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Vectors: the key data type in Al era
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Vectors: the key data type in Al era
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Vector similarity search empowers
semantic-understanding tasks 3




Vector index: the key component for search
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* Vector index allows low-latency, qualitative approximate vector search
* Exact search in a high-dimensional space is unscalable
* Trade in small search accuracy for much lower search latency
* Works well for billion-scale data-set



Applications requires frequent update to index
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500+ hours of content
are uploaded to
YouTube every minute [1]

[1] Youtube. https://blog.youtube/press/

One billion new images
are updated in JD.com
every day [2]

_—

500PB unstructured
data are ingested to
Alibaba during a

shopping festival 13!

[2] Li et al. The Design and Implementation of a Real Time Visual Search System on JD E-Commerce Platform. (Middleware’18)

[3] Wei et al. AnalyticDB-V: A Hybrid Analytical Engine towards Query Fusion for Structured and Unstructured Data. (VLDB'20



Vector index: complex abstraction

* Proximity in high dimension is hard to organize
* Inefficient vector index affects the query accuracy
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Scalar index Vector index
Based on scalar value order Based on proximity in a high
dimensional space



Vector index: complex abstraction

* Proximity in high dimension is hard to organize

* Inefficient vector index affects the query accuracy

Scalar index Vector index
Based on scalar value order Based on proximity in a high
dimensional space



Common vector index organizations

* For billion-scale vector scenario, vector index can be categorized into

O O O O
Fine-grained graph Coarse-grained cluster

vector index vector index



Common vector index organizations

* Fine-grained graph-based vector indices
e Connect vectors with short distance
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Updating fine-grained graph is challenging!

Delete

Insert Vector
Vector
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Updating fine-grained graph is challenging!

Insufficient update

light scan,
fast update,
More to search,

Dropped accuracy
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Sufficient update

heavy scan,
slow update,
high resource usage,

sustainable accuracy
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Common vector index organizations

* Coarse-grained cluster-based vector indices
* Collect vectors in close proximity into the same partition
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Common vector index organizations

* Coarse-grained cluster-based vector indices
* Collect vectors in close proximity into the same partition
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Common vector index organizations

* Coarse-grained cluster-based vector indices
* Collect vectors in close proximity into the same partition O cCentroid vector
* The centroid of partition represents vectors in the partition

& vector
O O O O

Vectors partition

14



Coarse-grained cluster is cheap to update, but...

* Inserts/deletes only modify the corresponding partitions
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Coarse-grained cluster is cheap to update, but...

* Inserts/deletes only modify the corresponding partitions
O cCentroid vector

O - Vector

' ! I ' Vectors partition
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Coarse-grained cluster is cheap to update, but...

* Inserts/deletes only modify the corresponding partitions

O O O

O Centroid vector

& vector
Delete ' Vectors partition
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Coarse-grained cluster is cheap to update, but...

* Inserts/deletes only modify the corresponding partitions

Oversized partition

Leads to read
amplification for
some queries, tail
latency increases

O

O O O

O Centroid vector

- Vector

' Vectors partition

Static centroids

Does not represent
dynamic data-sets well,
accuracy drops
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Strawman solution for update

* Periodic global index rebuild
+ Refresh performance & accuracy immediately after rebuild



Strawman solution for update

* Periodic global index rebuild
+ Refresh performance & accuracy immediately after rebuild
- Deteriorating performance & accuracy between rebuilds
- Global rebuild is prohibitively expensive

Memory CPU Time

Disk ANN 1100 GB 32 Cores 2 days
64 GB 16 Cores 5 days

SPANNI2] 260 GB 45 Cores 4 days

Billion-scale rebuild cost

[1] Subramanya et al. DiskANN: Fast Accurate Billion-Point Nearest Neighbor Search on a Single Node. (NeurlPS 2019) 20
[2] Chen et al. SPANN: Highly efficient Billion-scale Approximate Nearest Neighbor Search. (NeurlPS 2021)



Strawman solution for update

* Periodic global index rebuild
+ Refresh performance & accuracy immediately after rebuild

Is it possible to update vector index without expensive

global rebuild?

64 GB 16 Cores 5 days
SPANNI2] 260 GB 45 Cores 4 days

Billion-scale rebuild cost

[1] Subramanya et al. DiskANN: Fast Accurate Billion-Point Nearest Neighbor Search on a Single Node. (NeurlPS 2019) 21
[2] Chen et al. SPANN: Highly efficient Billion-scale Approximate Nearest Neighbor Search. (NeurlPS 2021)



Recap: coarse-grained cluster-based index

* A silver lining towards fast vector updates
* Small updates to a well-balanced index possibly incur local changes

O
O O

Affected partition

Idea: balance locally and incrementally
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Split & merge

OOOo
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Split & merge

* Partition size imbalance = balance the partitions locally
e Static centroids = adapt shifting distribution incrementally

Q O O

Merge short
partitions

. Centroid set changed by
Split oversized rebalance operations

partition

But such operations break the property of vector index
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NPA: the key invariant for vector index

* NPA (nearest partition assignment)
* Each vector should be put into the nearest partition
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Split & merge violates NPA

* NPA (nearest partition assignment)
* Each vector should be put into the nearest partition
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Split & merge violates NPA

* NPA (nearest partition assignment)
* Each vector should be put into the nearest partition

* For v, in split partition, the closest centroid is changed to C;
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Split & merge violates NPA

* NPA (nearest partition assignment)
* Each vector should be put into the nearest partition

* For v, in unsplit partition, the closest centroid is changed to C,,
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Reassigns are required to maintain NPA

* But reassigning all vectors is expensive
* Based on former cases, we derive necessary conditions to identify violations
 Violation: closest partition != current partition
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Section3.3 for detailed description of conditions



Cascading operations

e Reassigh may cause cascading split & merge

* Incremental rebalance progress will converge
* Reassignment ensures every vector receives closest centroid

Cascading

Effect

SpI|t Rea55|gn

Section3.4 for formal proof
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LIRE Protocol

* LIRE: Lightweight Incremental RE-balancing

* Keeps the size of every partition in balance - Performance |
* Captures the change of data distribution - Accuracy
* Avoids global rebuild - Resource
Merge J SpI|t Reassign

For more detalls please refer to the paper!
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Evaluation overview

e Simulates a realistic vector update scenario with 1% daily update*
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SPFresh performs well at update scenario

* Overall, SPFresh maintains 2.41X lower P99.9 latency than baselines.

* SPFresh keeps in high accuracy, handles dynamic scenario
* SPFresh achieves as low as 5.30X memory usage than baselines
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SPFresh scales to billion-level scenario
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Takeaway from SPFresh

* We introduce SPFresh, a system that supports in-place update for
billion-scale vector search.

 LIRE allows to locally and incrementally rebalance the data partitions.

* SPFresh can incorporate continuous updates with low resources while
maintaining high search accuracy.

* SPFresh serves in billion-scale update scenario with just single machine.

Thanks!
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