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Vectors: the key data type in AI era
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Vectors: the key data type in AI era
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High-dimensional vectors Vector similarity searchDeep learning modelRaw Data
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Recommendation LLM retrieval plugin Query answering

Vector similarity search empowers 
semantic-understanding tasks



Vector index: the key component for search
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• Vector index allows low-latency, qualitative approximate vector search
• Exact search in a high-dimensional space is unscalable

• Trade in small search accuracy for much lower search latency

• Works well for billion-scale data-set
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Applications requires frequent update to index
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[1] Youtube. https://blog.youtube/press/ 
[2] Li et al. The Design and Implementation of a Real Time Visual Search System on JD E-Commerce Platform. (Middleware’18)
[3] Wei et al. AnalyticDB-V: A Hybrid Analytical Engine towards Query Fusion for Structured and Unstructured Data. (VLDB'20

500+ hours of content 
are uploaded to 
YouTube every minute [1]

One billion new images 
are updated in JD.com
every day [2] 

500PB unstructured 
data are ingested to 
Alibaba during a 
shopping festival [3]



• Proximity in high dimension is hard to organize

• Inefficient vector index affects the query accuracy

Vector index: complex abstraction
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Scalar index
Based on scalar value order

Vector index
Based on proximity in a high 

dimensional space



• Proximity in high dimension is hard to organize

• Inefficient vector index affects the query accuracy

Vector index: complex abstraction
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Scalar index
Based on scalar value order

Vector index
Based on proximity in a high 

dimensional space

High-dimensional vector index is hard to update



Common vector index organizations

8

• For billion-scale vector scenario, vector index can be categorized into 

Fine-grained graph
vector index

Coarse-grained cluster
vector index



Common vector index organizations
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• Fine-grained graph-based vector indices
• Connect vectors with short distance

Vector



Updating fine-grained graph is challenging!
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Updating fine-grained graph is challenging!
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Delete
VectorInsert

Vector

light scan, 
fast update, 
More to search, 
Dropped accuracy

Insufficient update
heavy scan, 
slow update, 
high resource usage, 
sustainable accuracy

Sufficient update



Common vector index organizations
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• Coarse-grained cluster-based vector indices
• Collect vectors in close proximity into the same partition



Common vector index organizations
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• Coarse-grained cluster-based vector indices
• Collect vectors in close proximity into the same partition



Common vector index organizations
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• Coarse-grained cluster-based vector indices
• Collect vectors in close proximity into the same partition

• The centroid of partition represents vectors in the partition

Centroid vector

Vector

Vectors partition



• Inserts/deletes only modify the corresponding partitions

Coarse-grained cluster is cheap to update, but...
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Coarse-grained cluster is cheap to update, but...

16

Centroid vector

Vector

Vectors partition

• Inserts/deletes only modify the corresponding partitions



Coarse-grained cluster is cheap to update, but...
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Centroid vector

Vector

Vectors partition

• Inserts/deletes only modify the corresponding partitions

Delete



Coarse-grained cluster is cheap to update, but...
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Centroid vector

Vector

Vectors partition

Leads to read 
amplification for 
some queries, tail 
latency increases

Oversized partition

Does not represent 
dynamic data-sets well,  
accuracy drops

Static centroids

• Inserts/deletes only modify the corresponding partitions



Strawman solution for update
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•Periodic global index rebuild
+ Refresh performance & accuracy immediately after rebuild



Strawman solution for update
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•Periodic global index rebuild
+ Refresh performance & accuracy immediately after rebuild
- Deteriorating performance & accuracy between rebuilds
- Global rebuild is prohibitively expensive

Memory CPU Time

DiskANN[1] 1100 GB 32 Cores 2 days

64 GB 16 Cores 5 days

SPANN[2] 260 GB 45 Cores 4 days

Billion-scale rebuild cost
[1] Subramanya  et al. DiskANN: Fast Accurate Billion-Point Nearest Neighbor Search on a Single Node. (NeurIPS 2019)
[2] Chen et al. SPANN: Highly efficient Billion-scale Approximate Nearest Neighbor Search. (NeurIPS 2021) 



Strawman solution for update
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•Periodic global index rebuild
+ Refresh performance & accuracy immediately after rebuild
- Deteriorating performance & accuracy between rebuilds
- Global rebuild is prohibitively expensive

Memory CPU Time

DiskANN[1] 1100 GB 32 Cores 2 days

64 GB 16 Cores 5 days

SPANN[2] 260 GB 45 Cores 4 days

Is it possible to update vector index without expensive 
global rebuild?

Billion-scale rebuild cost
[1] Subramanya  et al. DiskANN: Fast Accurate Billion-Point Nearest Neighbor Search on a Single Node. (NeurIPS 2019)
[2] Chen et al. SPANN: Highly efficient Billion-scale Approximate Nearest Neighbor Search. (NeurIPS 2021) 



Recap: coarse-grained cluster-based index
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• A silver lining towards fast vector updates
• Small updates to a well-balanced index possibly incur local changes

Affected partition

Idea: balance locally and incrementally



Split & merge
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Split & merge
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• Partition size imbalance → balance the partitions locally

• Static centroids → adapt shifting distribution incrementally

But such operations break the property of vector index

Centroid set changed by 
rebalance operations

Merge short 
partitions Split oversized 

partition



NPA: the key invariant for vector index
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•NPA (nearest partition assignment)​
• Each vector should be put into the nearest partition
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Split & merge violates NPA
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•NPA (nearest partition assignment)​
• Each vector should be put into the nearest partition
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Split & merge violates NPA
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•NPA (nearest partition assignment)​
• Each vector should be put into the nearest partition

• For v1 in split partition, the closest centroid is changed to CB

A1

v1

CA2

B
CB v2

CA1

A2



Split & merge violates NPA
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•NPA (nearest partition assignment)​
• Each vector should be put into the nearest partition

• For v2 in unsplit partition, the closest centroid is changed to CA2

A1

v1

CA2

B
CB v2

CA1

A2



Reassigns are required to maintain NPA
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• But reassigning all vectors is expensive
• Based on former cases, we derive necessary conditions to identify violations

• Violation: closest partition != current partition

B

A1

CB

v1

CA2

v2

CA1

A2

Section3.3 for detailed description of conditions



Cascading operations
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• Reassign may cause cascading split & merge
• Incremental rebalance progress will converge

• Reassignment ensures every vector receives closest centroid

Split Reassign Split

Cascading
Effect

Section3.4 for formal proof



LIRE Protocol
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• LIRE: Lightweight Incremental RE-balancing
• Keeps the size of every partition in balance → Performance ↑
• Captures the change of data distribution → Accuracy ↑
• Avoids global rebuild → Resource ↓

LIRE

Split
Merge

Reassign

For more details, please refer to the paper!



Evaluation overview
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• Simulates a realistic vector update scenario with 1% daily update*

* Li et al. The Design and Implementation of a Real Time Visual Search System on JD E-Commerce Platform. (Middleware'18) 



SPFresh performs well at update scenario

33

• Overall, SPFresh maintains 2.41X lower P99.9 latency than baselines. 

• SPFresh keeps in high accuracy, handles dynamic scenario

• SPFresh achieves as low as 5.30X memory usage than baselines



SPFresh scales to billion-level scenario
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Performs stably 

Fully saturates 
SSD’s IOPS

With only extra 10GB 
DRAM for updating



Takeaway from SPFresh
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• We introduce SPFresh, a system that supports in-place update for 
billion-scale vector search. 

• LIRE allows to locally and incrementally rebalance the data partitions.

• SPFresh can incorporate continuous updates with low resources while 
maintaining high search accuracy.

• SPFresh serves in billion-scale update scenario with just single machine. 

Thanks!
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