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Al for Players

North star: Enable
new types of game
experiences

Example: Al agents
that adapt to user
generated content



Al for
Game Devs

North star: Make RL
accessiple to all game
developers

Examples: Robust RL
algorithmes,
interpretable and
controllable behaviour
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MazeExplorer

A Customisable 3D Benchmark for
Assessing Generalisation in
Reinforcement Learning

Luke Harries*, Sebastian Lee*,
Jaroslaw Rzepecki, Katja Hofmann, Sam Devlin

IEEE Conference on Games 2019
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Domain Randomisation Improves Generalisation
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Generalization in Reinforcement Learning

Domain Randomization
e.g. MazeExplorer [CoG 2019]

Actions ; | I

N -

——fI\%
~_ -

Observations
Rewards

Agent Environment



m Microsoft

Generalization in RL
with Selective Noise Injection
and Information Bottleneck

Maximilian Igl (University of Oxford)
Kamil Ciosek , Yingzhen Li, Sebastian Tschiatschek,
Cheng Zhang, Sam Devlin, Katja Hofmann.

NeurlPS 2019



Regularization in Reinforcement Learning

Issue #1: RL Agents Act In A Low-Data Regime Early On In Training




Information Bottleneck Actor Critic

States Actions

ENCODER

Minimize Mutual Information
between States Input and Z

DECODER

Maximize Mutual Information
between Actions Output and Z
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Regularization in Reinforcement Learning

Issue #2: RL Agents Generate Their Own Dataset
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Selective Noise Injection (SNI) Improves Generalisation
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Conclusion

Generalization in RL with

Selective Noise Injection and Domain Randomization
Information Bottleneck e.g. MazeExplorer [CoG 2019]
[NeurlPS 2019] | .
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Generalization in
Multiplayer Games
http://aka.ms/marlo

Agents
collaborate to
catch animal in a
small enclosure

One agent
collects and
caries treasure to
a goal, the other
defends the team
from attackers

Mob Chase

Treasure Hunt

Build Battle

Agents
collaborate to
build a structure,
but the faster
agent earns
more rewards
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Selective Noise Injection (SNI)

In RL adding regularization techniques can decrease quality of gradient due to:
1. Worse rollout policy leads to less observed rewards + prematurely ending episodes
2. High variance in the policy leads to high off-policy correction term
3. High variance in critic estimation
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Selective Noise Injection Improves Generalisation
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