

Generalization in RL with Selective Noise Injection

Sam Devlin

Game Intelligence Microsoft Research, Cambridge, UK aka.ms/gameintelligence

"I used to be embarrassed because I was just a comic-book writer while other people were building bridges or going on to medical careers.

And then I began to realize: entertainment is one of the most important things in people's lives.

Without it they might go off the deep end.

I feel that if you're able to entertain people, you're doing a good thing."

- Stan Lee

Al for Players

North star: Enable new types of game experiences

Example: Al agents that adapt to user generated content

Al for Game Devs

North star: Make RL accessible to all game developers

Examples: Robust RL algorithms, interpretable and controllable behaviour

MazeExplorer

A Customisable 3D Benchmark for Assessing Generalisation in Reinforcement Learning

Luke Harries*, Sebastian Lee*, Jaroslaw Rzepecki, Katja Hofmann, Sam Devlin

IEEE Conference on Games 2019

https://github.com/microsoft/MazeExplorer

Generalization in Reinforcement Learning

Domain Randomisation Improves Generalisation

Multiple Maps

Random Spawn Location

Generalization in Reinforcement Learning

Domain Randomization e.g. MazeExplorer [CoG 2019]

Environment

Generalization in RL with Selective Noise Injection and Information Bottleneck

Maximilian Igl (University of Oxford)
Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek,
Cheng Zhang, Sam Devlin, Katja Hofmann.

NeurIPS 2019

Regularization in Reinforcement Learning

Issue #1: RL Agents Act In A Low-Data Regime Early On In Training

Information Bottleneck Actor Critic

Minimize Mutual Information between States Input and Z

ENCODER

Maximize Mutual Information between Actions Output and Z

DECODER

Regularization in Reinforcement Learning

Issue #2: RL Agents Generate Their Own Dataset

Selective Noise Injection (SNI) Improves Generalisation

Issue #2: RL Agents Generate
Their Own Dataset

Do Not Add Stochastic Regularization To Rollout Policy or Critic

Conclusion

Generalization in RL with Selective Noise Injection and Information Bottleneck

Agent

[NeurlPS 2019]

Domain Randomization e.g. MazeExplorer [CoG 2019]

Environment

Future Work

Generalization in Multiplayer Gameshttp://aka.ms/marlo

Agents collaborate to catch animal in a small enclosure

One agent collects and caries treasure to a goal, the other defends the team from attackers

Agents
collaborate to
build a structure,
but the faster
agent earns
more rewards

Generalization in RL with Selective Noise Injection

Sam Devlin

Game Intelligence Microsoft Research, Cambridge, UK aka.ms/gameintelligence

Selective Noise Injection (SNI)

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}^{r}(a_{t}|s_{t})} \left[\sum_{t}^{T} \frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta}^{r}(a_{t}|s_{T})} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) (r_{t} + \gamma V_{\theta}(s_{t+1}) - V_{\theta}(s_{t})) \right]$$

$$\min_{\theta} \mathbb{E} \left[\left(\gamma V_{\theta}^{\perp}(s_{t+1}) + r_{t} - V_{\theta}(s_{t}) \right)^{2} \right]$$

In RL adding regularization techniques can decrease quality of gradient due to:

- 1. Worse rollout policy leads to less observed rewards + prematurely ending episodes
 - 2. High variance in the policy leads to high off-policy correction term
 - 3. High variance in critic estimation

Selective Noise Injection Improves Generalisation

