side information and video frames. Frame level semantic relevance scores are
gathered and video summary is generated by maximizing the overall semantic relevance score of the chosen parts.

[21], tracking of important object [16]-[19], [32] and so on.
However, these handcrafted criteria are usually designed to
deal with specific types of videos like egocentric videos or
user videos, so that it is difficult to apply them to various
kinds of online videos.

More recently, supervised methods which directly leverage
human-edited summary examples to learn how to summarize
videos have attracted much attention [1], [22]-[27]. Gong et al.
proposed a supervised video summarization model, sequential
determinantal point process (seqDPP), and trained seqDPP by
the “oracle” summaries that agree the most among different
users [1]. Based on seqDPP, Zhang et al. considered the long-
short range dependencies in the sequential video frames and
proposed a LSTM-based model for video summarization [25].
From another aspect, Gygli et al. generated video summaries
by learning submodular functions from the user summaries
[24]. One of the most important points for supervised methods
is enough annotated data. People must watch the whole video
and then decide if frames or shots should be included into the
summary, so the annotation procedure can be very time con-
suming. Due to the resourcefully expensive annotation data,
video summarization dataset often contains almost thousands
of videos, which is far from enough to train a satisfying model
so that cannot be scaled up.

Semi-supervised methods exploit some weakly supervised
priors like video categories [33], domain knowledges [34],
web images [35], [36] to facilitate the summarization process.
While promising, these priors do not reflect the concrete
contents of videos and often constrain to a limited number of
object domains. Some other methods think that text associated

with videos are good sources for inferring the semantic im-
portance of video frames [28], [29], [37]. Song et al. learned
canonical visual concepts shared between video frames and
web images searched by video titles, and then measured the
frame-level importance using the learned canonical concepts
[28]. However, indirectly using video titles to grab web images
will bring additional overhead for video summarization, and
therefore causes a non-scalable system. Ideally, for a trained
model, we hope to get its summarization result directly when
meeting a new video instead of starting a learning procedure
again. Liu et al. directly mapped the visual feature to a fixed
textual space through a linear transformation [29], therefore
the similarity between candidate video thumbnails and video
query can be measured by their dot product in textual space.
Candidate which is of high visual quality and is similar to
the query, will be used as the final video thumbnail [29].
However, directly measuring the similarity between two dif-
ferent modalities in textual space will inevitably meet some
textual modality interference mentioned above, which should
be reduced in the semantic relevance learning procedure.

Choosing semantic meaningful parts from videos with the
guidance of textual side information is quite related to sev-
eral multi-modal retrieval methods [38]-[45], which aim at
finding a multi-modal embedding space between image and
tags/sentences so that the information in different domains
can be represented in a unified subspace. Inspired by their
works, we apply the subspace learning methodology in our
video summarization task.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

III. DEEP SIDE SEMANTIC EMBEDDING MODEL

The basic idea of our deep side semantic embedding model
is to construct a latent subspace with the ability of directly
comparing side information and video frames. In this latent
subspace, we hope the comparable common information be-
tween videos and side information can be more completely
learned and the semantic relevance of them can be effectively
measured. Therefore, we design two components in our DSSE
objective function, i.e, learning semantic relevance and learn-
ing feature reconstruction. After we obtain the latent subspace,
the relevance between a video frame and side information can
be measured by their distance. Finally, the video frame with
the highest relevance score can be seen as the thumbnail, and
a dynamic video summary is generated by maximizing the
total relevance score within a summary budget. The approach
overview is shown in Fig. 2.

In the following, we will first construct the basic learning
architecture of DSSE, and then introduce how to employ the
large scale click-through data to strength our DSSE model.
Finally, we will present the video summarization generation
procedure. Some notations in this section are summarized in
Table L.

TABLE I
NOTATIONS
Symbol Definition
g=W¢) click-through video bipartite graph
Q={q1,92, ", ¢} set of queries in the bipartite graph
V ={vi,v2, -+ ,0;--} set of videos in the bipartite graph
c; click number of v; in response to g;
qi textual features of query g;
v, visual features of video v;’s thumbnail
X a test video
T the side information of X
t textual feature of T'
n the number of frames in X
X = [x1, %2, , Xn] the feature matrix of X
dy dimensionality of visual feature
dy dimensionality of textual feature
dp, dimensionality of hidden layers

A. The Basic DSSE Learning Architecture

Learning semantic relevance: Given a video and its side
information like query and title, the task of our method is to
find a subset of frames in the video that are most relevant to its
side information. Although the relevant video frames and side
information are tightly correlated by the semantic meaning,
the similarity in between, could not be directly computed since
the representations of them are absolutely heterogenous (visual
and textual). Some works directly mapped the visual feature of
video frames to textual space by a linear transformation, and
then measured their similarity in the textual space. However,
the textual specific information which is not comparable to
visual features is harmful to correlation learning. One solution,
pursued in this paper, is to rely on the subspace learning, which
assumes that a low-dimensional common subspace exists for
the representations of video frames and side information.
In this subspace, only the comparable common information
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Fig. 3. The basic learning architecture of DSSE. We construct a latent
subspace by correlating the hidden layers of the two uni-modal autoencoders.

between two different sources can be learned and shared, and
the modality specific information is reduced.

Measuring the cross modal relevance between video frames
and side information will result in the open problem of
Semantic Gap, which is highly nonlinear in natural. Therefore
we define the mappings from the visual space and textual space
to the latent subspace as follows:

fIy; Wy, by) =0(Wgly +by)
9(193 Wy, bg) = U(ngg + bg)

)
2

Iy € R% is the visual feature of video frame and I, € R%
is the textual feature of the side information. W, € R4n*dv
W, € R4t gre the transformation matrices and by € R,
b, € R are the bias vectors. d, and d; are the dimensions
of visual features and textual features, respectively. dj is the
latent subspace dimension. In Eq. 1 and Eq. 2, we practically
choose the sigmoid function o(z) = 7, as the non-
linear activation function.

To learn the transformation matrices and bias vectors above,
we demand the matched video frame and side information to
be close to each other in the latent subspace. Minimizing the
distance of matched pair will force the comparable common
information to be learned in the latent subspace, because
the uncomparable modality specific information is almost
impractical to align and will be dropped in this learning
procedure. Based on the common information, the semantic
relevance loss can be defined as the L2 distance between the
video frame and side information in the latent subspace:

Lyai(Iy,1g;W,b) = [[f(I5; Wy, by) — Q(Ig§wg»bg)||§
3)
We group the transformation matrices as W and the bias
vectors as b here.

Learning feature reconstruction: Based on the above
consideration that common information should be preserved
in the latent subspace, another problem is that how much of it
can be preserved? If both “bike” and “lock” are contained
in the side information and video frame, but only one of
them is captured in the latent subspace, then the common
information we observed is insufficient. This will lead to an in-
comprehensive subspace and an unreliable similarity measure,
resulting in the performance loss for video summarization.
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To solve this problem, it’s worth noting that the common
information always comes from the original features, the loss
of information in the latent subspace will also cause the
original features cannot be well reconstructed from the latent
subspace. From this point of view, minimizing the feature
reconstruction loss will help us to preserve more common
information in the latent subspace, and this can be naturally
solved by introducing autoencoder [46] into our model.

Autoencoder is a kind of neural networks and aims to
transform inputs into outputs with the least possible amount
of distortion. The hidden layer of autoencoder can preserve
some important characteristics of input and can be regarded
as a more robust representation of input feature. Therefore, we
rebuild our latent subspace on the hidden layer of autoencoder.

As shown in Fig. 3, our DSSE architecture is composed
of two subnetworks, each with a uni-modal autoencoder. One
autoencoder in DSSE encodes the video frame inputs, the
other encodes the side information correlated to the videos.
The two autoencoders share the same architecture but with
different parameters. We constrain the hidden layers of the two
autoencoders with the same unit number, and correlate the two
layers with the semantic relevance loss term defined in Eq. 3.
The transformation matrices and bias vector can be thought
as the parameters of the two autoencoders at the first layer,
the representations in latent subspace f(I;; Wy, bs) and
9(I5; Wy, by) can be thought as the hidden representations
of the two autoencoders. Thus, the latent subspace is rebuilt
on the hidden layers of the two correlated autoencoders.

As for the basic autoencoder, the feature reconstruction
loss of the original input features is as follow:

2

~ 2 ~
Loeelly 15:0) = | I =1+ |1 -1, @

2
Here INf and INg are the reconstructed feature of Iy and I,
respectively. To simplify the annotations, © represents all the
parameters of the two correlated autoencoders.

If we only preserve partial parts of the common information
in the latent subspace, the feature reconstruction loss is not
optimal, because we will not reach the least possible amount
of distortion without the remaining important common fea-
tures captured in the hidden representations. So minimizing
the feature reconstruction loss when constructing the latent
subspace will help to preserve more valuable common in-
formation between two different sources. Additionally, the
feature reconstruction loss can also maintain the internal-
similarity within the textual and visual domains, which means
that similar video frames (or side information) will have
similar representations in the latent subspace, thus it indirectly
benefits the propagation of semantic relevance between the two
domains.

Overall loss: Combining the semantic relevance loss de-
fined in Eq. 3 and the feature reconstruction loss defined in
Eq. 4, the overall objective function of our DSSE is as follow:

ngn aLyei(I,14;0)+ Lyec(If,14;0) 5)

o is the parameter used to trade off between the two loss
terms.

B. The click-through based DSSE learning

Based on the basic DSSE learning architecture, we further
consider how to leverage the freely available click-through
image and video datasets to learn a more effective DSSE
model.

As shown in Fig. 2(a), a bipartite graph G = (V, £) between
the user queries and videos is constructed based on the search
logs from a commercial search engine. ¥V = QJV is the
set of vertices, which consists of a query set () and a video
set V. The query set () can be thought as one kind of the
side information of videos here. The number associated with
an edge represents the click number of a video given a query.
For most video search engines, users can only see the returned
video thumbnails before clicking on a certain video, and they
intend to choose the video whose thumbnail is more related to
the query. Therefore, query and its relevant video thumbnail
are closely bound up by their semantic meaning. Specifically,
each edge and two vertices associated with it in the bipartite
graph can generate a triad {q;,v;,c;}, where ¢; is the click
number of video v; in response to query g;. Obviously, the
larger the click number c;, the higher the semantic relevance
between ¢; and v;.

If a metric can be learned to measure the semantic relevance
between different queries and video thumbnails, we can also
measure the semantic relevance between video frames and
their textual side information by this metric naturally. There-
fore, we could use the click-through based data to strengthen
the learning process of our DSSE model.

Specifically, we obtain a set of triplets 7 from our click-
through bipartite graph, where each tuple (q;,v;", v;" ) consists
of a query g;, a video thumbnail v;~ with higher click number
c; and a lower clicked video thumbnail v;~ with click number
¢; . Also, we involve some thumbnails not clicked by query
g; as v; in the triplets, enforcing the projections of video
thumbnails with different semantics become far away in the
learnt subspace. Therefore, the click-through based semantic
relevance loss in DSSE is defined as:

L:el(qiv V;_’ Vi_; 6) =
maz (0,7 + ¢; Lyet (Vi qi;0) —

¢; Lrai(v; ,qi;9))
(6)

For v, which is not clicked by query ¢;, we set c¢; as I.
The L7 , adopts the hinge rank loss form, it encourages the
distance between a positive pair (qi,U;r ) to be smaller than
the distance between a negative pair (g;,v; ), and ~ is the
margin term. Compared with the typical hinge loss function,
we further multiply the distance between video thumbnails and
queries by their click numbers in L}, in order to strengthen
the latent subspace learning. With this modification, the video
thumbnails with higher click numbers will be closer to the
query in the latent subspace, and therefore the model can better
discriminate the irrelevant and relevant video thumbnails given
a query.

The feature reconstruction loss based on the click data is
defined as :

L:ec(ch'v V;'i_v Vi_; @) = LTGC(Vj_7 qi; 6) + Lrec(vi_a qi; @)
(7N
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For training our DSSE model, we linearly combine L7, and
L7, . with the tradeoff parameter «, hence we get the following

optimization problem:

min > oLl (ai v vii0) + Lilai v vii0) )
?

Since all the terms in Eq. 8 are convex and smooth, we directly

use gradient descent to optimize the overall objective function,

which is convenient in some open source software library for

machine learning like tensorflow and theano.

Because the training samples in the click-through video
dataset are limited, we also use the large scale click-through
image dataset to pretrain our model. The click-through image
dataset is very similar to the video dataset, with only the visual
data changed from video thumbnails to images. More details
will be discussed in the Experiments section.

C. Video Summary Generation

Let X = [X1,X2, - ,X,] € R¥%*" denote the matrix of
n video frames in a test video X, with each column x; €
R? representing the visual feature of a frame. t € R% is
the textual feature of the side information 7' associated with
video X. The side information 7" here can be various kinds
of surrounding text of videos like query, title, description and
SO on.

After we get the optimized two uni-modal autoencoders
of our DSSE model, we can map the frames in video X
and the side information 7" into the learned latent subspace.
Specifically, we measure the semantic relevance score between
the ith video frame and the side information by computing the
distance between x; € R% and t € R% in the latent subspace.
Smaller distance means higher relevance, that is:

R(x;) =1—N(Lyei(x;,1;0)). 9)

For simplicity, we normalize the distance between O~1 using
min-max normalization A/ and then we subtract the normalized
distance from 1 as the semantic relevance score.

Video Thumbnail Selection: Video thumbnail can be seen
as the most concise static video summary since it should de-
scribe the video content in a single image. So we conduct some
experiments for video thumbnail selection in this paper. When
we have obtained the video frame level semantic relevance
scores related to the side information, we can rank the frames
by their score numbers and the frame with the highest semantic
relevance score can be seen as the video thumbnail.

Dynamic Video Summarization: To generate a dynamic
video summary of length [, we first employ a video seg-
mentation algorithm to get video shots, and then compute
the shot-level semantic relevance scores by taking an average
of the frame level semantic relevance scores within each
shot. Formally, we want to solve the following optimization
problem:

masziR(si)
i=1

m
s.t.z,zi |si| <.
i=1

(10)

Here m is the number of shots, z; € {0,1} and z; = 1
indicates that shot s; is selected. R (s;) is the shot-level
semantic relevance score of the ¢th shot. This maximization
is a standard knapsack problem, where R (s;) is the value
of an item and the length |s;| is its weight. The problem
can be solved globally optimal with dynamic programming.
A dynamic video summary which maximizes the overall
relevance score is then created by concatenating shots with
z; = 1 in chronological order. Following [28], [ is set as 15%
of the video length.

IV. EXPERIMENTS
A. Datasets

We train our model on two click-through based datasets
and evaluate the performance of our model on two video
summarization datasets.

Clickture [47]: We leverage two different but similar click-
through datasets to train our DSSE model.

o Click-through video dataset: Click-through video dataset
is collected from Bing, which consists of 0.5 mil-
lion {query,video thumbnail, click number} triples,
where query is a textual word or phrase, click number
is an integer no less than one indicating the total clicked
number.

« Click-through image dataset: Click-through image dataset
is also collected from one year click-through data of Bing.
The dataset comprises of two parts, i.e. the training and
development (Dev) sets, the training set consists of 23.1
million {query, image, click number} triples, and there
are 79926 (query, image) pairs in Dev set. The relevance
of each image to query in Dev set was manually annotated
on a three point ordinal scale: Excellent, Good, and Bad.

The scale of click-through video dataset is limited and not
enough to train a reliable model. Therefore, we leverage the
large scale click-through image dataset to pretrain our model
and then fine tune on click-through video dataset.

Thumb1K [29]: ThumblK consists of 1037 query-video
pairs collected from Bing. The dataset provides almost 20
key frames as candidate thumbnails for each video, and
these candidate thumbnails are extracted by a representative
attributes based method [48]. All the candidate thumbnails
are labeled by five different scores: Very Good (VG), Good
(G), Fair (F), Bad (B), and Very Bad (VB). We apply video
thumbnail selection task on this dataset. Queries associated
with videos provided in this dataset can be seen as the side
information.

TVSum50 [28]: TVSum50 contains 50 videos downloaded
from YouTube in 10 categories defined in the TRECVid
Multimedia Event Detection (MED). The dataset provides
video title and an important score of 1 (not important) to
5 (very important) to each of uniform-length (2s) shots for
the whole video. Frame level important scores are labeled
the same as their relevant shots and there are 20 different
important scores labeled by 20 different people for each video.
We apply dynamic video summarization task on this dataset.
Titles of videos provided in this dataset can be seen as the
side information.
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B. Experimental Settings

Textual and Visual Features: For both video frames and
side information, we need deep neural models which are well-
suited for learning semantically-meaningful representations so
that the high level semantic relevance can be measured in the
latent subspace instead of the correlation between low level
features. Since the effectiveness of the skip-thought sentence
representations [49] in image-sentence retrieval and sentence
classification tasks, we employ the skip-thought vectors to
represent the side information of videos. The skip-thought
model is trained on 11038 books from BookCorpus dataset
[50] which includes about 74 million sentences, we can use the
trained model as an off-the-shelf sentence embedding method
as authors have concluded in the conclusion of the paper.
Specifically, the 4800-D combine-skip vectors which combine
both unidirectional and bidirectional sentence representations
are chosed in this paper. Inspired by the success of deep
convolutional neural networks (CNN), we employ AlexNet
[51] to generate image representations in this work, the feature
descriptor of each image or frame is obtained by extracting
the output of the fc7 layer of the AlexNet model and we init
the CNN with the parameters learned on ILSVRC-2012 [52].
The textual and visual features we extracted are normalized to
(0,1) domain based on the domain restriction of the activation
function Sigmoid.

Shot Segmentation: To generate dynamic video summary
on TVSum50 dataset, we first temporally segment a video
into disjoint intervals using KTS [33], a kernel-based change
point detection algorithm which is widely used in video
summarization tasks [25], [33].

Implementation details: Our DSSE model is implemented
based on tensorflow [53]. When training our DSSE model
by batch gradient descent, we set the batch size as 128,
the learning rate Ir is set as 0.0001 at first and we apply
exponential decay to it. The training process will terminate if
the average training loss difference between two consecutive
epochs is less than the threshold, and the threshold value is
based on the initial loss value. The margin term v in L},
is set as 0.5. The tradeoff parameter « is set as 100 and the
latent subspace dimension is set as 256 by grid search. For
more detailed analysis of them, see the next section. We spend
about 13 hours to train our DSSE model on an Ubuntu 16.04
server with Intel Xeon CPU E5-2650, 128 GB Memory and
NVidia Tesla M40 GPU. We use GPU only for extracting deep
visual features.

Baseline methods: Although our method can apply to both
video thumbnail selection and dynamic video summarization,
Thumb1K [29] only provides almost 20 visual representative
and comprehensive candidate thumbnails without the original
videos, some video summarization methods are inapplicable
to this dataset since video summarization is built on the
whole video content. So we compare different methods on
two different tasks below.

For video thumbnail selection, we compare:

« Random Selection: The method randomly selects one im-
age from candidate thumbnails as final video thumbnail.

« Video Representative Attributes based Method (ATTR)
[48]: The method considers the visual attributes of images
and selects the most visual representative video frame as
thumbnail.

« VSEM-VIDEO [29]: A deep visual-semantic embedding
model trained on click-through video dataset for query
dependent video thumbnail selection.

e MTL-VSEM [29]: A multi-task visual-semantic embed-
ding model trained on click-through image and video
dataset for query dependent video thumbnail selection.

For dynamic video summarization, we compare:

o Random Sampling: The method generates a summary
by randomly selecting shots from videos such that the
summary length is within the length budget [.

« Dictionary Selection based Video Summarization (DSVS)
[7]: The method formulates video summarization as a
dictionary selection problem using sparsity consistency,
where a dictionary of key frames is selected such that the
original video can be best reconstructed from this repre-
sentative dictionary. Each frame in a video is assigned
a representative score. Shot-level representative scores
are calculated by averaging frame-level representative
scores within each shot. We select shots with the highest
representative scores that fit in the length budget.

o Co-archetypal Analysis (CA) [28]: The method develops
a co-archetypal analysis technique that learns canonical
visual concepts shared between video and web images
retrieved by video titles. A summary is generated by
maximizing the relevance and the representativeness of
selected shots to canonical visual concepts, with length
budget I.

¢ MTL-VSEM [29]: A multi-task visual-semantic embed-
ding model mentioned above. Similarity between a video
frame and the associated user query is measured by their
inner product in the common space. Shot-level similarity
scores are calculated by averaging frame-level similarity
scores within each shot. A summary is generated by
maximizing the overall similarity between the selected
shots and the associated user query, and with length
budget [.

Evaluation Metrics: We evaluate video thumbnail selection
by two criteria: HIT@1 which computes the hit ratio for the
first selected thumbnail and Mean Average Precision (MAP)
which computes the mean precision for all the candidate
thumbnails. The MAP is computed by

Q| m;
1 1
MAP = — E — E Precision (Rjy) - (11)
@ =1 "M

Where query set is defined as @, for the jth query-video
pair, there are m; positive thumbnails, Precision (R;j) is
the average precision at the position of returned kth positive
thumbnails. Since video thumbnails are labeled by five dif-
ferent scores, we can calculate the HIT@1 and MAP in two
different situations: set thumbnails with VG score as positive
samples and set thumbnails with VG or G score as positive
samples.
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Following by [25], [28], we measure the quality of gener-
ated dynamic video summary by multiple human annotations.
Specifically, given a proposed summary .S and a user summary
B; provided by the ith annotator, we compute the precision
p; and recall r;, according to the temporal overlap between
the two. Then the pairwise F1 measure is computed as

1
52

i=1

2p;r;

F1l= .
pi+ 7

(12)

Where N is the number of user summaries per video, and
N is set as 20 in TVSum50 dataset. We evaluate video
summarization results by the average F1 score of all the
videos.

TABLE II
THE MAP OF DIFFERENT METHODS FOR VIDEO THUMBNAIL SELECTION

Method Image Video MAP(VG) MAP(VG&G)
Random X X 0.3870 0.6407
ATTR [48] X X 0.4852 0.7078
VSEM-VIDEO [29] X 4 0.4729 0.7066
MTL-VSEM [29] V4 Vv 0.5228 0.7523
DSSE-VIDEO X Vv 0.5612 0.7557
DSSE-ALL 4 Vv 0.5922* 0.7821*
DSSE-ALL gi0ve vV Vv 0.5763 0.7642
DSSE-ALL,, 4 Vv 0.5744 0.7742
DSSE-ALL jick1 v V4 0.5541 0.7617

Notes: MAP(VG) means the MAP value when positive score equals VG;
MAP(VG&G) means the MAP value when positive score equals VG and
G. \/(x) represents whether or not the click-through image or video dataset
used in the training procedure of a method. *: Our method (DSSE) statistically
significantly outperforms all other baselines (p < 0.001) in pairwise t-test.

C. Evaluation of Video Thumbnail Selection

We first evaluate the performance of our DSSE method in
video thumbnail selection task, Table II summaries the MAP
scores, the HIT@1 results can be seen in Fig. 4.

There are some variations of our DSSE model that should
be explained first. DSSE-VIDEO means we only employ the
click-through video dataset to train our model, compared
to it, DSSE-ALL means we pretrain our model on click-
through image dataset and then fine tune on video dataset. The
“y/” and “x” in Table II also interpret this difference. Since
our baseline method VSEM-VIDEO and MTL-VSEM applied
“glove” word features to represent the video titles and queries,
to be fair, we also use “glove” features in DSSE-ALL ;.. to
represent words, and then average the word features as the
sentence representation. In order to measure the usefulness of
our feature reconstruction loss, we remove it from the overall
loss in DSSE-ALL,,,- model, with only semantic relevance loss
preserved. To justify the influence of the click numbers, we
set them equal to 1 for all the positive query-thumbnail (and
query-image) pairs in DSSE-ALL .j;cx1-

From the results, we can find that when we pretrain on
click-through image dataset and then fine tune on video
dataset, our DSSE-ALL statistically significantly outperforms
other methods whether on selecting one thumbnail or ranking
several candidate thumbnails. The performance improvement

between DSSE-VIDEO and DSSE-ALL proves that pretrain-
ing our model on click-through image dataset is beneficial.
Specifically, our method achieves higher accuracy than ATTR
method. It shows that compared to visual representative at-
tributes, the semantic relevance between video thumbnails
and queries measured by our DSSE model can better re-
flect people’s concern when they watch videos, and so as
to provide them a more satisfactory video thumbnail. With
almost the same setting and the same training data, our DSSE-
ALL g0y outperforms MTL-VSEM at MAP(VG) by 10.2%,
and HIT@1(VG) by 7.7%. It shows that constructing a new
latent subspace for similarity measurement is a better choice
because the harmful modality specific interference can be
reduced. Compare DSSE-ALL with DSSE-ALL .., we find
that a better sentence representation can further improve the
performance of our method. Another observation is that there
is a performance decrease from DSSE-ALL to DSSE-ALL,,,
in terms of all the evaluation metrics, and it verifies the
effectiveness of the feature reconstruction loss. Considering
the data completeness will help to preserve more useful
common information in the latent subspace, and therefore ben-
efits the semantic relevance measurement. Compared DSSE-
ALL with DSSE-ALL;;.x1, we find that setting all the click
numbers equal to 1 can cause a performance degradation,
therefore the click number constrain has a great influence to
our DSSE model. Besides considering the ranking relationship
in different video thumbnails by hinge loss in L7, the
click numbers further quantify the semantic relevance between
queries and thumbnails, and can help the latent subspace
learning procedure. For a trained DSSE model, it only takes
18ms on average to select a video thumbnail for a query-video
pair.

We further conduct experiments to measure the impacts of
the tradeoff parameter « and the dimension of latent subspace
(hidden layer unit number). The MAP and HIT@1 curves
with different o and latent subspace dimensions are shown
in Fig. 5. As for the tradeoff parameter «, both too small
and too large values show poorer results, this is consistent
with the impact of « in our DSSE model. Too small value
of o overemphasizes the reconstruction loss of visual feature
and ignores the semantic relevance between video thumbnails
and side information, too large value reduces the influence of
the feature reconstruction term. However, the curve is very
smooth in a long range of « {10,100, 1000,10000}, thus
the performance of our model is not very sensitive to the
change of the tradeoff parameter. As for the dimension of
latent subspace, the selection of its value do not have a great
influence to our DSSE model. A smaller 64-D subspace and
a larger 2048-D subspace get slightly poorer results. We infer
that the semantic relevance between video frames and side
information cannot be fully learned in a smaller subspace,
and more training data are needed for a larger subspace.
Considering both performance and run time efficiency, a
moderate subspace dimension 256 or 512 is better for our
DSSE model.
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Fig. 4. HIT@]1 score of different methods for video thumbnail selection.(a)
positive score equals VG; (b) positive score equals VG and G.
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Fig. 5. The HIT@1 and MAP performance curves with different tradeoff
parameters « and different subspace dimensions (hidden layer unit numbers).
(a) HIT1@1 performance curves when positive score equals VG and G; (b)
MAP performance curves when positive score equals VG and G.

TABLE III
THE F1 SCORE OF DIFFERENT METHODS FOR VIDEO SUMMARIZATION

Category  Random CA* DSVS MTL- DSSE
[28] [7] VSEM
[29]
VT 0.31 0.52 0.54 0.65 0.63
vU 0.32 0.55 0.51 0.56 0.60
GA 0.35 0.41 0.53 0.59 0.58
MS 0.32 0.58 0.50 0.55 0.64
PK 0.34 0.44 0.40 0.48 0.54
PR 0.37 0.53 0.46 0.50 0.48
M 0.32 0.51 0.47 0.54 0.52
BK 0.33 0.47 0.45 0.44 0.51
BT 0.28 0.49 0.56 0.56 0.63
DS 0.34 0.48 0.47 0.50 0.55
AVG 0.33 0.50 0.49 0.54 0.57*

Notes: *: Our method (DSSE) statistically significantly outperforms all other
baselines (p < 0.001) in paired t-test. §: CA used auxiliary grabbed web
images for learning and we provide their published results here.

D. Evaluation of Dynamic Video Summarization

Table III shows the pairwise F1 scores of different methods
on TVSum50 dataset. There are 10 categories in TVSum50
dataset: changing Vehicle Tire (VT), getting Vehicle Unstuck
(VU), Grooming an Animal (GA), Making Sandwich (MS),
Parkour (PK), Parade (PR), Flash Mob Gathering (FM), Bee-
keeping (BK), Attempting Bike Tricks (BT), Dog Show (DS).
The performance on one category is represented in a row
and the last row shows the average F1 score. Our method
significantly outperforms all other methods and is particularly
well on some categories like VU, MS, BT. It demonstrates
that when watching these videos, users pay more attention
to finding some specific content, so that the video titles can
give a valuable guide to grab semantic meaningful frames or
shots. However, the DSVS method which only considers the
representativeness of video frames and ignores their semantic
meaning is not effective to generate a good result. The CA
method needs auxiliary web images related to the video titles
because they need to learn co-archetypes between those web
images and video frames, but they do not publish the auxiliary
images for learning so that we report their published results
there. To be fair, we use their evaluation code to evaluate our
method. Although both of our DSSE and CA need auxiliary
data for learning a video summarization model, the biggest
difference is that they need to grab images from web and
start a learning procedure again when meeting a new video,
however, our model can directly generate the video summary
in 4.8s for a 4 minutes’ video.

Fig. 6 gives some qualitative results of our method. We can
see that in the first example, the predicted summary aligns well
with the human selection, it demonstrates that our method can
find video content that most people concern with the help of
video title. For the second example, we get a lower F1 score.
In this case, the video always contains scenes related to dogs
from the beginning to the end. Hence it is hard to choose
from so many relevant shots. Even so, the generated summary
is still a good depict of the video content. Some other video
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(a) Video Title: Spicy Sausage Sandwich; F1 Score: 0.6824
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(b) Video Title: The Dog Show; F1 Score: 0.5618

Fig. 6. Example summaries of videos from TVSum50. For each video we show the average human labeled important score curve in the second row and
the predicted semantic relevance score curve based on our DSSE method in the third row. A peak in the human score curve indicates that this part is more
likely to be selected by people, while a peak in the semantic relevance score curve indicates a high prediction for this part. We mark the selected segments
by red and green bar on these two curves separately. Groundtruth summary based on the average human score and predicted summary based on the semantic

relevance score are shown in the first and the last row respectively.

summarization results of our method are available online.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a deep side semantic embedding
model for video summarization, which aims to find semantic
meaningful frames or shots of videos with the help of side
semantic information. For this purpose, we construct a latent
subspace by correlating the hidden layers of the two uni-
modal autencoders, so that the comparable common infor-
mation between video frames and side information can be
learned more completely, and their semantic relevance can
be measured more effectively. The large scale click-through
based data also supply a massive resources to help to train
a more robust model. Extensive experiments have verified the
effectiveness of our method. The results demonstrate that when
there are some specific content in videos that people are more
purposeful to watch, side information is really a good guidance
for video summarization because it can help to locate the
crucial parts in videos that people concern.

Moving forward, we plan to improve our method by con-
sidering the temporal relationship between video frames, the

https://www.youtube.com/watch?v=Ldn8kcJ1Y-U

motion features and other specific properties of videos when
building the video summarization model. Other kinds of side
information like video tags, captions, comments and so on will
also be investigated in the future.

ACKNOWLEDGMENT

This paper was supported by National Natural Science
Foundation of China Major Project No. U1611461 and
National Program on Key Basic Research Project No.
2015CB352300.

REFERENCES

[1] B. Gong, W.-L. Chao, K. Grauman, and F. Sha, “Diverse sequential
subset selection for supervised video summarization,” in Advances in
Neural Information Processing Systems, 2014, pp. 2069-2077.

Y.-F. Ma, X.-S. Hua, L. Lu, and H.-J. Zhang, “A generic framework of
user attention model and its application in video summarization,” /[EEE
transactions on multimedia, vol. 7, no. 5, pp. 907-919, 2005.

J. You, G. Liu, L. Sun, and H. Li, “A multiple visual models based
perceptive analysis framework for multilevel video summarization,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 17, no. 3, pp. 273-285, 2007.

A. Aner and J. R. Kender, “Video summaries through mosaic-based
shot and scene clustering,” in European Conference on Computer Vision,
2002, pp. 388-402.

[2]

[3]

[4]



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

N. Vasconcelos and A. Lippman, “A spatiotemporal motion model
for video summarization,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1998, pp. 361-366.

A. Rav-Acha, Y. Pritch, and S. Peleg, “Making a long video short:
Dynamic video synopsis,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2006, pp. 435-441.

Y. Cong, J. Yuan, and J. Luo, “Towards scalable summarization of
consumer videos via sparse dictionary selection,” IEEE Transactions
on Multimedia, vol. 14, no. 1, pp. 66-75, 2012.

B. Zhao and E. P. Xing, “Quasi real-time summarization for consumer
videos,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2014, pp. 2513-2520.

J. Meng, H. Wang, J. Yuan, and Y.-P. Tan, “From keyframes to
key objects: Video summarization by representative object proposal
selection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 1039-1048.

S. E. F De Avila, A. P. B. Lopes, A. da Luz, and A. de Albu-
querque Araujo, “Vsumm: A mechanism designed to produce static
video summaries and a novel evaluation method,” Pattern Recognition
Letters, vol. 32, no. 1, pp. 56-68, 2011.

T. Liu and J. R. Kender, “Optimization algorithms for the selection of
key frame sequences of variable length,” in European Conference on
Computer Vision, 2002, pp. 403—417.

T. Mei, X.-S. Hua, C.-Z. Zhu, H.-Q. Zhou, and S. Li, “Home video visual
quality assessment with spatiotemporal factors,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 17, no. 6, pp. 699-706,
2007.

N. Ejaz, I. Mehmood, and S. W. Baik, “Efficient visual attention based
framework for extracting key frames from videos,” Signal Processing:
Image Communication, vol. 28, no. 1, pp. 34-44, 2013.

Z. Lu and K. Grauman, “Story-driven summarization for egocentric
video,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2013, pp. 2714-2721.

B. Xiong, G. Kim, and L. Sigal, “Storyline representation of egocentric
videos with an applications to story-based search,” in Proceedings of the
IEEE International Conference on Computer Vision, 2015, pp. 4525—
4533.

Y. J. Lee, J. Ghosh, and K. Grauman, “Discovering important people
and objects for egocentric video summarization,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2012,
pp. 1346-1353.

T. Yao, T. Mei, and Y. Rui, “Highlight detection with pairwise deep
ranking for first-person video summarization,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 982-990.

Y. J. Lee and K. Grauman, “Predicting important objects for egocentric
video summarization,” International Journal of Computer Vision, vol.
114, no. 1, pp. 38-55, 2015.

D. Liu, G. Hua, and T. Chen, “A hierarchical visual model for video
object summarization,” IEEE transactions on pattern analysis and
machine intelligence, vol. 32, no. 12, pp. 2178-2190, 2010.

J. Tompkin, K. I. Kim, J. Kautz, and C. Theobalt, “Videoscapes:
exploring sparse, unstructured video collections,” ACM Transactions on
Graphics (TOG), vol. 31, no. 4, p. 68, 2012.

M. Tapaswi, M. Bauml, and R. Stiefelhagen, “Storygraphs: visualizing
character interactions as a timeline,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2014, pp. 827-834.
K. Zhang, W.-L. Chao, F. Sha, and K. Grauman, “Summary transfer:
Exemplar-based subset selection for video summarization,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1059-1067.

M. Gygli, H. Grabner, H. Riemenschneider, and L. Van Gool, “Creating
summaries from user videos,” in European conference on computer
vision, 2014, pp. 505-520.

M. Gygli, H. Grabner, and L. Van Gool, “Video summarization by
learning submodular mixtures of objectives,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
3090-3098.

K. Zhang, W.-L. Chao, F. Sha, and K. Grauman, “Video summarization
with long short-term memory,” in European Conference on Computer
Vision, 2016, pp. 766-782.

A. Sharghi, B. Gong, and M. Shah, “Query-focused extractive video
summarization,” in European Conference on Computer Vision, 2016,
pp. 3-19.

H. Jiang, Y. Lu, and J. Xue, “Automatic soccer video event detection
based on a deep neural network combined cnn and rnn,” in Tools with

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Artificial Intelligence (ICTAI), 2016 IEEE 28th International Conference
on. IEEE, 2016, pp. 490-494.

Y. Song, J. Vallmitjana, A. Stent, and A. Jaimes, “Tvsum: Summarizing
web videos using titles,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 5179-5187.

W. Liu, T. Mei, Y. Zhang, C. Che, and J. Luo, “Multi-task deep visual-
semantic embedding for video thumbnail selection,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 3707-3715.

Y. Pan, T. Yao, T. Mei, H. Li, C.-W. Ngo, and Y. Rui, “Click-through-
based cross-view learning for image search,” in Proceedings of the 37th
international ACM SIGIR conference on Research & development in
information retrieval. ACM, 2014, pp. 717-726.

T. Yao, T. Mei, and C.-W. Ngo, “Learning query and image similarities
with ranking canonical correlation analysis,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 28-36.

Z.]J. Zha, T. Mei, Z. Wang, and X. S. Hua, “Building a comprehensive
ontology to refine video concept detection,” in ACM Sigmm International
Workshop on Multimedia Information Retrieval, 2007, pp. 227-236.

D. Potapov, M. Douze, Z. Harchaoui, and C. Schmid, “Category-specific
video summarization,” in European conference on computer vision,
2014, pp. 540-555.

M. Sun, A. Farhadi, and S. Seitz, “Ranking domain-specific highlights
by analyzing edited videos,” in European conference on computer vision,
2014, pp. 787-802.

A. Khosla, R. Hamid, C.-J. Lin, and N. Sundaresan, “Large-scale video
summarization using web-image priors,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2013, pp.
2698-2705.

G. Kim, L. Sigal, and E. P. Xing, “Joint summarization of large-scale
collections of web images and videos for storyline reconstruction,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 4225-4232.

I. Naim, Y. C. Song, Q. Liu, H. Kautz, J. Luo, and D. Gildea,
“Unsupervised alignment of natural language instructions with video
segments,” in Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014, pp. 1558-1564.

A. Karpathy, A. Joulin, and F. F. F. Li, “Deep fragment embeddings
for bidirectional image sentence mapping,” in Advances in neural
information processing systems, 2014, pp. 1889-1897.

S. J. Hwang and K. Grauman, “Learning the relative importance of
objects from tagged images for retrieval and cross-modal search,”
International journal of computer vision, vol. 100, no. 2, pp. 134-153,
2012.

S. Li, S. Purushotham, C. Chen, Y. Ren, and C.-C. J. Kuo, “Measuring
and predicting tag importance for image retrieval,” IEEE transactions
on pattern analysis and machine intelligence, 2017.

J. Lei Ba, K. Swersky, S. Fidler et al., “Predicting deep zero-shot con-
volutional neural networks using textual descriptions,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
4247-4255.

R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-semantic
embeddings with multimodal neural language models,” Computer Sci-
ence, 2014.

F. Feng, X. Wang, and R. Li, “Cross-modal retrieval with correspondence
autoencoder,” in Proceedings of the 22nd ACM international conference
on Multimedia, 2014, pp. 7-16.

A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov
et al., “Devise: A deep visual-semantic embedding model,” in Advances
in Neural Information Processing Systems, 2013, pp. 2121-2129.

T. Mei, B. Yang, X. S. Hua, and S. Li, “Contextual video recommen-
dation by multimodal relevance and user feedback,” Acm Transactions
on Information Systems, vol. 29, no. 2, pp. 1-24, 2011.

A. Ng, “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no. 2011,
pp. 1-19, 2011.

X.-S. Hua, L. Yang, J. Wang, J. Wang, M. Ye, K. Wang, Y. Rui, and J. Li,
“Clickage: Towards bridging semantic and intent gaps via mining click
logs of search engines,” in Proceedings of the 21st ACM international
conference on Multimedia, 2013, pp. 243-252.

H.-W. Kang and X.-S. Hua, “To learn representativeness of video
frames,” in Proceedings of the 13th ACM international conference on
Multimedia, 2005, pp. 423-426.

R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Tor-
ralba, and S. Fidler, “Skip-thought vectors,” in Advances in neural
information processing systems, 2015, pp. 3294-3302.



[50] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba,
and S. Fidler, “Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books,” in Proceedings of
the IEEE international conference on computer vision, 2015, pp. 19-27.
A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211-252, 2015.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[51]

[52]

(53]

Yitian Yuan is currently a Master student in the
Department of Computer Science and Technology
of Tsinghua University. She received her B.E. degree
from the Department of Computer Science and Tech-
nology of Beijing Jiaotong University in 2016. Her
main research interests include multimedia analysis,
computer vision and deep learning.

Tao Mei is a Senior Researcher and Research
Manager with Microsoft Research Asia. His current
research interests include multimedia analysis and
computer vision. He has authored or co-authored
over 150 papers with 11 best paper awards. He
holds 40 filed U.S. patents (with 18 granted) and
has shipped a dozen inventions and technologies to
Microsoft products and services. He is an Editorial
Board Member of IEEE Trans. on Multimedia, ACM
Trans. on Multimedia Computing, Communications,
and Applications, IEEE MultiMedia Magazine, and
Pattern Recognition. He is the General Co-chair of IEEE ICME 2019, the
Program Co-chair of ACM Multimedia 2018, IEEE ICME 2015, and IEEE
MMSP 2015. Tao is a Fellow of IAPR and a Distinguished Scientist of ACM.
Tao received B.E. and Ph.D. degrees from the University of Science and
Technology of China, Hefei, China, in 2001 and 2006, respectively.

Peng Cui is an Associate Professor in Tsinghua
University. He got his PhD degree from Tsinghua
University in 2010. He is keen to promote the
convergence of social media data mining and mul-
timedia computing technologies. His research inter-
ests include network representation learning, human
behavioral modeling, and social-sensed multimedia
computing. He has published more than 60 papers in
prestigious conferences and journals in data mining
and multimedia. He is the Associate Editors of
IEEE TKDE, ACM TOMM, Elsevier Journal on
Neurocomputing, and Guest Editors of IEEE Intelligent Systems, Information
Retrieval Journal, Machine Vision and Applications, etc.

Wenwu Zhu is currently a Professor and the Vice
Chair of the Department of Computer Science,
Tsinghua University, Beijing, China. Prior to his
current position, he was a Senior Researcher and
a Research Manager with Microsoft Research Asia,
Beijing, China. He was the Chief Scientist and the
Director with Intel Research China, Beijing, China,
from 2004 to 2008. He was at Bell Labs, Murray
Hill, NJ, USA, as a member of technical staff from
1996 to 1999. He received the Ph.D. degree from the
New York University, New York, NY, USA, in 1996.
His current research interests include the areas of multimedia computing,
communications, and networking, as well as big data.

Wenwu is an IEEE Fellow, AAAS Fellow, an SPIE Fellow, and an
ACM Distinguished Scientist. He has been serving as the Editor-in-Chief
for the IEEE TRANSACTIONS ON MULTIMEDIA (T-MM) since January
1, 2017. He served on the Steering Committee for T-MM in 2016 and the
IEEE TRANSACTIONS ON MOBILE COMPUTING (T-MC) from 2007
to 2010. He has served on various Editorial Boards, such as the Guest
Editor for the PROCEEDINGS OF THE IEEE, the IEEE JOURNAL OF
SELECTED AREAS IN COMMUNICATIONS, the IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY (T-CSVT),
as well as an Associate Editor for T-MM, the ACM Transactions on Mul-
timedia, Communications, and Applications, T-CSVT, T-MC, and the IEEE
TRANSACTIONS ON BIG DATA. He was the recipient of 5 Best Paper
Awards including T-CSVT in 2001 and ACM Multimedia 2012.



