Building Secure SGX Enclaves using F*, C++ and X64

Presentation Proposal for PRISC’18

Anitha Gollamudi
Harvard University
agollamudi@g.harvard.edu

Abstract

Intel SGX offers hardware mechanisms to isolate code and
data running within enclaves from the rest of the platform.
This enables security verification on a relatively small soft-
ware TCB, but the task still involves complex low-level code.

Relying on the Everest verification toolchain, we use F* for
developing specifications, code, and proofs; and then safely
compile F* code to standalone C code. However, this does
not account for all code running within the enclave, which
also includes trusted C and assembly code for bootstrapping
and for core libraries. Besides, we cannot expect all enclave
applications to be rewritten in F*, so we also compile legacy
C++ defensively, using variants of /guard that dynamically
enforce their safety at runtime.

To reason about enclave security, we thus compose differ-
ent sorts of code and verification styles, from fine-grained
statically-verified F* to dynamically-monitored C++ and cus-
tom SGX instructions. This involves two related program
semantics: most of the verification is conducted within F*
using the target semantics of Kremlin—a fragment of C with
a structured memory—whereas SGX features and dynamic
checks embedded by defensive C++ compilers require lower-
level X64 code, for which we use the verified assembly lan-
guage for Everest (VALE) and its embedding in F*.

1 Introduction

Hardware features like Intel SGX [5], ARM TrustZone [1],
and virtualization enable applications to build and deploy
protected subsystems, or enclaves, for their security-critical
functionalities. An enclave provides isolated execution, and
is thus an attractive option to defend against powerful ad-
versaries that may control the rest of the software stack.
We consider typical SGX subsystem whose software con-
sist of an SDK for managing enclaves and their security fea-
tures (e.g., hardware-protected keys and remote attestation),
some supporting libraries (e.g., cryptography), and some user
application. The SDK is written using a mix of C/C++ and
X64 assembly (e.g. for SGX instructions). Any bug in code
running within the enclave can lead to serious vulnerabili-
ties. For example, a malicious application could gain access
to memory outside the enclave, or exploit a poorly designed
library to leak enclave secrets, such as their signing keys.
We intend to verify the safety and security of enclave
subsystems using F* [9], leveraging the Everest verification

Cédric Fournet
Microsoft Research
fournet@microsoft.com

infrastructure [2, 4]. Compared with general-purpose sys-
tems, this task seems relatively easy, inasmuch as each en-
clave implements simple, specific application code with a
clear security model; each enclave include only a few fixed,
minimal libraries and runtimes; and thus, unlike their hosts,
enclaves need not trust much legacy code. However, this
task is challenging for multiple reasons, described below.

(1) It involves low-level system code, consisting of C and
inlined X64 assembly. We address this challenge by verifying
that code using a combination of Low™—a shallow embedding
of a small, sequential, well-behaved subset of C in F*, and of
VALE [3, 7]—a deep embedding of X64 assembly within F*.

(2) Low" and VALE operate at different levels of abstrac-
tion. The former is used to verify programs with structured
memory (e.g., C-like arrays and structures, allocated on the
stack or on the heap) whereas the latter is used to verify
lower-level assembly programs with flat memory (e.g. reg-
isters and a RAM of machine integers) where all structure
information is lost. Composing them securely requires tech-
niques to reconcile these two levels of abstractions.

(3) Enclaves are usually coded in unsafe languages such
as C and C++. Writing entire enclaves in F* is costly, and
convincing enclave programmers to use F* is hard.

(4) Enclave applications are usually ported from legacy
code with no functional specification, hence the most we
can hope for is to enforce their generic runtime safety and
isolation. This requires composing those coarse properties
with finer-grained properties obtained by deeper verification
of critical enclave components.

(5) Enclaves functionally rely on services provided by
the trusted host. This involves an assembly-level protocol
for entering and exiting enclaves, and for marshalling their
inputs and outputs across the enclave boundary.

To enforce secure composition among various components
of an SGX system, we must precisely express what we need
to verify, as well as our trust assumptions in the unverified
components. In the following sections, we elaborate on how
we are addressing these challenges.

This is work in progress—we have enclaves running code
compiled from Low" and VALE, and small-scale verification
experiments, but we still have to integrate them.

Dual Semantics We compose programs at two different
levels: a defensive C semantics and a lower-level platform
semantics. Defensive C semantics is the target of the C back-
end of F*, named Kremlin, which compiles Low™ to Clight, a



formal semantics of C used by Compcert [6]. It uses a struc-
tured memory model similar to that of C. The data stack is
made explicit, but control flow is still abstract. Since com-
pilation preserves and reflects the behavior of the source
language, we use Low" for reasoning about C-like programs
written in F*. Programs compiled using the defensive seman-
tics are type-safe, hence memory-safe. We need such a strong
property if we are to prove anything compositional.

Our Platform semantics is a deep embedding of VALE in F*:
assembly code are lists of X64 instructions interpreted in F*;
their properties are specified as pre- and post-conditions of
their interpretation. (These lists can of course also be printed
and compiled to machine code.) VALE operates at a lower
level, which is required for at least two reasons. First, this
is the level that a program executes and we care to provide
defenses against assembly-code software attacks. Second,
we rely on custom hardware security instructions that are
specified at this level. Verifying programs using platform
semantics is expensive. To get strong security guarantees
for SGX subsystems without having to prove everything at
the platform level, we tightly integrate these two semantics
using a dual memory model in F*, described next.

Dual Memory Model We program in F* a state monad
that maintains two related view of the memory: structured
and flat. During the transition from defensive to platform
world, the structured view of the memory is mapped to
the flat view and the verification is carried out using this
flat view of the memory. At the transition boundaries, the
pre- and post-conditions are verified in both views. The
transition in the opposite direction is handled analogously.
Specifically, the embedding of Vale semantics in F* ensures
that the composition is secure.

Trusted Components Pragmatically, we address the third
challenge by initially fixing the common code inside an en-
clave (i.e., the SGX SDK and the supporting libraries) to be
part of the Trusted Code Base (TCB) and then gradually re-
placing the components of an enclave subsystem with similar
and statically verified components. Conversely, C++ legacy
applications and the host software are not part of the TCB.

Transitions between User Code and SDK within Enclaves
We address the fourth challenge by requiring that user ap-
plications (U) be sandboxed within some enclave memory
region, using for instance some dynamic checks inserted
by a defensive C++ compiler, such that the user application
at least complies with memory access control: U may read
and write data only within its statically-assigned region of
the enclave [8]. The components U and V interact with one
another through controlled entry points. Given a defensive
semantics and a manifest that specifies these entry points,
we automatically generate Low™ wrappers for safely calling
U from V. These wrappers reflect the dynamic safety of the
code compiled from C++ using precise Low"type, enabling us

for instance to reason about the security of keys and private
mutable state held in Low™" as if U were coded in F*.

Transitions between Enclaves and their Hosts We ad-
dress the fifth challenge by explicitly modelling and verify-
ing the protocol between enclaves and their untrusted hosts.
Verified code running inside an enclave can call the host
operating system to serve an interrupt or a system call (note
that direct system calls are illegal from within the enclave).
We automatically generate safe wrappers for carrying out
such transitions. Simiarly, the wrappers enforce that argu-
ments passed to the host and return values received from the
host are well formed. The wrappers reflect our modelling
of the untrusted host by guaranteeing that the protected
regions of memory inside the enclave are left unchanged.

Evaluation As a preliminary experiment to validate our
approach, we have built and partially verified an SGX en-
clave that runs a variant of Pneutube, a cryptographic sample
application for Low™ [7].

This application implements an asynchronous secure file-
transfer server. The client connects to the server and issues
commands to send or receive files. The server, upon receiv-
ing a command, encrypts or decrypts the file accordingly.
The SDK provides (trusted) support to enter and exit the
enclave, enabling the server to temporarily exit the enclave
to execute system calls (e.g., socket()) on the host. Pneu-
tube is built on top of HACL" [10], a cryptographic library
verified using Low™ (for code extracted to C) and VALE (for
code extracted to assembly). Overall, we thus reduce the
safety, correctness, and security of our Pneutube enclave to
F* verification, and assumptions on the SGX hardware, our
enclave SDK, and the cryptographic security of standard
encryption and authentication algorithms.

Acknowledgments This work was done at Microsoft Re-
search. We thank the Everest team for their contributions
and their support.

References

[1] ARM. [n. d.]. ARM Security Technology — Building a Secure System
using TrustZone Technology. ([n. d.]).

[2] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cé-
dric Fournet, Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf
Kohlweiss, Rustan Leino, Jay Lorch, Kenji Maillard, Jianyang Pan,
Bryan Parno, Jonathan Protzenko, Tahina Ramananandro, Ashay Rane,
Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santi-
ago Zanella-Béguelin, and Jean-Karim Zinzindohoué. 2017. Everest:
Towards a Verified, Drop-in Replacement of HTTPS. In 2nd Summit on
Advances in Programming Languages (SNAPL 2017) (Leibniz Interna-
tional Proceedings in Informatics (LIPIcs)), Benjamin S. Lerner, Rastislav
Bodik, and Shriram Krishnamurthi (Eds.), Vol. 71. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 1:1-1:12.
Barry Bond, Chris Hawblitzel, Manos Kapritsos, M. Leino K. Rustan,
Jacob R. Lorch, Parno Bryan, Rane Ashay, Setty Srinath, and Thomp-
son Laure. 2017. Vale: Verifying High-Performance Cryptographic
Assembly Code. In Proceedings of the USENIX Security Symposium
(2017).

3

[t



[4] Project Everest. 2016. Everest VERified End-to-end Secure Transport.

https://project-everest.github.io/. (2016).

Intel. 2014. Intel Software Guard Extensions (Intel SGX) Programming

Reference. https://software.intel.com/sites/default/files/managed/48/

88/329298-002.pdf. (2014).

[6] Xavier Leroy. 2006. Formal certification of a compiler back-end, or: pro-
gramming a compiler with a proof assistant. In 33rd ACM symposium
on Principles of Programming Languages. ACM Press, 42-54.

[7] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina
Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine
Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bhargavan, Cédric Four-
net, and Nikhil Swamy. 2017. Verified Low-level Programming Em-
bedded in F*. Proceedings of the ACM on Programming Languages 1,
ICFP (Aug. 2017).

[8] Rohit Sinha, Manuel Costa, Akash Lal, Nuno Lopes, Sriram Rajamani,
Sanjit Seshia, and Kapil Vaswani. 2016. A Design and Verification
Methodology for Secure Isolated Regions. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation.

[9] Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and
Benjamin Livshits. 2013. Verifying Higher-order Programs with the
Dijkstra Monad. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’13). New
York, NY, USA, 387-398.

[10] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. 2017. HACL * : A Verified
Modern Cryptographic Library. In ACM Conference on Computer and
Communications Security (CCS). Dallas, United States.

[5

=


https://project-everest.github.io/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

	Abstract
	1 Introduction
	References

