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Abstract. Chemical reaction networks (CRNs) have been applied suc-
cessfully to model a wide range of phenomena and are commonly used
for designing molecular computation circuits. Often, CRNs with spe-
cific properties (oscillations, Turing patterns, multistability) are sought,
which entails searching an exponentially large space of CRNs for those
that satisfy a property. As the size of the CRNs being considered grows,
so does the frequency of isomorphisms, by up to a factor N !, where N is
the number of species. Accordingly, being able to generate sets of non-
isomorphic CRNs within a class can lead to large computational savings
when carrying out global searches. Here, we present a bijective encoding
of bimolecular CRNs into novel vertex-coloured digraphs called Complex-
Species graphs. The problem of enumerating non-isomorphic CRNs can
then be tackled by leveraging well-established computational methods
from graph theory [20]. In particular, we extend Nauty, the graph iso-
morphism tool suite by McKay [22]. Our method is highly parallelisable
and more efficient than competing approaches, and a software package
(genCRN) is freely available for reuse. Non-isomorphs are generated di-
rectly by genCRN, alleviating the need to store intermediate results. We
provide the first complete count of all 2-species bimolecular CRNs and
extend previous known counts for classes of CRNs of special interest,
such as mass-conserving and reversible CRNs.

1 Introduction

Chemical reaction networks (CRNs) are widely recognised as a convenient for-
malism for modelling and analysing a broad range of biochemical systems [17,1].
In recent years, they have also been used for designing synthetic systems with
specified behaviours, such as distributed consensus networks [9], oscillators [34]
and feedback control circuits [27]. CRNs provide a convenient abstraction for
modelling synthetic biological systems, while also supporting a mapping to bio-
logical implementations in both molecular [33] and genetic [28] circuits.

CRNs also support a broad range of analysis methods, which can be used
to check the desired properties of a system prior to its implementation. In par-
ticular, a promising approach is to encode a CRN as a graph and analyse its
properties using graph-theoretic methods. A CRN is essentially a map from a
multiset of reactant species to a multiset of product species, which can be can
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be written as

αjiAi
kj−→ βjiAi, j ∈ {1, . . . ,M}, i ∈ {1, . . . , N} (1)

where N denotes the number of species, M denotes the number of reactions, αji
and βji denote the multiplicity of species Ai in the reactants and products of
reaction j, respectively, and kj ∈ R+ denotes the rate constant of reaction j. In
a pair of landmark papers [15,16], Feinberg encoded CRNs as complex graphs
– where each vertex represents a complex and each directed edge represents a
reaction – and related the deficiency of a CRN to the existence of positive steady
states. Alternative graph encodings have also been developed, including species-
reaction (SR) graphs, which are directed bipartite graphs whose vertices are
either species or reactions. These SR graphs are used to check for the existence of
multiple equilibria that can be determined from network structure alone [11,12].
Graph-theoretic properties have also been developed for detecting oscillations
[24] and Turing instabilities [23], and for assessing concentration robustness [32].

As the number of species N increases, the number of possible reactions grows
such that the number of bimolecular CRNs grows as O(2N

4

) (see Lemma 4 in
Appendix B). As a result, the design space of CRNs with more than a few species
is intractable to explore systematically [26], and the design of CRNs with speci-
fied behaviours remains largely an artisanal process. One approach to exploring
the design space of CRNs more efficiently is to filter out CRNs that are isomor-
phic and therefore exhibit identical behaviour. In principle, the enumeration of
these non-isomorphic CRNs can make it possible to exhaustively explore an oth-
erwise intractable space, since as the number of species N increases, the number
of isomorphic CRNs also increases substantially. More generally, enumerating
non-isomorphic CRNs can be used to determine which CRNs satisfy a property
in a complete sense, such as determining the complete set of 2-species CRN
oscillators [4], or the smallest CRN admitting bistability [35].

The problem of enumerating non-isomorphic CRNs is related to the prob-
lem of enumerating non-isomorphic graphs, which is NP-hard and, worse still,
considered to be a pathology of computer science research [30]. Several methods
for working with graph isomorphisms already exist, the most notable of which
is NAUTY [22], which can efficiently compute a canonical form of a graph, find
its automorphism group and its generators. NAUTY also provides enumeration
tools for graphs, digraphs and vertex colouring, among others. Also related is
Polya’s enumeration theorem, which counts non-isomorphic graphs without con-
structing them [29]. The most promising method for working with isomorphic
CRNs was introduced in [3], which uses NAUTY to encode a CRN as a species-
reaction Petri net [2]. This is similar to an SR-graph, except that edges are
directed and weighted. It was inspired by attempts to enumerate CRNs in [13],
which also leverages NAUTY. However, species-reaction Petri nets need to be
encoded as multidigraphs, which are not supported natively in NAUTY. They
can be encoded in terms of digraphs, but such an encoding is not enumerable
in NAUTY without also generating invalid multidigraphs. This requires storing
and then filtering out non-isomorphs after enumeration, which penalises run-
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time. Time measurements or a software tool are not available in [3], so it is hard
to quantify the number of non-isomorphs and their negative impact on perfor-
mance. The maximum counts reported in these works are for the bimolecular
CRN classes of size (N,M) from (2,7), (3,6), (4,5), (5,4) to (9,4) and (10,3), with
a maximum running time of 20 days [13]; (5,5) is reported in [3].

The other major challenge of checking large sets of CRNs is that storing the
set of CRNs in the memory of a computer becomes impossible beyond some
problem size (N,M), even when using a memory-efficient representation of the
CRN. For example, the (5,5) class stored in the encoding of [3] takes 64.4 giga-
bytes of disk space; the (5,6) class of reversible CRNs takes 198 gigabytes. As
such, the only way to proceed practically is to directly generate non-isomorphic
CRNs using the canonical construction path method [21], check whether the
CRN satisfies the predicate, and write those to file (or store in memory if the
satisfying subset happens to be small enough).

In this paper, we present an efficient method for generating non-isomorphic
bimolecular CRNs. Our method can determine the complete subset of CRNs
of a given size that satisfy a specified property, without the need to enumer-
ate and store in memory all non-isomorphic CRNs of that size. By creating
such a generator, our method can be used to ask complete questions for larger
CRN sizes than was previously possible, since memory is no longer limiting. In-
stead, it is limited only by the computation time of testing each non-isomorphic
CRN. Our approach is based on a new graph encoding of CRNs that we name
the Complex-Species graph (CS-graph), and we prove that isomorphisms of bi-
molecular CRNs are equivalent to isomorphisms of CS-graphs. Our method also
facilitates a tighter relationship with NAUTY than previous methods, leading to
efficiency benefits and high parallelisation. We are the first to report that there
are precisely 535,852,102 bimolecular 2-species CRNs, and extend the counts of
non-isomorphic CRNs with more than 2 species beyond what has been reported
previously, including counts for (10,5), (5,6) and (4,7) in less than a day. We pro-
vide execution times of all enumerations, and a new computational tool (genCRN)
for enumerating non-isomorphic CRNs with several filters. Using genCRN, it is
now possible to explore the design space of larger CRNs satisfying a given set of
properties.

2 Methods

We first present the Complex-Species graph (CS-graph), an encoding of bimolec-
ular CRNs into directed coloured graphs, and prove that CS-graphs faithfully
encode bimolecular CRNs up to isomorphism, in the sense that two bimolecular
CRNs are isomorphic if and only if their CS-graphs are isomorphic. We then
explain how CS-graphs facilitate the fast enumeration of the set of all CRNs
that are non-isomorphic to one another.
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2.1 Complex-Species graph encoding

We begin with a formal definition of CRNs and CRN isomorphism. We define
S to be a set of species and C to be the space of complexes, which is any
combination of species that may appear as the reactant or product set in a
reaction. A set C ⊂ C is a set of multisets, where c ∈ C is a pair (A,m) with
A ∈ S and m ∈ N.

Definition 1 (CRN). A chemical reaction network N = (S, C,R) consists of
a set of species S, a set of complexes C ⊂ C, and a set of reactions R ⊂ C × C
with (y, y) /∈ R for any y ∈ C.

Two CRNs are isomorphic when they are identical under species renaming:

Definition 2 (CRN isomorphism). Let N1 and N2 be chemical reaction net-
works. N1 is isomorphic with N2, or N1

∼= N2, if there exists a permutation π
over S such that N1π = N2.

Here, we have written the function applicationN1π in postfix notation. Note that
the reaction rates are not relevant in CRN isomorphism, so are not included in
this definition and are omitted from the remainder of this paper.

Before introducing CS-graphs, we introduce a technical device to more con-
veniently index the elements of a set:

Definition 3 (Indexed set). Let I and S be sets, and f be a bijection I → S.
The set {Si}i∈I , {Si | Si = f(i), i ∈ I} is an indexed set, and I is the indexing
set. We write Si for Si = f(i) with i ∈ I when f is clear from the context.

If N = (S, C,R) is a CRN, we indicate with {ci}i∈I the indexed set of
complexes occurring in N , and with {Aj}j∈J the indexed set of species occurring
in N . For the remainder of this section, the indexing sets I and J always index
respectively the complexes and the species of a CRN; moreover, we assume that
I∩J = ∅ and I, J ⊂ N. We are now ready to define the CS-graph of a bimolecular
CRN:

Definition 4 (Complex-Species graph). Let N be a bimolecular CRN with
indexed sets {ci}i∈I and {Aj}j∈J . The Complex-Species graph JN KIJ is the
quadruple 〈V,E, σ, ρ〉, where:

V = I ∪ J (Vertices)
E = {(j, i) | Aj occurs in ci} (Edges)

∪ {(i1, i2) | ci1 → ci2 occurs in N}

σ(i) =


∅ if ci = ∅
� if ci = Aj

2� if ci = 2Aj

�� if ci = Aj1 +Aj2

(Stoichiometry function)

ρ(j) = Aj (Labelling function)
for i, i1, i2 ∈ I and j, j1, j2 ∈ J .
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Fig. 1. Complex-Species graph of a bimolecular CRN. The set I = {0, 1, 2, 3, 4}
is the indexing set for the complexes of the CRN, while J = {5, 6, 7} is the indexing
set for its species. The concrete names of the indexes are unimportant; any disjoint
set I and J can be used. Set I indexes the complexes of a CRN, the stoichiometry
function σ assigns a multiplicity to each index (e.g. σ assigns heterodimer to node
0, homodimer to node 2 and monomer to node 4). An edge between two nodes in I
represents a CRN reaction. Set J indexes the CRN species, with labelling function ρ
assigning them concrete species names. A dashed edge from node j ∈ J to node i ∈ I
means that species ρ(j) occurs in complex i.

Fig. 1 provides a visual representation of a Complex-Species graph. Notice
that it is not possible to distinguish monomers from homodimers using the encod-
ing’s vertices and edges alone; this is accomplished by σ. The indexing set I in the
figure is the same indexing set returned by NAUTY for that digraph. Appendix
C shows an extension to CS-graphs to encode CRNs with higher molecularity.

Two CS-graphs are isomorphic when their underlying graphs are isomorphic
and have the same stoichiometry:

Definition 5 (CS-graph isomorphism). Let JN1KI1J1 = 〈V1, E1, σ1, ρ1〉 and

JN2KI2J2 = 〈V2, E2, σ2, ρ2〉. Complex-Species graph JN1KI1J1 and JN2KI2J2 are isomor-

phic, or JN2KI2J2
∼= JN2KI2J2 , if there exist bijections α : I1 → I2 and β : J1 → J2

such that:

1. V1αβ = V2
2. E1αβ = E2

3. σ1α = σ2

where αβ stands for the function composition of α and β.

As already pointed out, the actual indexing sets used in a CS-graph are
unimportant. As a matter of fact, we can show that CS-graphs of the same CRN
are all isomorphic with each other:

Lemma 1. Let N be a bimolecular CRN. Then JN KI1J1
∼= JN KI2J2 holds for any

indexing sets I1, I2, J1, J2.

Proof. The lemma is proved by explicitly constructing bijections α = {(i1, i2) | ci1 =
ci2 for i1 ∈ I1, i2 ∈ I2} and β = {(j1, j2) | Aj1 = Aj2 for j1 ∈ J1, j2 ∈ J2} that
satisfy Def. 5. See Appendix B for more details. ut

Having proved this result, and since CRN isomorphism provides a permuta-
tion of species π such that two CRNs become equal, it is easy to show that CRN
isomorphism implies CS-graph isomorphism:
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Lemma 2. Let N1 and N2 be bimolecular CRNs. If N1
∼= N2, then JN1KI1J1

∼=
JN2KI2J2 for any indexing sets I1, I2, J1 and J2.

Proof. By Def. 2, there exists a permutation π over the species of N1 such that
N1π = N2. Notice that by Lem. 1 we can deduce JN1πKI1J1

∼= JN2KI2J2 for any in-
dexing sets I1, I2, J1 and J2. The lemma is proved by taking α = {(i1, i2) | ci1π =
ci2 for i1 ∈ I1, i2 ∈ I2} and β = {(j1, j2) | Aj1π = Aj2 for j1 ∈ J1, j2 ∈ J2}. ut

When two CS-graphs are isomorphic, the indexed sets of complexes and
species provide enough information to reconstruct an isomorphism π for their
original CRNs:

Lemma 3. Let N1 and N2 be bimolecular CRNs with indexing sets respectively
I1, J1 and I2, J2. If JN1KI1J1

∼= JN2KI2J2 , then N1
∼= N2.

Proof. Let JN1KI1J1 = 〈V1, E1, σ1, ρ1〉 and JN2KI2J2 = 〈V2, E2, σ2, ρ2〉, such that

JN1KI1J1
∼= JN2KI2J2 . By hypothesis, JN1KI1J1

∼= JN2KI2J2 implies the existence of bi-
jections α and β that satisfy conditions 1 to 3 in Def. 5. The lemma is proved
by taking π = {(Aj1 , Aj2) | j1β = j2} ◦ πI where πI is the identity function over
S. See Appendix B for more details. ut

We can now show that CS-graphs are a faithful encoding of bimolecular
CRNs up to isomorphism:

Theorem 1 (Faithful encoding). Let N1 and N2 be bimolecular CRNs with
indexing sets respectively I1, J1 and I2, J2. Then N1

∼= N2 if and only if JN1KI1J1
∼=

JN2KI2J2 .

Proof. By Lem. 2 and Lem. 3. ut

2.2 Isomorph-free Complex-Species graphs enumeration

Our non-isomorphic CS-graph enumeration method entails the generation of all
non-isomorphic bimolecular CRNs, by virtue of Theorem 1. Our method inputs
are the numbers of complexes L, reactions M and species N of the output CRNs.
CS-graphs are generated through four successive enumeration stages, where each
stage turns a structure generated in the previous stage into a list of more refined
non-isomorphic structures (Fig. 2).

The first stage enumerates all undirected graphs with L nodes and M edges.
Each undirected graph represents the topology of a CRN. The second stage ori-
ents the edges of an undirected graphs in all possible directions, including both
directions at the same time (by replacing an undirected edge with two opposite
directed edges). A directed edge between two nodes represents a reaction between
two complexes; two opposite edges mean a reversible reaction. For each directed
graph, the third stage assigns all possible stoichiometries σ to the nodes, generat-
ing a list of unassigned CS-graphs, that is CS-graphs without species nodes. The
fourth stage finds all possible assignments for N species nodes to an unassigned
CS-graph, therefore listing non-isomorphic CRNs by Thm. 1.
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Fig. 2. Isomorph-free generation of 3-species bimolecular CRNs with 5 com-
plexes and 4 reactions. CRN enumeration comprises four stages. It starts with gen-
erating the list of all non-isomorphic undirected graphs with 5 vertices and 4 edges
(A); for each graph the list of all non-isomorphic directed graphs (B); for each di-
rected graph the list of all non-isomorphic unassigned CS-graphs (C), and finally for
each unassigned CS-graph the list of all non-isomorphic CRNs (D). The total count of
elements enumerated from a single element in each stage is reported. There are 428,502
non-isomorphic CRNs against 635,040 isomorphs in total.

The state-structured enumeration we present (Fig. 2) is based on McKay’s
canonical construction path method [21], whereby a generation of larger struc-
tures is first constructed from a previous generation of smaller non-isomorphic
structures, and then filtered out by some canonical form function f . This func-
tion maps all structures in an isomorphism class to the same structure in that
class, which is called canonical. Only the canonical form is retained from the
generated structures.

For example, let G be a graph of size n. A new graph G′ of size n+ 1 can be
obtained by adding a new node to G and a new set of edges between the new
node and any subset of nodes in G. The new graph G′ is discarded unless G′ is in
canonical form, i.e. G′ = f(G′) for a canonical function f . A simple but inefficient
example of f(G′) is to apply all possible node permutations to G′, sort the
resulting graphs by lexicographic order on their edges, and return the least graph
in the sorting. Starting from the empty graph, it is then possible to enumerate all
graphs by iteratively constructing and filtering larger non-isomorphic structures.

2.3 Enumeration invariants and implementation details

Although the generation of classes of larger structures might grow combina-
torially, in practice the judicious use of graph invariants reduces this number
greatly [21,6]. A notable example is the graph isomorphism tool suite by McKay,
based on NAUTY [22]. NAUTY is a fast coinductive algorithm to find a graph’s
canonical labelling and its automorphism group [31]. A graph automorphism is
a permutation of vertices that maps the graph onto itself. The actions of the
automorphism group can generate a graph’s isomorphism class very efficiently.
Moreover, the generators can be used early to avoid generating non-canonical
candidate structures immediately.
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Fig. 3. Assignment of three species to an unassigned CS-graph in four steps.
To simplify the visualisation, complex multiplicities have been overlaid over the com-
plex nodes, where complex and species indices are subscript next to each node in
grey. The red dashed circles indicate the existence of an automorphism, a permutation
of nodes that maps the CS-graph to itself. For example, in step i) the permutation
[0 7→ 1, 1 7→ 0, 2 7→ 3, 3 7→ 2, 4 7→ 4], or (01)(23)(4) in permutation cycle notation [31],
returns the same CS-graph. At step ii) the only automorphism is the identity permu-
tation. The resulting CS-graph represents the CRN from Fig. 1; the automorphism
reveals that species A and B are symmetric in the CRN.

Graphs and directed graphs in the first and second stage of Fig. 2 are gen-
erated respectively by geng and directg, two enumeration programs available
in the NAUTY tool suite. The enumeration of unassigned CS-graphs can be
encoded as graph-vertex colouring problems. We use four colours, one per stoi-
chiometry type (naught, monomer, homodimer, heterodimer). The enumeration
of a coloured graph is performed by another NAUTY tool, vcolg. However, not
all graph colourings result in a valid CRN stoichiometry: for example, a 3-species
CRN cannot have 4 monomers, since there are only 3 species available to make a
monomer from. We have thus modified vcolg to enumerate valid stoichiometries
only, by providing an upper bound for the number of nodes with each specific
colour. A valid CRN can have at most one naught complex, n monomers, n
homodimers and

(
n
2

)
heterodimers. The total number of complexes for a given

maximum number of reactants p is given by the sum of the multiset coefficients:

Lp(n) :=

p∑
i=0

((n
i

))
=

p∑
i=0

(
n+ i− 1

i

)
=

(
n+ p

p

)
(2)

which for bimolecular CRNs with N species is
(
N+2
2

)
.

The last stage is the enumeration of CRNs from an unassigned CS-graph,
for which we have developed a custom algorithm following the canonical con-
struction path method [21]. The structures we augment are partially assigned
CS-graphs, starting from an unassigned one. Larger structures are obtained by
adding a new species node, together with a set of edges that assign the new
species to a subset of the complex nodes in the graph, until all N have been
added and all complexes are valid. We call species assignment the set of com-
plex nodes targeted by the new species; for example, in step ii) of Fig. 3, {0, 3}
is the species assignment for A.

As pointed out in [20], it is crucial to exploit graph invariants in order to curb
the number of larger structures to test for canonicity. We adopt some of geng’s
invariants in our enumeration method when adding a new species node. In order
to avoid constructing the same graph more than once by adding the same species
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assignments in a different order, we impose a lexicographic order on the species
assignments. For example, the choice of species assignment {1, 2} at step iii) of
Fig. 3 is allowed, because it is greater than the previous assignment {0, 3} at step
ii); if {1, 2} is chosen first, {0, 3} breaks the lexicographic order and is illegal.
Similarly, the cardinality of the species assignment must be equal or greater
than the previous one. As for vertex colouring, not all species assignments are
valid; for example, the same species cannot be assigned to two different monomer
complexes, or a species to naught. Such assignments are discarded immediately.

After augmenting a CS-graph with a new species, it is tested for canonicity.
The test applies all possible automorphisms α and β to the current CS-graph
G: if G is the least graph of all Gαβ graphs by lexicographic order, then G is in
canonical form, and used to assign more species to it. When the automorphism
group is trivial (the only automorphism is the identity) any species assignment
added in lexicographic order is already canonical.

The fourth stage does not add new complex nodes or edges, therefore the
automorphisms β over complexes are either the same or they decrease after
adding new species assignment, which might introduce asymmetries in the graph.
For example, the species assignments of A in step ii) of Fig. 3 introduces an
asymmetry that renders the automorphism graph trivial (the only automorphism
is the identity); however adding a species assignment B of the same cardinality
in step iii) restores the group. For this reason we only recompute a CS-graph’s
automorphism group after increasing the cardinality of its species assignments
(which, as previously pointed out, are only added in increasing order).

An implementation of our method is available online at https://github.com/
CSpaccasassi/genCRN for Windows and Unix systems. Our tool, called genCRN,
implements the third and fourth stage of Fig. 2, and relies on inputs from
geng and directg. genCRN is based on version 2.6 of NAUTY, where geng

only generates graphs with a maximum size of 32 nodes. Our tool has the same
limitation, it can only produce CS-graphs of size |I ∪ J | ≤ 32. Later versions of
NAUTY raise this limit to 64 nodes; we leave the extension of our implementa-
tion to 64 nodes for future work.

3 Results

3.1 Complete enumeration of non-isomorphic 2-species CRNs

We applied our CRN enumeration technique to count how many non-isomorphic
CRNs there exist with specified numbers of species and reactions. When consid-
ering only 2 species, we are able to provide a complete construction, covering all
possible numbers of reactions (Fig. 4). Overall, we find that there are 536,884,871
non-isomorphic CRNs with 2 species.

The practical utility of non-isomorphic CRN enumeration is that it enables
testing of properties of CRNs against a smaller set. Compared to the naive ap-
proach of writing all possible reactions among theN and picking all combinations
of size M , checking only the non-isomorphic subset amounts to a computational

https://github.com/CSpaccasassi/genCRN
https://github.com/CSpaccasassi/genCRN
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Fig. 4. Enumeration of non-isomorphic CRNs with 2 species. All non-
isomorphic 2-species CRNs were enumerated (blue bars), and then filtered according
to four criteria (separately): CRNs with only reversible reactions (red bars), mass-
conserving CRNs (orange bars), CRNs with conservation laws (purple bars) and CRNs
with non-trivial dynamics (green bars).

saving of at least N !. We also considered four simple filters of properties over
the 2-species CRNs. Due to the tree structure of the approach (Fig. 2), applying
filters as early as possible is preferable.

The first filter we checked was to restrict the enumeration to CRNs that have
only reversible reactions. To achieve this, we modified our approach (Fig. 2) to
skip part B (enumeration of directed graphs from undirected graphs), and im-
mediately constructed undirected unassigned CS-graphs. Accordingly, each edge
can be viewed as a reversible reaction. This enabled us to rapidly compute all
reversible-only 2-species CRNs, of which there were exponentially fewer exam-
ples, yet following a similar Gaussian-like distribution over M (Fig. 4).

The second filter we applied was to identify mass-conserving CRNs, using the
defining feature that there exists a vector v ∈ RN>0 (all entries strictly positive)
such that v.Γk = 0 for all k, where Γ is the stoichiometry matrix. For example,
the CRN A → B is mass-conserving. It’s stoichiometry matrix is Γ = [−1, 1]>,
and so v = [1, 1] can satisfy the property. To test for the existence of such a v
in general, we used a Fourier-Motzkin algorithm to identify invariants v ∈ RN
[10]. As such invariants may include zero entries, we do an additional check to
see whether all species participate in an invariant. E.g. strictly positive v can be
constructed from the set of invariants. Rather than applying the filter directly to
the complete set of non-isomorphic CRNs, we can obtain a computational saving
by first removing the naught complex ∅ from C, since any reaction involving ∅
would not be mass-conserving. In total, there were only 138 mass-conserving
CRNs with 2 species, the largest of which had 8 reactions.

A→ B A+B → 2A 2A→ A+B 2A→ 2B
B → A A+B → 2B 2B → A+B 2B → 2A

This CRN simply includes all reactions that preserve the total molecule count.
However, they are not the only reactions that are mass-conserving on their own.
For example, the CRN 2A→ B is also mass-conserving, though now B has equiv-
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alent mass to 2 copies of A (e.g. this is simply homo-dimerisation). Accordingly,
the counting of mass-conserving CRNs is not trivial.

We next identified CRNs for which there exists any conservation law, e.g.
there exists a vector v such that v.Γk = 0 for all k, but in contrast to strictly
mass-conserving CRNs, now v can include zero entries, as not all species need
to participate in a conservation law for one to exist. Single-reaction examples
include A→ B (A+B is conserved), A→ A+B (A is conserved) and A→ 2B
(2A + B is conserved). As before, we used the Fourier-Motzkin algorithm, but
this time simply as a filter applied to the same enumeration approach for the
full non-isomorphic set. We found 330 such CRNs (Fig. 4). As for the mass-
conserving CRNs, there were no CRNs with more than 8 reactions, though this
time an additional CRN was found:

∅ → B ∅ → 2B B → 2B A→ A+B
B → ∅ 2B → ∅ 2B → B A+B → A

Notably, this CRN includes ∅ complexes, but these only appear in reactions
not interacting with the species A. Instead, the species A only participates by
catalysing the production and degradation of B, and is not produced or con-
sumed in these reactions. As such, A is conserved in this CRN.

Finally, we considered “dynamically non-trivial” CRNs [3], which can give
rise to positive equilibria, periodic orbits, and other “interesting” properties.
Dynamically trivial CRNs, in contrast, have no limit sets. e.g. trajectories grow
unbounded in phase space. To enumerate dynamically non-trivial CRNs, we use
the definition in [3], that a CRN N is dynamically trivial if there exists a vector
q > 0 in ImΓ>. [14] Accordingly, we find the reduced row echelon form of Γ and
ask whether any row contains only non-negative entries (though not all zero).
As done in [3], we take the set of non-isomorphic CRNs, and then check each
CRN. Applying this filter to the 2-species CRNs reveals a considerably smaller
number of CRNs with non-trivial dynamics than the full set, when there are few
reactions (Fig. 4). As the number of reactions increases, the fraction of CRNs
that are dynamically non-trivial tends to 1.

3.2 Enumeration of non-isomorphic CRNs with more than 2 species

Owing to the combinatorial nature of CRNs, simply extending to 3 species leads
to an exponential increase in the number of possible CRNs. Using our enu-
meration method, we found that there are 1,244,363,180 bimolecular 3-species
CRNs with M = 7 reactions, more than twice the number of all 2-species
CRNs (Fig. 5A). Adding another reaction (M = 8) increases by a factor of
10 (12,916,870,803) and for M = 9 another factor of 10 (117,703,409,335). We
enumerated and counted non-isomorphic CRNs with up to 10 species and with a
number of reactions that could be evaluated within approximately 2 days of com-
putation. In doing so, we have extended the known number of non-isomorphic
CRNs beyond what was previously evaluated in [3], and have tabulated these val-
ues in Appendix D (Table S1). We have also evaluated non-isomorphic reversible
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CRNs with up to 8 species (Fig. S2, Table S2) and non-isomorphic CRNs with
non-trivial dynamics (Fig. S3, Table S3).
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Fig. 5. Counting non-isomorphic CRNs. A. The total number of non-isomorphic
CRNs is quantified for up to 10 species and up to 10 reactions. B. Execution time is
quantified as if running on a single-core computer, by summing times over a parallel
execution on an Intel Xeon Platinum 8168 2.70GHz machine with 72 cores.

While there is no reason our enumeration method cannot handle more reac-
tions, additional combinatorial complexity leads to longer run times (Fig. 5B,
S2B, S3B). We have quantified the execution times for each combination of
species and reactions (N,M) by reporting the values as if the calculation was
run sequentially on a single-core machine. In practice, we perform calculations
in parallel, enumerating each digraph independently and collecting results.

McKay’s labelling algorithm is known to have exponential complexity in the
worst-case [25] but is well-behaved in practice. Similarly, there is no precise
complexity for the canonical construction path method, although it depends
on the size of the graph’s automorphism groups [21]. In line with this, we found
considerable differences in the execution times of each digraph (Fig. 6). The most
adversarial digraphs are those which contain the highest number of disconnected
sub-digraphs. Examples of such digraphs are those with 2n nodes and n edges,
resulting in n sub-digraphs. The topology of such digraphs poses little constraints
on the topology of the CRNs, and therefore the number of possible CRNs arising
from such digraphs is combinatorially larger.

3.3 The non-isomorphic CRNs fraction

To gain a more quantitative understanding of the frequency of isomorphisms
among sets of CRNs, we computed an isomorph ratio, defined simply as the
number of non-isomorphic CRNs found, divided by the total number T of CRNs,
for a given number of species and reactions. Using

T =

(
Lp(N)(Lp(N)− 1)

M

)
−
s−1∑
k=1

(
Lp(k)(Lp(k)− 1)

M

)
, (3)
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Fig. 6. Execution times vary considerably with input digraph. The execution
times of enumerating non-isomorphic CRNs are shown for each of the 365 digraphs
of CRNs with 5 reactions. A. The digraphs are sorted by the execution times corre-
sponding to 7 species, which illustrates that the variation in execution time is strongly
influenced by digraph structure. B. Execution times are compared against the total
number of non-isomorphic CRNs found.

where Lp(N) =
(
N+p
p

)
is the number of complex nodes in the CS-graph when

there are N species, we computed the isomorph ratios for bimolecular CRNs
(p = 2) with up to 5 species and 6 reactions (Fig. 7). By considering species
relabellings alone, one would naively expect a factor N ! saving when considering
isomorphisms. As there are

(
N+2
2

)
possible complexes for N species (Eq. 2), there

are 6 complexes for 2 species: {∅, A,B, 2A, 2B,A + B}. As there are L(L − 1)
possible (directed) edges connecting L nodes, there are 30 possible reactions
for 2 species. Without considering CRN isomorphisms, this would result in∑30
r=1

(
30
r

)
= 1, 073, 741, 823 possible CRNs. Whereas, we found that there are

536,884,871 non-isomorphic CRNs with 2 species, which is just more than half of
the concretely labelled set. There are N ! permutations of N species, and so for
most non-isomorphic CRNs, the N ! species permutations leads to an N ! different
CRNs. However, some CRNs are species-symmetric, for example A
 B, which
means that a species relabelling can sometimes return the exact same CRN.
Because such symmetries are automatically resolved in our calculation of the
number of non-isomorphic CRNs, but not incorporated into Eq. 3, the isomorph
ratio can be less than 1/N ! (Fig. 7).

3.4 Checking properties of CRNs with external tools

As mentioned above, a practical benefit of using non-isomorphic CRN enumer-
ation is that filters can be applied to a stream of CRNs, producing subsets
of CRNs satisfying a property of interest. Such a property need not be imple-
mented in the same code base as the CRN enumerator, since results can be piped
into external tools. To demonstrate this, we considered the existence of forward
bisimulations of CRNs [7], using the ERODE tool [8] (Fig. 8). The existence of
a forward bisimulation means that a subset of the species can be lumped into
a single species, the result being a different CRN with fewer species but with
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Fig. 7. The isomorph ratio. The ratio of non-isomorphic CRNs to the expected
total number of CRNs was computed for different numbers of species and reactions.
The expected total number of CRNs was calculated using Eq. 3 . The dashed black
line indicates the value of 1/N !, the reciprocal of the number of species relabellings in
a CRN with N species.

the same behaviour. As such, the analysis of a CRN for which there exists a for-
ward bisimulation can be considered to have been covered by equivalent analysis
of CRNs with fewer species. The set of CRNs which are connected, have non-
trivial dynamics and are irreducible via forward bisimulation was determined in
less than 5 minutes, despite there being as many as 1011 CRNs initially covered
by our encoding.

104,520,373,335

8,386,321

264
(Non-trivial only)

(Connected only)
7,247,276

49
248

genCRN

�
genCRN -c -t

Connected
Non-trivial dynamics

ERODE

Forward
bisimulation

290.66 s 304.056 s
(Filter: 13.4 s)

2.2 s

Fig. 8. Identifying non-isomorphic non-trivial connected CRNs with no for-
ward bisimulation. CRNs with 7 species and 4 reactions were enumerated using
genCRN, both in the presence and absence of filters for connectedness (-c) and non-
trivial dynamics (-t). The resultant 251 CRNs were processed by ERODE, producing
49 CRNs for which no forward bisimulation exists.

4 Discussion

In this paper we have presented a method for the fast enumeration of non-
isomorphic Chemical Reaction Networks, which enables complete statements on
properties of classes of CRNs. The method is based on a novel encoding of CRNs
into Complex-Species graphs, which are enumerated using established techniques
such as the canonical construction path method [21,6], and implemented on top
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of the NAUTY tool suite [22,5]. We have shown that classes of non-isomorphic
CRNs can be further specialised into classes satisfying certain properties of in-
terest, such as mass convervation, non-trivial dynamics, reversible networks and
non-lumpability under Forward Bisimulation.

We are the first, to the best of our knowledge, to report that there are
precisely 535,852,102 bimolecular 2-species CRNs in total; a surprising number
for just two species. The method is highly efficient, and can calculate this count in
≈ 27 minutes. It is also highly parallelisable; the same count on a 72 core machine
takes ≈ 38 seconds. Currently our implementation enumerates unassigned CS-
graphs and CRNs in a single step. Deeper parallelisation could be achieved by
splitting this step into two, for handling more heavily combinatorial digraphs.
We have extended previously known counts for CRNs in excess of 6 species or
6 reactions (see Appendix). Our counts and measurements are reproducible via
genCRN, which is available online; comparison with other approaches [3,13] is
difficult, because we have not found accompanying tools or time measurements.

Compared to other encodings, Complex-Species graphs are encoded in terms
of digraphs and vertex colouring, and as such it has been easier to enumer-
ate them with existing techniques and tools. For comparison, Species-Reaction
graphs are expressed using multidigraphs or digraphs with edge labels, in order to
express the multiplicity of a species in a reaction. For example, reaction 2A→ B
is encoded either by two edges from a species node A to some reaction node R or
by an edge with the label 2, to capture the fact that 2A is a heterodimer. NAUTY
does not support multidigraphs or labelled digraphs natively [5], so CRN encod-
ings relying on these lead to the production of isomorphs, which must be stored
and filtered out in a subsequent step [3]. Interesting graph-theoretic results exist
for complex graphs [15,16] and various directed or undirected bipartite graphs
[12,23,24]; once the CRNs have been enumerated (and filtered) as CS-graphs,
they can be translated into different representations for further analysis.

In future, it would be interesting to explore more advanced properties of
CRNs, such as lumpability, multistability and limit cycles. Our tool allows testing
sets of CRNs for overlapping properties, such as CRNs with no conservation laws
and lumpable under Forward Bisimulation, or mass-conserving CRNs which are
not lumpable under Forward Bisimulation, such as 2A
 B. Moreover, it would
be interesting to verify properties on the unassigned CS-graphs; we conjecture
that trivial dynamics occur when any species, independently from the others, is
only assigned to multiplicity monotonic paths in an unassigned CS-graph, that
is non-cyclic paths where the multiplicity of that species is ever increasing.

Our approach could be beneficial to the study of non-mass-action reaction
systems such as Gene Regulatory Networks [18], or reaction-diffusion systems
[19]. For example, special species roles as fast diffuser, slow diffuser and other
could be encoded as ulterior nodes in a CS-graph, connected to species nodes
and used as a further enumeration step. Broader applications in computer sci-
ence might also be possible, to enumerate programs against a set of primitives,
unique up to α-conversion. Species nodes might represent variables in the lambda
calculus, or channels names in the π-calculus or CCS.
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A Definitions

This section introduces definitions for automorphisms, orbits and the autor-
mophism group for graphs, following [31].

Definition 6 (Permutation). A permutation of a set S is a total function
from S to itself.

Definition 7 (Cyclic permutation). A permutation π of the form:(
x π(x) π2(x) · · · πp−2(x) πp−1(x)
π(x) π2(x) π3(x) · · · πp−1(x) x

)
is said to be cyclic permutation of period p.

Definition 8 (Disjoint cycle representation). A disjoint cycle representa-
tion of a permutation π on a set S is a composition of cyclic permutations on
subsets of S that constitute a partition of S, one cyclic permutation for each
subset in the partition.

Definition 9 (Group). An algebraic system < U, ? > is a called a group if it
has the following properties:

1. the operation ? is associative,
2. there is an identity element,
3. every element of U has an inverse.

Definition 10 (Permutation group). A closed non-empty collection P of
permutations on a set Y of objects that forms a group under the operation of
composition is called a permutation group. The combined structure may be de-
noted V = [P : V ]. It is often denoted P when the set of Y objects is understood
from context.

Definition 11 (Orbit). Let P = [P : Y ] be a permutation group, and let y ∈ Y .
The orbit of the object y under the action of P is the set {π(y) | π ∈ P}.

Corollary 1. Let P = [P : Y ] be a permutation group. Then being coorbital is
an equivalence relation

Proof. Identity: by the identity permutation. Commutativity: because each π is
invertible. Transitivity: by function composition ◦.
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B Proofs

Lemma 1. Let N be a bimolecular CRN. Then JN KI1J1
∼= JN KI2J2 holds for any

indexing sets I1, I2, J1, J2.

Proof. The lemma can be proved by explicitly constructing bijections α and β
required by Def. 5. Recall that we indicate with {ci}i∈I and {Aj}j∈J respectively
the indexed set of the complexes and of the species in N .

Let α = {(i1, i2) | ci1 = ci2 for i1 ∈ I1, i2 ∈ I2} and β = {(j1, j2) | Aj1 =
Aj2 for j1 ∈ J1, j2 ∈ J2}. These functions are well-defined because the indexing
sets all target the same CRN N . It is also easy to show that they are bijections.

The lemma is proved by verifying that α and β satisfy Condition 1 to 3 of
Def. 5:

1. V1αβ = V2 because α and β are bijections over the indexed sets;
2. E1αβ = {(j1, i1) | Aj1 ∈ ci1}αβ ∪ {(i1, i′1) | ci1 → ci′1 ∈ R}αβ by Def. 4

= {(j2, i2) | Aj2 ∈ ci2} ∪ {(i2, i′2) | ci2 → ci′2 ∈ R} by def. of α, β.
= E2

which proves the case.
3. Let i1 be such that σ1(i1) = ∅. By Def. 4, ci1 = ∅, and since α(i1) = i2

implies that ci1 = ci2 , then c2 = ∅ as well. Therefore σ(i2) = ∅ holds by
Def. 4, which implies σ(i1)α = σ2(i2). The proof for the remaining cases
(monomers, homodimers and heterodimers) is similar. ut

Lemma 2. Let N1 and N2 be bimolecular CRNs. If N1
∼= N2, then JN1KI1J1

∼=
JN2KI2J2 for any indexing sets I1, I2, J1 and J2.

Proof. By definition of CRN isomorphism (Def. 2), there exists a permutation π
over the species of N1 such that N1π = N2. Notice that by Lem. 1 we can deduce
JN1πKI1J1

∼= JN2KI2J2 for any indexing sets I1, I2, J1 and J2. The proof of this lemma
is similar to Lem. 1, by defining α = {(i1, i2) | ci1π = ci2 for i1 ∈ I1, i2 ∈ I2}
and β = {(j1, j2) | Aj1π = Aj2 for j1 ∈ J1, j2 ∈ J2}. ut

Lemma 3. Let N1 and N2 be bimolecular CRNs with indexing sets respectively
I1, J1 and I2, J2. If JN1KI1J1

∼= JN2KI2J2 , then N1
∼= N2.

Proof. Let JN1KI1J1 = 〈V1, E1, σ1, ρ1〉 and JN2KI2J2 = 〈V2, E2, σ2, ρ2〉, such that

JN1KI1J1
∼= JN2KI2J2 . By hypothesis, JN1KI1J1

∼= JN2KI2J2 implies the existence of bijec-
tions α and β that satisfy conditions 1 to 3 in Def. 5. Let us define the following
permutation of S:

π = {(Aj1 , Aj2) | j1β = j2} ◦ πI

where πI is the identity function over S. Since β and πI are bijections, then π is
also a bijection; since its domain and range are S, π is a well-defined permutation.

Let ci1 → ci′1 be a reaction in N1. By Def. 4 E1 contains the edge (i1, i
′
1).

Since JN1KI1J1 and JN1KI2J2 are isomorphic by hypothesis, it follows by definition
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that E2 = E1αβ, therefore the edge (i1, i
′
1)α = (i2, i

′
2) also exists in E2 for

i2, i
′
2 ∈ I2. Because of this, the reaction ci2 → ci′2 exists in N2; moreover, by

Condition 3 of Def. 5, the complexes have the same stoichiometry.
Similarly, let (j1, i1) be an edge in E1 such that Aj1 occurs in ci1 . By Con-

dition 2 of Def. 5, E2 contains the edge (j1, i1)αβ = (j1α, i1β) = (i2, j2), which
means that Aj2 occurs in ci2 . By definition of π, Aj1π = Aj1β = Aj2 ; since ci1
and ci2 also have the same multiplicity by Condition 3 of Def. 5, this implies
that ci1π = ci2 . A similar line of reasoning shows that ci′1π = ci′2 . Therefore
(ci1 → ci′1)π = ci2 → ci′2 . Generalising this result to all reactions in N1, we
obtain N1π = N2, which concludes the proof. ut

Lemma 4. The number of p-CRNs (reactions have up to p reactants/products)

with up to N species grows as O(2N
2p

).

Proof. Following equation 3, the total number of p-CRNs with up to N and
specifically M reactions is given by

(
Lp(N)(Lp(N)−1)

M

)
. Given that

L(N)(L(N)− 1) =
(N + p) . . . (N + 1)

p!
.
(N + p) . . . (N + 1)− p!

p!
= O(N2p),

we can use the fact that
∑k
i=1

(
n
k

)
= 2n to characterise the total number of

bimolecular CRNs as O(2N
2p

). ut
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C Complex-Multiplicity-Species Graph

Section 2.1 has shown how to encode bimolecular CRNs as vertex-coloured di-
graphs. It is natural to wonder whether this encoding extends to more than bi-
molecularity. Unfortunately CS-graph cannot encode higher molecularities than
2, however we propose in this section a more general encoding of CRNs called
the Complex-Multiplicity-Species graph (or CMS graph).

We begin by showing that CS-graphs cannot encode trimolecular reactions.
Consider in fact the reaction 2A+B → A+2B. If we added a new color ”2�+�”
and connect two node species A and B to it, there would be no way to tell which
of the two species is actually the homodimer and which one is the monomer.

A

B

2
3

1

2
3

1

0

2A+B

A+2B

0

3A

Fig. S1. Complex-Multiplicity-Species graph encoding of a CRN.

To overcome this issue, we propose Complex-Multiplicity-Species graphs,
which extend CS-graphs with multiplicity nodes, that is distinct coloured nodes
that point out the multiplicity of a species in a reaction. If m is the molecularity
of interest, then there are m+ 1 kinds of multiplicity nodes: naught, �, 2�, 3�
and so on. Each species node is connected to m multiplicity nodes, signifying for
example A, 2A, 3A etc. Naught is a separate multiplicity node that cannot be
connected to any species. In turn, multiplicity nodes are connected to complex
nodes to represent the original CRN’s reaction. Fig. S1 show an example of a
CMS graph; notice that no confusion is possible between complexes 2A+B and
A+ 2B.

We believe that CMS graphs are a general encoding of CRNs with any molec-
ularity, but we leave a formal definition and proofs for future work.
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D Counts of non-isomorphic CRNs

In this appendix, we tabulate the numbers of non-isomorphic CRNs found us-
ing genCRN. The tables can be compared against values reported at https://
reaction-networks.net/networks, at the time of writing, which were evaluated
using the method in [3]. In each case, we report values for genuine CRNs, those
which use all N species.

D.1 No filters

Here, we consider the total number of non-isomorphic CRNs for N species and
M reactions. The results are graphically depicted in Fig. 5, but tabulated below
(Table S1).

Table S1. Genuine non-isomorphic CRNs. The number of non-isomorphic CRNs
is shown for different numbers of species and reactions. Coloured in blue are those
counts not available at https://reaction-networks.net/networks at time of writing.

Reactions
Species 1 2 3 4 5 6 7

1 6 15 20 15 6 1 0
2 10 210 2,024 13,740 71,338 297,114 1,018,264
3 5 495 17,890 414,015 7,262,666 103,511,272 1,244,363,180
4 1 451 47,323 2,900,934 128,328,834 4,518,901,463 133,379,120,523
5 0 204 55,682 7,894,798 763,695,711 56,929,248,832
6 0 54 35,678 10,704,289 2,069,783,947
7 0 8 13,964 8,386,321 3,041,467,242
8 0 1 3,594 4,182,295 2,715,774,734
9 0 0 639 1,417,784 1,595,551,325
10 0 0 83 618,885 653,346,685

https://reaction-networks.net/networks
https://reaction-networks.net/networks
https://reaction-networks.net/networks


Enumeration of non-isomorphic CRNs 23

D.2 Reversible CRNs

To generate reversible CRNs, we generate undirected graphs of a suitable size
and feed these into genCRNin the same way as for general CRNs with irreversible
reactions. Reported below are counts for M reversible reactions. As such, the
CRNs found have 2M unidirectional reactions.
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Fig. S2. Counts and execution times for enumeration of genuine non-
isomorphic reversible CRNs.

Table S2. Genuine non-isomorphic reversible CRNs. The number of non-
isomorphic CRNs with only reversible reactions is shown for different numbers of species
and reactions. Coloured entries correspond to comparisons with the counts available at
https://reaction-networks.net/networks at time of writing. Blue indicates values not
available, and red indicates values that differ.

Reactions
Species 1 2 3 4 5 6 7 8

1 3 6 7 4 4 1 1 0
2 6 60 296 989 2,516 4,997 8,241 11,271
3 3 138 4,788 26,988 230,595 1,589,808 9,161,056 45,107,712
4 1 134 6,354 187,005 4,048,219 69,982,180 1,011,965,511
5 0 65 7,677 513,036 24,186,053 888,323,405
6 0 21 5,178 709,212 66,152,034 4,674,311,477
7 0 4 2,188 572,058 98,576,689
8 0 1 648 298,030 89,754,652

https://reaction-networks.net/networks
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D.3 Non-trivial dynamics

As described in the main text, one can test whether a CRN has non-trivial
dynamics. To apply this filter to the enumerated non-isomorphic CRNs, one can
use the -t flag for genCRN.
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Fig. S3. Counts and execution times for enumeration of genuine non-
isomorphic CRNs with non-trivial dynamics.

Table S3. Genuine non-isomorphic CRNs with non-trivial dynamics. The
number of non-isomorphic CRNs with non-trivial dynamics is shown for different num-
bers of species and reactions. Coloured entries correspond to comparisons with the
counts available at https://reaction-networks.net/networks at time of writing. Blue
indicates values not available.

Reactions
Species 1 2 3 4 5 6 7 8

1 0 9 18 15 6 1 0 0
2 0 19 304 5,016 41,500 221,728 871,330 2,700,277
3 0 8 464 25,272 1,125,465 30,806,874 563,453,020 7,675,100,687
4 0 2 223 28,052 3,279,132 321,921,288 20,669,624,467
5 0 0 41 12,340 2,845,389 633,623,890
6 0 0 5 2,606 1,127,294
7 0 0 0 264 238,105
8 0 0 0 17 28,191
9 0 0 0 0 1,795
10 0 0 0 0 60

https://reaction-networks.net/networks
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