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Expressing parallelism and coordination is central for modern concurrent programming. Many mechanisms

exist for expressing both parallelism and coordination. However, the design decisions for these twomechanisms

are tightly intertwined. We believe that the interdependence of these two mechanisms should be recognised

and achieved through a single, powerful primitive. We are not the first to realise this: the prime example

is actor model programming, where parallelism arises through fine-grained decomposition of a program’s

state into actors that are able to execute independently in parallel. However, actor model programming has a

serious pain point: updating multiple actors as a single atomic operation is a challenging task.

We address this pain point by introducing a new concurrency paradigm: Behaviour-Oriented Concurrency

(BoC). In BoC, we are revisiting the fundamental concept of a behaviour to provide a more transactional

concurrency model. BoC enables asynchronously creating atomic and ordered units of work with exclusive

access to a collection of independent resources.

In this paper, we describe BoC informally in terms of examples, which demonstrate the advantages of

exclusive access to several independent resources, as well as the need for ordering. We define it through a

formal model. We demonstrate its practicality by implementing a C++ runtime. We argue its applicability

through the Savina benchmark suite: benchmarks in this suite can be more compactly represented using BoC

in place of Actors, and we observe comparable, if not better, performance.
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1 INTRODUCTION

In a world that demands faster and more efficient computing, the need for concurrent programming
has become paramount. Concurrent programming expresses the asynchronous behaviour that arises
naturally in systems (e.g., process an incoming request) and harnesses the parallel compute power of
modern hardware, where hardware thread counts can soar into the hundreds and beyond [Bergman
et al. 2008].
Expressing parallelism and coordination is central for modern concurrent programming. Paral-

lelism empowers us to perform multiple tasks simultaneously, while coordination provides us with
the control necessary to exclude the concurrent schedules that do not meet our desired outcomes.
Several mechanisms exist for expressing both parallelism and coordination.
The main abstraction for the level of parallelism is a thread and its different instantiations, e.g.,

kernel threads, user-level threads, coroutines, tasks, fork/join, etc. These parallelism mechanisms
typically provide a minimal coordination in the form of waiting for termination (e.g., join, promises).
This is sufficient for problems that are easy to parallelise which are typically structured (e.g.,McCool
et al. [2012]) with up-front knowledge of the data needed to perform a task; the key to efficient
parallelism is partitioning data into isolated (ideally equi-sized) chunks to be processed individually.

Other classes of problems such as concurrent event handling or serving requests typically needs
scheduling a mix of short and long-running events and coordinating accesses to data according
to an unforseeable schedule [Kegel 2014; WhatsApp 2012]. Here the coordination mechanism are
required to be more elaborate (e.g., locks, transactions, condition variables).
Whilst decoupling parallelism and coordination provides flexibility, their design decisions are

tightly intertwined. For an async runtime, it is wise to provide bespoke synchronisation primitives,
rather than relying on standard locking which will block one of the underlying implementation
threads and harm performance (e.g., Tokio in Rust provides a Lock primitive). In the pursuit
of performance, increasing the thread count may improve parallelism, but for codebases with
coarse-grained locking, more threads may harm scalability by racing for the same resources.

Rather than decoupling parallelism and coordination, we should recognise their interdependence
and achieve both through a single, powerful primitive. We are not the first to realise this, the prime
example is actor model programming. In the actor model [Agha 1985], parallelism arises through
fine-grained decomposition of a program’s state into actors that are able to execute independently
in parallel, regardless of whether they serve different requests, process different sub-problems
to be joined together, or a mix. A key feature of the actor model is that each actor isolates its
own state. This enables sequential reasoning inside an actor, but this is arguably also its Achilles’
heel: poor support for operations that involve accessing the states of multiple actors. For this
reason actor systems mix the actor model with other concurrency paradigms (giving potential
for programmers to break the actor model) [Tasharofi et al. 2013], or invent complicated bespoke
coordination mechanisms on-top of the underlying model.

In this paper we explore and extend the idea of coupling parallelism and coordination.We propose
a programming model that we call behaviour-oriented concurrency (BoC). The BoC programming
model relies on a decomposition of state that is akin to actors—a program’s state is a set of isolated
resources (that we call cowns). Behaviours are asynchronous units of work that explicitly state their
required set of resources. Unlike messages in actor programming, behaviours are not coupled to a
specific resource; crucially, BoC offers flexible coordination, operations that require synchronous
access to multiple resources can be easily expressed.

To construct those behaviours, we introduce a new keyword, when, which enumerates the set of
necessary resources for the said behaviour and spawns this an asynchronous unit of compute. So,
a BoC program is a collection of behaviours that each acquires zero or more resources, performs
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computation on them, which typically involves reading and updating them, and spawning new
behaviours, before releasing the resources. When running, a behaviour has no other state than
the resources it acquired. A behaviour can be run when it has acquired all of its resources, which
is guaranteed to be deadlock free. Despite its apparent simplicity, this model has considerable
expressive power to construct a wide range of concurrent schedules by simply nesting them and/or
sequencing them in combination with the resources they require. This is important in itself as
making it effortless to spawn new concurrent computation is key to writing programs that are able
to scale with the parallel compute power of modern hardware, without being crippled by Amdahl’s
law 1967.

We introduce a formal model of the new paradigm which demonstrates how BoC can introduce
concurrency to a programming language. We also lay out the expectations of a programming
language, such as separation of heap, so that the language is able to fully utilise BoC.
To demonstrate that BoC is a practical approach to concurrency across different languages,

we have created a C++ library that functions as a runtime for BoC and an executable model
implementation in C#. Both runtimes are closely aligned with the formal model. Whilst we aim to
integrate our C++ runtime as a fundamental component of a programming language, this library
provides insights into the runtimes performance.
We evaluate both the expressiveness of BoC as a concurrency paradigm and the efficiency of

our implementation. We present BoC implementations of the Savina actor benchmark suite [Imam
and Sarkar 2014], first using BoC as if it were an actor language, and then better utilising BoC to
demonstrate where it can be a better fit than actors.
In this paper, we make the following contributions:
– The Behaviour-Oriented Concurrency paradigm: a concurrency paradigm that achieves
flexible coordination over multiple resources, and ordered execution, and scalability.

– A formalmodel for BoCwhich demonstrates how it can provide concurrency for an underlying
programming language.

– An efficient proof of concept implementation of BoC in C++ that achieves almost perfect
scaling for the conducted system-level experiments.

The rest of this paper is organised as follows: In Section 2 we give introduction to behaviour-
oriented concurrency informally and illustrate it through examples. In Section 3 we formalise the
informal definition of BoC by providing a simplified abstract execution model and show how the
guarantees are met. In Section 4 we develop an implementation for BoC. In Section 5 we evaluate
BoC concurrency with the Savina benchmark suite. In Sections 6 and 7 we conclude and discuss
related and further work.

2 BEHAVIOUR-ORIENTED CONCURRENCY – OVERVIEW

Behaviour-oriented concurrency (or BoC) is intended as the sole concurrency feature of an underly-
ing programming language. The underlying language is expected to provide a means to separate the
heap into disjoint sets with unique entry points, for example through a type system as in [Clarke
and Wrigstad 2003]. Provided that the type system satisfies the requirements outlined here and
in the semantics section, its exact design is orthogonal to BoC. Several such type systems exist
already [Clebsch et al. 2015; Gordon et al. 2012; Noble et al. 1998]. In [Arvidsson et al. 2023] we
propose a new, more powerful type system which we are adopting for our language implementing
the BoC paradigm.

2.1 BoC in a Nutshell

BoC augments the underlying language with two fundamental concepts: the concurrent owner or
cown, and the behaviour.
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Cowns a cown protects a piece of separated data, meaning it provides the only entry point to
that data in the program. A cown is in one of two states: available, or acquired by a behaviour.

Behaviours are the unit of concurrent execution. They are spawned with a list of required cowns
and a closure. We define happens before, as an ordering relation which strengthens the “spawned
before” relation by also requiring that the sets of cowns required by the two behaviours have a
non-empty intersection:

Definition 2.1. A behaviour 1 will happen before another behaviour 1′ iff 1 and 1′ require
overlapping sets of cowns, and 1 is spawned before 1′.

Once spawned, a behaviour can be run (i.e., its closure starts executing) only when all its required
cowns are available, and all other behaviours which happen before it have been run. Once available,
all the cowns are acquired by the behaviour atomically, and become unavailable to other behaviours.
Throughout execution of the closure the behaviour retains exclusive access to its cowns, and to
their data. Moreover, the behaviour cannot acquire more cowns, nor can it prematurely release any
cown it is holding. Upon termination of the closure, the behaviour terminates, and all its cowns
become available.

BoC is datarace-free and deadlock-free. BoC provides the principles to ensure data-race freedom:
since the state associated with each cown is isolated, and since behaviours have exclusive access to
the acquired cowns’ state, there is no way for two different behaviours to have concurrent mutable
access to the same state. Furthermore, as behaviours acquire all their required cowns atomically,
and because the happens before relation is acyclic, BoC is deadlock-free by construction.

We introduce BoC through examples expressed in an imperative, expression-oriented, strongly-
typed pseudo-language with isolation. Two language features are of interest:

– The cown[T] type: it represents a cown with contents of type T, with a create constructor.
– The when expression: it consists of a set of cown identifiers, and a closure, and is used to
spawn a behaviour that requires the specified cowns.

It is the remit of the underlying language to ensure that each object in the heap is owned by
exactly one entry point, and that any object accessed within the closure of a when is owned by one
of the acquired cowns.

2.2 Creating Cowns

For our examples we focus on concurrent modifications to bank account objects of type Account
with fields balance and frozen. Listing 1 shows how a programmer can create a cown to protect
an account. The programmer creates and accesses acc1 as an Account object; they can then add
and remove funds from acc1 as they want (synchronously). Conversely, acc2 is created as a cown
that protects an Account; in other words, a cown of type cown[Account]. The cown prevents any
direct access to the account, such as that on Line 6. The only way to gain access to the contents of
a cown is by spawning a behaviour that acquires it.

List. 1. Creating cowns to protect data
1 main() {

2 var acc1 = Account.create();

3 acc1.balance -= 100; // OK

4

5 var acc2 = cown.create(Account.create());

6 acc2.balance += 100 // Access is invalid

7 }
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2.3 Spawning and Running Behaviours

Listing 2 contains a simple use-case of behaviours. The transfer function transfers amount from
src to dst. It consists of two when expressions, which spawn behaviours that need mutable access to
Account objects. Note that while a when always requires resources to be of type cown[T] the closure
sees the resources as being of type T, i.e., from the inside, an acquired cown[T] looks like a T. Each
when expression spawns a behaviour that will, at a later point, execute with exclusive access to the
contents of its cown; thus it will execute without data races, and logically atomically. The transfer
function returns immediately, without waiting for the two behaviours to execute.

List. 2. Scheduling work on each account
1 transfer(src: cown[Account], dst: cown[Account], amount: U64) {

2 when (src) { src.balance -= amount; }; // withdraw

3 when (dst) { dst.balance += amount; } // deposit

4 }

src dst

withdraw deposit

Note that spawning and running a behaviour are different events; moreover, spawning is

synchronous, while running is asynchronous. Assuming that src and dst are not aliases, they
can start running in any order: the withdraw behaviour might happen before, at the same time
as, or after the deposit behaviour. In Listing 2, each behaviour is executed independently and
unconditionally. The right of Listing 2 shows a possible execution timeline: each cown (triangles)
transitions from available (solid lines) to acquired (dashed lines) as it is acquired by an executing
behaviour (squiggly lines), and transitions back again once the behaviour terminates; as these
behaviours are independent they may execute together or one at a time (and so may move up and
down the timeline). That is, the withdraw behaviour might happen before, at the same time as, or
after the deposit behaviour.

List. 3. Nesting spawning behaviours
1 transfer(src: cown[Account], dst: cown[Account], amount: U64) {

2 when (src) { // withdraw

3 if (src.balance >= amount) {

4 src.balance -= amount;

5 when (dst) { // deposit

6 dst.balance += amount;

7 } } } }

src dst

withdraw

deposit

List. 4. Deadlock-free transfers

1 transfer(src, dst, 1);

2 transfer(dst, src, 2);

src dst

withdraw

deposit

withdraw

deposit

But what if successful transfer is contingent on properties
of the src cown? Consider the case where accounts may not
be overdrawn, i.e., the balance has to be positive. This can be
achieved by nesting the second when expression inside a con-
ditional path in the first, as demonstrated in Listing 3. Here,
the function transfer merely spawns one behaviour to be
executed on the src cown and returns immediately. When
this outer behaviour executes, it will check that the src has
sufficient funds. If it does, a new behaviour will be spawned to
run on the dst cown. The outer behaviour terminates imme-
diately, without waiting for the inner one to start nor finish
executing. To be clear, the deposit does not have access to
src. On the right of Listing 3, the withdrawing behaviour is
shown to spawn the depositing behaviour (red arrow), the
spawned behaviour can be run anytime after it was spawned
(incidentally, the spawned behaviour can move along the timeline as long as the arrow does not
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point upwards), the depositing behaviour may in fact terminate before the withdrawing behaviour
terminates. So, whilst the depositing behaviour is textually nested within the withdrawing be-
haviour, nested whens have the same semantics as any other whens. Contrast this with transactions
where nested transactions have special semantics [Ni et al. 2007].

We extend the example from above to two calls of transfer: one from src to dst, and one from
dst to src, illustrated in Listing 4. Readers accustomed to lock-based programming or nested
transactions might think that the example would deadlock, but this is not so: the two withdraw

behaviours may run in parallel (since they require different cowns), and during their execution
they will spawn the deposit behaviours. Each deposit behaviour will be able to run once its cown
is no longer held by the withdraw behaviour. Moreover, the two withdraws can happen in either
order as can the two deposits. We will revisit this example in Section 3.

2.4 Behaviours Requiring Multiple Cowns

Listing 3 avoids transfers with insufficient funds, but what if successful transfer is contingent on
properties of both cowns? For instance, a bank account may be marked as “frozen”, meaning any
transfer to or from the account should be forbidden.

We could try to solve the problem by checking each account in turn, withdraw the money from
the src and finally deposit the money on the dst, requiring further nesting of behaviours. However,
by doing so we would lose atomicity guarantees: between checking the account and depositing the
money, the dst could be frozen by another behaviour spawned by a different part of the program.
Instead, we will employ a key feature of our paradigm which allows behaviours to acquire

multiple cowns at once, thus giving simultaneous exclusive mutable access to several cowns.
In Listing 5, the function transfer avoids the earlier atomicity problems. It consists of a when

block that requires access to src as well as dst. The when checks that the accounts are not frozen
and that there are sufficient funds, and if so, proceeds with transferring the funds.

List. 5. Spawn a behaviour that requires both accounts
1 transfer(src: cown[Account], dst: cown[Account], amount: U64) {

2 when (src, dst) { // withdraw and deposit

3 if (src.balance >= amount && !src.frozen && !dst.frozen) {

4 src.balance -= amount;

5 dst.balance += amount;

6 } } }

src dst

transfer

This example demonstrates the power of behaviour-oriented concurrency: It allows the program-
mer to coordinate access to multiple shared resources. A rendezvous of cowns is now a simple
task: a single when expression creates the synchronisation between multiple cowns and allows a
behaviour to read/write the state of all involved cowns. This rendezvous is demonstrated in to the
right of Listing 5 by a behaviour that acquires both src and dst at once.

2.5 Order Ma�ers

So far, we assumed that src and dst do not alias. For behaviours requiring non-overlapping cowns,
the order of execution does not matter. Namely, the effects of behaviour execution demonstrate
themselves through modification of the state under their cowns; therefore, cowns cannot observe
the effects of execution of behaviours that took place on separate cowns.
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List. 6. Statically Ordered

1 transfer(s1, s2, 10);

2 transfer(s2, s4, 20);

s1 s2 s4

However, when behaviours execute on overlapping
cowns, the order matters, and BoC has rules for such
cases. For illustration, consider the following scenario:
we want to transfer money from one account to another,
and then use the money from the second account to pay a
third party. This is done in Listing 6. The first transfer will
be spawned before the second transfer, but what we have
discussed so far does not preclude the second example
from running first. Here the order of execution of the
behaviours matters: e.g., if the second behaviour runs
first, it could deplete the funds in s2, and incur overdraft
fees.

Thus, we would like the first transfer to be completed
before the second transfer starts running. We could trans-
form the program to achieve the required ordering, for
example by using nested behaviours, but there is no need: BoC guarantees the desired order of
behaviours. Namely, a behaviour will only be run once all behaviours that must happen before it
have been run (Definition 2.1).

List. 7. Dynamically Ordered

1 transfer(s1, s2, 10);

2 transfer(s3, s4, 20);

s1 s2 s3 s4

In Listing 6, the first transfer requires cowns s1 and s2,
the second transfer requires cowns s2 and s4, and {s1,
s2} overlaps with {s2, s4}. As we said earlier, the first
transfer is spawned before the second transfer. Therefore,
the first transfer will happen before the second transfer.

Behaviour ordering is determined at runtime. Consider
the slightly modified example from Listing 7, where we
have four different cown identifiers, s1, s2, s3, s4. If s2
and s3 are aliases, then the situation is as in Listing 6, and
the first transfer will complete before the second starts
running. But if the four identifiers point to four different
cowns, then execution of the first and second transfer
may take place in any order, and may overlap. Below
Listing 7 we show diagrammatically a possible execution, when s1, s2, s3, s4 differ.

2.6 Pu�ing It All Together

Revisiting our example from section Section 2.3, in Listing 2, if src and dst are aliases, thenwithdraw
will complete before deposit. In Listing 8, green arrows represent happens before relations.

This ordering is a deep property that can be used to order nested spawned behaviours. Consider a
scenario where, in addition to account operations, we also wanted to create a log of what happened;
we augment each behaviour to output strings to an OutStream as in Listing 8. Notice that 12 and
16 spawn further behaviours, 13 and 17, both of which require log. Again, we expect the start
message, on Line 3, to be logged before the deposit message, on Line 5, and the deposit message
before the transfer message on Line 11.
The "begin" message will be logged before the "deposit" message: 11 and 13 require log and

11 will be spawned before 13 (we know this as b1 will be spawned before 12, and 12 spawns 13);
thus, we know 11 will happen before 13 from Definition 2.1.

The "deposit"message will be logged before the "transfer"message: 13 and 17 require log; we
know 12 spawns 13 and 16 spawns 17, and we know 12 happens before 16 from previous discussion;
therefore, we know 13 will be spawned before 17 and so 13 will happen before 17.
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List. 8. Creating an accurate log

1 main(src: cown[Account], dst: cown[Account],

2 log: cown[OutStream]) { /∗ b0 ∗/

3 when(log) { /∗ b1 ∗/ log.log("begin") }

4 when(src) { /∗ b2 ∗/ ...

5 when(log) { /∗ b3 ∗/ log.log("deposit") }

6 }

7 when(dst) { /∗ b4 ∗/ ...

8 when(log) { /∗ b5 ∗/ log.log("freeze") }

9 }

10 when(src, dst) { /∗ b6 ∗/ ...

11 when(log) { /∗ b7 ∗/ log.log("transfer") }

12 } }

Ɛ src dst log

b0

b2

b6

b1

b3

b5

b7

b4

These constraints are presented in the execution timeline in the right of Listing 8: this depicts
which behaviours must happen before which others (green arrows), we can see for example that 12
and 14 can happen in either order, but both must happen before 16, and thus 13 and 15 happen
before 17. Yet, there is no happens before order between 13 and 15 and so these behaviours can run
in either order.

2.7 Cost of Order

List. 9. Sequential scheduling

1 when (f1, f2) { /∗ b1 ∗/ }

2 when (f2, f3) { /∗ b2 ∗/ }

3 when (f3, f4) { /∗ b3 ∗/ }

4 when (f4, f1) { /∗ b4 ∗/ }

List. 10. Alternating scheduling

1 when (f1, f2) { /∗ b1 ∗/ }

2 when (f3, f4) { /∗ b3 ∗/ }

3 when (f2, f3) { /∗ b2 ∗/ }

4 when (f4, f1) { /∗ b4 ∗/ }

We showed how a desired order can be obtained by construction
of a program, but what about when order is not desired? Consider
a very simplified version of the Dining Philosophers with 4 forks
and 4 philosophers each trying to eat once. If we scheduled them
in sequential order, then we would fully sequentialise the program.
The overlapping cown sets in Listing 9 forces all the operations
into a single linear order, whereas Listing 10 enforces that 11 and
13 must occur before 12 and 14, but no other constraints. Thus, the
second program can execute two things in parallel, whereas first
can only execute one. We can view the Philosophers problem as
a generalisation of this pattern.
It is important to note that this degenerate case affects perfor-

mance but not correctness. In contrast, the failure modes of a similar error in a lock-based implemen-
tation are either data races or deadlock. Implementations using transactional memory would have
similar problems, with adjacent philosophers attempting to mutate the same state in a transaction
and then rolling back and hitting a slow-path with guaranteed ordering. BoC provides an advantage
in that the error causing the performance problem is both observable and fixable in the source
language. The happens-before ordering is part of the source-level semantics and so can be broken
with source-level constructs, such as the interleaved ordering presented above. We believe that this
combination of properties—that failure modes affect performance rather than correctness and that
the programmer can reason about performance problems at the source-language level—are key
benefits to the BoC model.

2.8 How Does BoC Measure Up?

Returning to our desired research direction from Section 1: BoC provides a single powerful ab-
straction for parallelism and flexible coordination through the concept of when. Like Actors, a BoC
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program can saturate a system with behaviours which can be run in parallel, but, unlike Actors,
BoC programs can flexibly coordinate access such that behaviours access multiple cowns. Moreover,
BoC guarantees an ordering on the execution of behaviours which enables a runtime to implicitly

parallelise behaviours as long as the order is respected.

3 SEMANTICS

Having introduced BoC informally, and illustrated it through examples, we move on to give a
formal model to refine the understanding of how a BoC program executes. We will build on this
model in Section 4 to demonstrate how BoC can be implemented.

BoC can be built on top of any programming language with the necessary building blocks. Thus,
our model is parametric in an underlying programming language. In Definition 3.1 we define the
building blocks upon which BoC can be constructed. Note, few constraints are placed on Context

and Heap to allow for many implementations of an underlying language (which is expected to
instantiate their structure).

Definition 3.1 (Simple underlying programming language). A tuple (Context, Heap,↪, finished)
is an underlying programming language if all of the points that follow hold. We use the identifiers
�, �′, . . . to range over elements of Context, and ℎ, ℎ′ . . . for Heap.
(1) The evaluation relation↪ has signature↪ ⊆ (Context × Heap) → (Context × Heap).

(2) The set finished ⊆ Context describes terminal contexts.

In Definition 3.2 we show how we can extend any underlying language to obtain a BoC language.
The extension enriches the underlying language so that programmers can create cowns and spawn

new behaviours; also, the extension introduces concurrency to the language by enabling running
multiple behaviours at a time.
This extension requires that the underlying language provides cown identifiers, Tag, and the

behaviour spawn evaluation relation,↪when (̂ ) {�}.

Definition 3.2 (BoC extensions). We define the Behaviour-Oriented Concurrency (BoC) extension
for an underlying language, (ContextD , HeapD ,↪, finishedD ), and obtain a BoC tuple (Context, Heap,
↪, finished,↝, Tag):
(1) We expect the underlying language to be extended to accomodate ^ ∈ Tag (and ^ is a

sequence of ^)

(2) We require the evaluation relation to be extended to accomodate↪when (̂ ) {�} where

↪when (̂ ) {�} ⊆ Context → Context

(3) Configurations are tuples, Conf = PendingBehaviours × RunningBehaviours where

% ∈ PendingBehaviours = (Tag∗ × Context)∗

' ∈ RunningBehaviours = P(Tag∗ × Context)

(4) The evaluation relation↝ ⊆ (Conf × Heap) → (Conf × Heap) is defined in Figure 1.

Note that running behaviours form a set (thus supporting arbitrary interleaved evaluation), while
the pending behaviours are a sequence (thus supporting behaviour ordering). Also, we highlight in
green, behaviours that are running, and in purple, those that are pending.

Pending behaviours. The linear structure of pending behaviours creates a total order over the
spawned behaviour. The reader may be concerned that this restricts the parallelism in BoC, however,
we will see that we can remove this total order in Section 4 for an efficient implementation.

We will now discuss each of the rules in Figure 1.
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step

�, ℎ↪ �′, ℎ′

' ⊎ (^, �), %, ℎ ↝ ' ⊎ (^, �′), %, ℎ′
spawn

� ↪
when (̂ ′) {�′′}

�′

' ⊎ (^, �), %, ℎ ↝ ' ⊎ (^, �′), % ∶ (^′, �′′), ℎ

run

(⋃(^′,_)∈(% ′∪') ^
′) ∩ ^ = ∅

', % ′ ∶ (^, �) ∶ % ′′, ℎ ↝ ' ⊎ (^, �), % ′ ∶ % ′′, ℎ
end

finished(�)

' ⊎ (^, �), %, ℎ ↝ ', %, ℎ

Fig. 1. Semantics for BoC

step describes a step where a running behaviour is able to make a step in the underlying language;
this updates the global heap and the local context of the behaviour.
spawn describes spawning of a new behaviour. The underlying relation updates the spawning

behaviour’s context to accommodate the local effects of spawning a behaviour (such as updating
stacks to reflect captured values and reducing expressions). The cowns required by the new

behaviour (̂ ′) and its context (�′′) are added to the end of the pending behaviours list.
run describes running a behaviour. A behaviour can be run once two criteria are met: (1) no

behaviour that appears earlier in list of pending behaviours has overlapping cowns with this
behaviours cowns; (2) the cowns required by the behaviour are not in use by any running behaviour.
Note, it is not required the first pending behaviour is selected.
end describes terminating a behaviour. This step requires that some running behaviour has

reached some terminal state, it can then be removed from the running behaviours.

Ensuring happens-before. spawn demonstrates the linear structure of % , spawned behaviours are
always appended to the end of the list of pending behaviours. In run a behaviour can only be made
running and removed from % if there is no prior behaviour in % that requires the same cowns. This
means that whenever two behaviours overlap, the earlier spawned behaviour will always be run
first. Consider what this means for the example in Listing 8: 11 will be spawned before 12 and, as
12 spawns 13, also before 13 and so 11 will precede 13 in % , thus 11 will be run first.

Ensuring isolation of behaviours. These semantics provide a means to schedule behaviours such
that no running behaviours are granted access to the same cowns at once. This is not in itself enough
to isolate behaviours: we also need the contents of these cowns and the states of the behaviours
to not overlap. Thus, we require the underlying language to provide a mechanism for memory
isolation. These semantics permit, and in fact we strongly recommend, such a mechanism to ensure
behaviour isolation.

Assume the underlying language has a mechanism for isolation, such as a type system. Consider
what it means for a step to be allowed in the underlying language in step. One definition of
this requires that a step must preserve the state of all memory from which this behaviour is
isolated [Dinsdale-Young et al. 2013]. Thus a behaviour can mutate its cowns and local state, as
long as it does not affect other isolated memory.

In more detail, for spawn we expect the type system to ensure any shared data accessed within
the new context (�′′) is protected (uniquely owned) by the required cowns (̂ ). For end, we expect
that the type system ensures that the data protected by the cowns being released (̂ ) are disjoint.

Assuming this provisioned isolation, we can claim that behaviours are atomic. A behaviour will
acquire its cowns, execute with isolated access to its cowns until completion and then release the
cowns. There is no way one behaviour can observe another partially executed behaviour.
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Ensuring deadlock freedom. BoC is deadlock-free by construction as the semantics in Figure 1
can always reduce unless all the behaviours have finished. To show this, we assume the underlying
semantics cannot get stuck, that is:

∀�. [ (∀ℎ. ∃�′, ℎ′. �, ℎ↪ �′, ℎ′) ∨ (∃�′, ^, �′′. � ↪when (̂ ) {�′′} �
′) ∨ finished(�) ] (1)

This may seem like too strong an assumption, as we expect that given a context and heap pair
progress can always be made, yet this can be satisfied fairly simply by permitting error contexts
that satisfy the finished predicate. In the presence of a heap in which a context cannot reduce, say
some dangling pointer, this will step to an error which will then be finished. We can also satisfy
this by defining well-formed configurations and proving preservation of such over the evaluation
relation, but this is more involved than we require here.

We proceed by case analysis on' being empty. If it is not empty, thenwe can apply the assumption
(1) to an element of ', which gives three cases, one for each disjunct. The three cases can reduce by
step, spawn or end respectively. If ' is empty and % is non-empty, then the first element of % can
be moved to the running set using run. If ' and % are both empty, then no rules apply and the
program has terminated. Hence, the BoC semantics cannot get stuck before termination.
In the next section, we show how the implementations preserves deadlock freedom.

3.1 Demonstrating Parallelism and Deadlock Freedom

We now demonstrate that Listing 4 is deadlock free through the following potential execution. We
use w1, w2, d1 and d2, as behaviour identifiers for withdrawing from and depositing to s1 and s2

respectively. In the transition from Config 2 to Config 3, we use the run rule to start the second
behaviour in the queue. This is allowed as it does not require any cowns required by an earlier
behaviour. If s1 and s2 were the same cown, then the second behaviour could not run as it would
require the same cown as the first behaviour. We then let the running behaviour complete. At
this point (Config 4), there are two behaviours in the pending queue, but only the first can run,
because they both require the same cown. This behaviour must now complete, before the remaining
behaviour in the queue can run. Once both withdrawals are complete (Config 6), then both deposits
can start in either order, and then they can run in parallel (Config 7).

{(∅, transfer(s1, s2, 1); transfer(s2, s1, 2))}, [], ℎ↝∗ (1)

∅, [({B1}, w1; when(s2) { d2 }), ({B2}, w2; when(s1) { d1 })], ℎ↝ (2)

{({B2}, w2; when(s1) { d1 })}, [({B1}, w1; when(s2) { d2 })], ℎ↝ (3)

∅, [({B1}, w1; when(s2) { d2 }), ({B1}, d1)], ℎ′ ↝∗ (4)

{({B1}, w1; when(s2) { d2 })}, [({B1}, d1)], ℎ′ ↝∗ (5)

∅, [({B1}, d1), ({B2}, d2)], ℎ′ ↝∗ (6)

{({B1}, d1), ({B2}, d2)}, [], ℎ′′ (7)

4 IMPLEMENTATION

We have created a C++ library that functions as a runtime for BoC. While an interim solution,
this library enables the execution of C++ programs that utilize the BoC approach to concurrency,
providing valuable insight into the runtime’s performance. Ultimately, we aim to integrate this
runtime as a fundamental component of a programming language implementation that natively
supports BoC as the exclusive method for concurrency, integrated with the language’s type system.
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List. 11. Example of ordering

1

2 when (c1) { /∗ b0 ∗/ }

3

4 when (c3) { /∗ b1 ∗/ }

5

6 when (c1, c2) { /∗ b2 ∗/ }

7

8 when (c1) { /∗ b3 ∗/ }

9

10 when (c2, c3) { /∗ b4 ∗/ }

11

12 when (c3) { /∗ b5 ∗/ }

c1

c4

c3

c2

when (c1) { /*b0*/ }

when (c1,c2) { /*b2*/ }

when (c1) { /*b3*/ }

when (c2,c3) { /*b4*/ }

when (c3) { /*b5*/ }

when (c3) { /*b1*/ }

Fig. 2. Dependency graph for Listing 11

The development of the BoC runtime had to address the following challenges: correspondence
between implementation and semantics, atomicity and deadlock-freedom of the operations of the
runtime, and efficiency.

The BoC runtime is closely aligned with the operational semantics outlined in Section 3. In the
runtime, behaviours operate within scheduler threads, and when a behaviour is ready to run (i.e., it
can be added to '), it is dispatched to an underlying scheduler (such as a thread pool) for execution.
The pending behaviour queue (% ) is represented as a dependency graph, which is updated when
a behaviour terminates or a new behaviour is spawned, and used to determine if a behaviour is
ready to run. Unlike more complex systems, there is no need for additional operations, such as logs,
commit, or roll-back. This tight correspondence between the runtime and operational semantics is
often absent in more complex systems, such as those described be Harris et al. [2005] and Moore
and Grossman [2008].

4.1 High-Level Design

The dependency graph is at the heart of the BoC runtime. It is an directed acyclic graph (DAG) of
behaviours, whose edges express the holding of a cown needed by a successor.
To provide further detail, let’s consider a behaviour 1 that requires = cowns. In the behaviour

dependency graph, 1 will have : predecessors, where : ≤ =. These : predecessors will be behaviours
that require one of the cowns required by 1, and are either running or directly preceding 1 in the
graph. And = − : is the cowns that are not currently being used by any running behaviour and are
also not required by any preceding behaviour.
In the rest of this subsection, we will expand on:

● When to start running a behaviour?
● What happens when a behaviour completes?
● How to spawn a new behaviour?

For now, we will assume that manipulations of the dependency graph are atomic with respect to
themselves and each other; we will explain their detailed implementation in the next subsection.
We will use the program given in Listing 11 to illustrate how the runtime can execute a BoC

program. Assuming that all the behaviours have been spawned, and none have started running yet,
the dependency graph would look as shown in Figure 2.
A behaviour which has no predecessors in the dependency graph can be executed. Once it

completes executing, it removes itself from the predecessor set of all it successors in the dependency
graph. For instance, in the dependency graph in Figure 2, 10 may execute, and once it completes it
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can remove itself from 12’s predecessors. In parallel with this, 11 may execute, and similarly when
it completes it can also remove itself from 14’s predecessors. Hence, when both 10 and 11 have
completed, 12 will have no predecessors, and thus can execute. When 12 completes, it will update
its two successors, 13 and 14, which enables them both to be executed. Finally, 15 can be executed
on completion of 14.

The runtime also handles adding new behaviours. The last behaviour scheduled on each cown is
pointed to by that cown. For instance, in Figure 2, the cown c1 refers to 13. This specifies where the
dependency graph must be extended for the next behaviour that uses c1. Similarly, a new behaviour
using c2, or c3, would have to be added as a successor to 14, or 15 respectively.
A cown which has no behaviours using it, such as c4, points to a special unused value, rather

than a pointer to a behaviour. When scheduling a behaviour on a cown in this state, BoC replaces
the special value by that behaviour. When the last behaviour finishes on a particular cown, it
reestablishes the unused value.

Thus, if we were to schedule when(c1,c4){/∗b6 ∗/} on the dependency graph in Figure 2, we would
update the cowns c1 and c4 to point to 16, and add 16 as a successor to 13 as that was the last value
for c1. As c4 had no behaviours using it, we would not need to add a successor for c4.

To summarize, the behaviour dependency graph evolves dynamically as new behaviours are
introduced and terminated. The addition of new behaviours is represented by the addition of new
leaves in the graph, which are pointed to by cowns.When a behaviour terminates, the corresponding
edges in the graph are removed. The root nodes of the dependency graph are the behaviours that are
either currently running or can potentially start running. It is important to note that the dependency
graph may have multiple roots; also, when viewed from the perspective of any single cown, the
graph appears as a linear order (or queue).

4.2 Formal Semantics Correspondence

We now connect this implementation with the formal semantics from Section 3.
In the semantics, a configuration consists of a set of running behaviours, a queue of pending

behaviours and a heap. In the implementation, the running set are those behaviours executing on
scheduler threads, whilst the centralised pending queue has been transformed into a decentralised
DAG. The edges between two behaviours in the DAG are the happens before relation between two
behaviours in the queue. As behaviours are executed from the root of the DAG, this correlates to
taking a behaviour that must happen before other behaviours from the queue.
In the semantics, spawn appends a behaviour to the end of the pending queue. In the imple-

mentation, spawning a behaviour sets the last behaviour of each of the required cowns to the new
behaviour, updating the cown’s previously last behaviour to know about their new successor.

In the semantics, run starts any behaviour whose cowns are all currently available, and who does
not require any cowns required by a behaviour that appears earlier in the queue. step continues
the evaluation of this behaviour. In the implementation, any behaviour that has no predecessors,
indicating all required cowns are available, can begin executing; in the DAG representation, the
first behaviour that requires a cown must be a root of the DAG, so there is no search necessary as in
the formal semantics. Once a behaviour starts running it can continue to execute until termination.
In the semantics, end terminates a behaviour, removing it from the running set. In the imple-

mentation, a behaviour terminates and decrements its successors number of pending predecessors.
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1 class CownBase : StableOrder {

2 volatile Request? last = null;

3 }

4

5 class Request {

6 volatile Behaviour? next = null;

7 volatile bool scheduled = false;

8 CownBase target;

9

10 Request(CownBase t) { target = t; }

11

12 void StartAppendReq(Behaviour behaviour) {

13 var prev = Exchange(ref target.last, this);

14 if (prev == null) {

15 behaviour.ResolveOne();

16 return;

17 }

18 while (!prev.scheduled) { /∗spin∗/ }

19 prev.next = behaviour;

20 }

21

22 void FinishAppendReq() { scheduled = true; }

23

24 void Release() {

25 if (next == null) {

26 if (CompareExchange(ref target.last,

27 null, this) == this)

28 return;

29 while (next == null) { /∗spin∗/ }

30 }

31 next.ResolveOne();

32 }}

33

34 class Behaviour {

35 Action thunk;

36 int count;

37 Request[] requests;

38

39 Behaviour(Action t, CownBase[] cowns) {

40 thunk = t;

41 requests = new Request[cowns.Length];

42 for (int i = 0; i < cowns.Length; i++)

43 requests[i] = new Request(cowns[i]);

44 }

45

46 static void Schedule(Action t,

47 params CownBase[] cowns) {

48 Array.Sort(cowns);

49 var behaviour = new Behaviour(t, cowns);

50 behaviour.count = cowns.Length + 1;

51 foreach (var r in behaviour.requests)

52 r.StartAppendReq(behaviour);

53 foreach (var r in behaviour.requests)

54 r.FinishAppendReq();

55 behaviour.ResolveOne();

56 }

57

58 void ResolveOne() {

59 if (Decrement(ref count) != 0)

60 return;

61 Task.Run(() => {

62 thunk();

63 foreach (var r in requests)

64 r.Release();

65 });

66 }}

Fig. 3. C# implementation of the BoC runtime.

4.3 Model Implementation

We give a model C# implementation of the BoC runtime in Figure 3, to illustrate the core details
required to schedule behaviours. In the next section, we will discuss the differences with the more
performant C++ implementation.
The implementation is composed of three classes: CownBase – the common superclass repre-

sentation of a cown (the triangles in Figure 2); Behaviour – the representation of the when block
(the rounded squares in Figure 2); Request – the edges of the dependency graph (the blue squares
and the blue arrows in Figure 2). The class CownBase has a single field last that either references
the Request of the last behaviour to be scheduled on this cown, or null to signify there are no
behaviours using nor waiting for this cown. CownBase also extends StableOrder, a class which
enables sorting of its instances. A Request has three fields: next – a pointer to the next behaviour
in the graph; scheduled – used to atomically append a request on multiple cowns; and target –
the cown that this request is requesting. A Behaviour has three fields: thunk – the body of the when;
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requests – the array of requests for this behaviour; and count – an atomic counter for how many
predecessor behaviours must complete before the behaviour can execute.

Graph design. Our implementation is based on the MCS-queue lock [Mellor-Crummey and Scott
1991], which provides a guaranteed ordered spin lock. Recall, from the point of view of a cown, the
behaviours form a queue. Our runtime adapts the MCS-queue lock data structure in two important
ways: (1) the graph entries contain a reference to behaviours, rather than a flag for spinning on;
and (2) it extends the enqueuing mechanism with a two phase enqueuing that allows an atomic
enqueue on multiple cowns. The first change is how we move from blocking to asynchrony. The
second enables when to be over multiple cowns, and correctly provide the order.

Resolving a Request. The instance method ResolveOne from class Resource is called when one

predecessor can be removed from the dependency graph. It decrements the count of predecessors,
and if count is decremented to zero (meaning that the behaviour has no dependencies), it passes
the behaviour to Task.Run for execution. The scheduled task runs the behaviour body and once the
body completes, it Releases each of its associated requests (Lines 63 and 64).

Spawning a behaviour. This is the responsibility of the static method Schedule from class
Behaviour. Unlike our abstract semantics with a single queue to update atomically, the imple-
mentation must atomically update multiple cowns to extend the dependency graph.
To achieve atomicity of appending a request across a set of cowns (as required in Section 4.1),

we separate the operation into two phases [Eswaran et al. 1976]. To achieve deadlock freedom (also
required in Section 4.1), we sort the cowns into a globally agreed order (Line 48). This ensures that
the append cannot deadlock [Havender 1968] due to a cycle in waiting on the scheduled flag.
The first phase calls StartAppendReq on every request (Lines 51 and 52). StartAppendReq uses

an exchange to atomically set the current request as the last request for a required cown, and get
the previous value (Line 13). If there is no previous value, then this dependency can be immediately
resolved (Line 15). Otherwise, it waits for the scheduled flag on the predecessor’s request to be set
(Line 18), before linking the request in the graph (Line 19). The wait prevents this behaviour from
appending on further cowns, until the prior behaviour has completed its append.

The second phase calls FinishAppendReq on every request (Lines 53 and 54). We want to ensure
that the second phase does indeed run, before the behaviour is run (executed by Task.Run). This is
why we set count to one higher than the number of requested cowns – Line 50. After the end of
the second phase, the call of ResolveOne restores count its correct value, and runs the behaviour if
indeed all its cowns were available – Line 54.

Completing a behaviour. The function Release from class Request notifies the next element in
the graph (if a next element exists) that this predecessor has been resolved. There are three cases
that the code must deal with, (1) the next pointer has been set, (2) this is the last request for the
cown, and (3) this is not the last request for the cown, and the next pointer has not been set.
This is identical to the cases for releasing a lock in the MCS lock. If the next pointer has been
set, simply notify the successor by calling ResolveOne. If it has not been set, then attempt using a
CompareExchange to set the cown to point back to null. If this succeeds, then there are no more
behaviours on the cown and nothing more is required. If CompareExchange fails, then this is not the
last behaviour on the cown and another behaviour is in the process of being scheduled. In this case,
the thread spins until the next pointer is set (line 29), and then notifies it.

4.4 Optimised Implementation

We have developed a high-performance C++ implementation of the BoC runtime. There are a few
key implementation differences with the C# implementation we have just described.
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The main differences is that the C++ implementation packs all the objects associated with a when

into a single allocation. The C# implementation for a whenwith = cowns, results in = + 2 allocations:
one for each request, one for the array, and one for the behaviour. The C++ implementation lays
out all the objects inside a single allocation. All the objects have a shared lifetime, so this is a
simple optimisation. This is not possible in the C# implementation as the .NET GC does not support
interior pointers on the heap. Similarly, the C++ implementation encodes the next and scheduled

field into a single pointer using standard bit borrowing tricks.
The C++ implementation must handle the manual deallocation of the heap allocations. It is safe

to deallocate the behaviour once it has completed releasing its successors. This is safe because
there are three ways a behaviour can be reached by its predecessors, its successors and the cowns
it is scheduled on. For the behaviour to have executed, the count must be zero, so there are no
predecessors left. If a request has a next that has been set, then it is not reachable from the cown,
and will not be accessed again by that successor. Note that it is important that the wait on scheduled
occurs before setting next, if they were in the other ordered then there would be a use after free.
The Release call also removes any direct reference from a cown if it still exists. Hence, once Release
has been called on each request the object is unreachable and may be deallocated.
The C++ runtime has a work stealing scheduler. To improve performance, we keep the most

recently runnable behaviour in thread local state, so that we do not have to pay scheduling costs.
This has the effect of running several related behaviours in a batch. After = thread-local running
behaviours, we always use the shared scheduler to ensure we do not starve the rest of the system.

4.5 Correctness: Deadlock Freedom, Atomicity, and Progress

In Section 3 we demonstrated that the BoC semantics guarantees both deadlock freedom and
atomicity of behaviours with respect to one another. However, the question arises as to whether
these guarantees still hold when the behaviours are executed within the BoC runtime.

In Section 4.3 we established that operations for manipulating the behaviour dependency graph
shown in Figure 3 are atomic with respect to each other. When running the thunk (Line 62), the
BoC runtime may affect the contents of the cowns, but not the behaviour dependency graph. All
other functions may affect the behaviour dependency graph, but not the contents of the cowns.
And while running the thunk, they only affect the contents of the cowns. As a result, the footprint
of the behaviour dependency graph manipulating operations and that of the thunk are disjoint.
Therefore, the behaviours as executed by our BoC runtime are atomic with respect to one another.

Similarly, the dependency graph manipulation operations are deadlock-free. By the same argu-
ment of footprint disjointness, behaviours as executed by our BoC runtime are also deadlock-free.

Finally, due to the acyclic nature of the dependency graph and the fact that the roots of the graph
are either executing or can be started, we also have progress.

5 EVALUATION

The two main contributions of this paper are (a) a new concurrency paradigm and (b) an implemen-
tation of it. In order to evaluate these, we needed a baseline. Savina is a benchmark suite designed
to compare implementations of the actor paradigm [Imam and Sarkar 2014]. This suite is widely
known in the actors community and has been used to compare the performance of several actor
languages [Blessing et al. 2019]. We chose Savina for our evaluation for two reasons:

(1) Actors model programs have close relation to BoC and there is a straightforward translation
from actors to BoC. Thus, we can compare performance of our runtime against existing
runtimes.
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(2) There are patterns in actor model programs which we have identified as places where BoC is
a better fit; thus, we can compare tradeoffs between these paradigms.

All our experiments were run on an Azure F72s v2 instance, which has 72 hardware threads.1

5.1 Evaluation of the Implementation

To evaluate the implementation, we started by comparing the performance of the programs in
the Savina suite written in an actor language, and written in “BoC (Actor)” – i.e., BoC where each
behaviour runs on exactly one cown. Such a comparison allows us to investigate the costs of the
BoC’s more complex messaging mechanism to that of actors’.

We chose to compare with the actor language Pony [PonySite [n. d.]] because the latest compari-
son [Blessing et al. 2019] showed Pony to be comparable in performance with both Akka [AkkaSite
[n. d.]; Haller and Odersky 2009] and CAF [CAFSite [n. d.]; Hiesgen et al. 2016]. Thus, by being com-
parable with Pony we are comparable across the space of actor-based languages, and demonstrate
that BoC does not introduce high overheads. Furthermore, Pony and BoC share some agreeable
language features, e.g., message ordering guarantees, and no need to explicitly terminate actors
(poison pills). Finally, many of the implementation design decisions were taken from the Pony
implementation which makes for more direct comparison [Clebsch 2018; Clebsch et al. 2015].
To make the comparison truly informative, we developed a systematic mapping from Pony to

BoC (Actor), and applied it for all the programs. Each Pony actor is mapped to a cown, and each
Pony behaviour is mapped to a method with the same arguments as the behaviour, as well as the
cown corresponding to the receiver, and the method body starting with a when on that cown.
We present the results in Table 1, where we run each program with 1 and 8 cores. The Savina

benchmark suite consists of 30 programs. In accordance with Blessing et al. [2019], we dropped 8
programs because they relied on language specific, non-standard libraries, and one has problems
with termination; thus, we have 22 programs. We ran each benchmark 100 times and report the
average and an approximation of the confidence interval (the standard error times 1.96). We use
Pony version 0.53.0. To give additional insights into the benchmarks, we present the number
of cowns and behaviours in each benchmark (obtained by instrumenting the runtime to detect
cown/behaviour allocation and logging the result on termination).
The “BoC (Actor)” implementations are faster than Pony on 17 out of 22 benchmarks. The

majority of results are similar between the two implementations suggesting the dependency graph
used by BoC has negligible affect on performance. We investigated the larger outliers to understand
what caused the performance differences.

Where Pony has better performance. The worst performance of our runtime relative to Pony is the
Sleeping Barber. This involves busy waiting, which causes a lot of pointless work on our runtime.
Pony has a mechanism for back pressure that gives the busy waiting a low priority, so the rest of
the system makes progress.

The second worst performance is Sieve of Eratosthenes. When we analysed the code, using the
profiling information, we found that Pony was using 32-bit division, whereas we were using 64-bit
division. We are unsure why Pony used 32-bit division, but if we change our implementation to
use 32-bit division, we get the similar performance to Pony.
The single core Count works better for Pony as the overhead of allocating a message is lower.

The example is completely single threaded, there is at most one Actor/Cown that can be executed
at a time. For the multi-threaded run, the BoC batching scheme works better on this example than
Pony’s. Pony moves the work between multiple threads slowing down the processing.

1Our, anonymized, benchmarks can be found at https://anonymous.4open.science/r/benchmarks-0CF1/
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Table 1. Average runtime (ms) on Savina benchmarks. Parenthesised values give logarithm relative overheads
to single core Pony, log( G

1 core Pony).

Pony BoC (Actor)
Benchmark LoC 1 core 8 cores LoC 1 core 8 cores cowns behs

Banking 105 184± 1.5 48.5± 2.0 (-0.6) 117 19.8± 0.6 (-1.0) 22.6± 1.6 (-0.9) 1001 105.4

Big 65 250± 0.3 501± 0.4 (0.3) 83 247± 0.2 (-0.0) 202± 0.3 (-0.1) 121 106.7

Bounded Buffer 132 2984± 0.1 406± 0.1 (-0.9) 142 1593± 0.1 (-0.3) 342± 0.1 (-0.9) 81 105.2

Chameneos 103 110± 0.5 522± 0.1 (0.7) 105 46.1± 0.2 (-0.4) 94.5± 1.4 (-0.1) 101 105.9

Cig Smokers 45 1.9± 4.0 2.2± 0.7 (0.1) 66 0.7± 0.4 (-0.4) 1.4± 0.4 (-0.1) 201 103.5

Conc Dict 65 256± 0.4 366± 0.4 (0.2) 84 22.7± 0.3 (-1.1) 66.5± 1.2 (-0.6) 22 105.6

Conc Sorted List 90 13653± 0.2 15059± 1.0 (0.0) 108 6206± 0.1 (-0.3) 9913± 0.8 (-0.1) 22 105.5

Count 28 25.1± 1.4 120± 9.4 (0.7) 40 46.1± 0.4 (0.3) 47.7± 0.4 (0.3) 2 106.0

Dining Phils 78 142± 0.5 560± 2.9 (0.6) 94 73.3± 0.2 (-0.3) 165± 0.9 (0.1) 21 106.1

Fib 44 322± 0.8 46.7± 1.4 (-0.8) 51 29.3± 0.3 (-1.0) 19.4± 0.7 (-1.2) 150049 105.5

Filterbank 225 2787± 0.1 380± 4.2 (-0.9) 247 1170± 0.1 (-0.4) 349± 1.6 (-0.9) 62 106.2

FJ Create 28 50.2± 1.6 31.3± 2.2 (-0.2) 42 10.5± 0.4 (-0.7) 12.4± 0.4 (-0.6) 40001 104.9

FJ Throughput 42 50.2± 3.6 207± 5.9 (0.6) 53 53.4± 0.9 (0.0) 101± 0.6 (0.3) 61 106.1

Map Series 137 832± 0.1 44.1± 12 (-1.3) 133 39.0± 0.4 (-1.3) 41.2± 4.0 (-1.3) 21 105.9

Ping Pong 29 7.2± 0.4 51.3± 3.4 (0.9) 43 4.6± 0.5 (-0.2) 5.4± 0.4 (-0.1) 2 104.9

Quicksort 126 234± 0.2 67.1± 5.2 (-0.5) 121 125± 0.3 (-0.3) 58.8± 0.4 (-0.6) 1935 103.6

Radixsort 77 180± 0.5 210± 0.8 (0.1) 105 236± 0.2 (0.1) 149± 0.8 (-0.1) 61 106.8

Matrix Mul 142 9825± 2.6 1158± 9.3 (-0.9) 156 1614± 0.1 (-0.8) 563± 1.5 (-1.2) 22 103.4

Sieve 64 222± 66 45.2± 9.9 (-0.7) 68 331± 0.2 (0.2) 104± 3.8 (-0.3) 10 105.0

Sleeping Barber 113 3652± 0.3 261± 4.7 (-1.1) 127 1660± 0.1 (-0.3) 3544± 0.9 (-0.0) 5003 107.4

Thread Ring 39 11.0± 1.1 95.1± 2.3 (0.9) 46 4.7± 0.6 (-0.4) 5.5± 0.3 (-0.3) 100 105.0

Trapezoid 62 842± 0.1 115± 0.9 (-0.9) 72 970± 0.1 (0.1) 172± 0.1 (-0.7) 101 102.3

Observe that the LoC for each benchmark is often lower in Pony; yet, the largest delta is 28 LoC
in Radix Sort. Here are some reasons for the difference: Pony doesn’t use braces to delineate scope;
In BoC each when is wrapped in a function call to match the style of behaviours in Pony; Pony
provides union types and parametric polymorphism that C++ and the BoC runtime do not. Radix
Sort is strongly affected by these last two issue. However, we will see in Table 2 in Section 5.3 that
BoC improves for multi-cown behaviours.

Where BoC (Actor) has better performance. The Bounded Buffer, Concurrent SortedList and Matrix
Mult all had poor performance on Pony relative to our runtime. When we investigated profiling
information, each of these examples had generated less optimal inner loops for the core computation.
The Banking, Chameneous and Concurrent Dictionary examples pass references to actors in

messages. In our C++ BoC runtime, this is supported with reference counting. In Pony this uses
remembered sets and tracing. Profiling showed that these memory management costs caused the
overhead. Similarly, Fib’s overheads for Pony are primarily due to the cost of deallocating actors,
which is cheaper on our runtime.

Overall, the majority of difference are not due to the BoC runtime, so there is no evidence that
BoC introduces high overheads.

5.2 Evaluation of the BoC Paradigm

To evaluate the BoC paradigm, we make qualitative and quantitative comparisons based on the
Savina suite.
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For our comparison based on the Savina suite, we considered which of the Savina programs
would benefit from the extra power afforded by behaviours that support more than one cowns.
Not all Savina programs offer scope for change (for example, actors sending messages in a ring or
pinging each other), but there are several programs which do have scope. They fall broadly into the
following two categories (c.f., Table 2): Multi-actor operations, where when helps, and Parallelising
workloads where behaviour ordering helps.

Table 2. Overview of Savina benchmarks we consider.

Pa�ern Benchmarks

Multi-actor Banking, Barber, Dining Philosophers, Chameneos

Parallelism Logistic Map Series, Count, Fibonacci, Fork-Join Create, Fork-Join Throughput, Quick-

sort, Trapezoid

Multi-actor operations. These are problems such as two-phase commit and rendezvous of actors.
Two (or more) actors must atomically update state through message exchange; for example, a
transaction manager coordinates updates between two bank accounts, such that an account is only
involved in one operation at a time, and either both or neither accounts are updated. In Section 5.3
we will discuss this pattern in detail. Using BoC (Full) reduces the required message through a when

that acquires multiple cowns at once.

Parallelising workloads. These are problems in the vein of divide and conquer, fork-join, and map
reduce, where a problem is decomposed into smaller problems that can be solved in parallel and
combined. In actor systems, each parallel solution needs to send a message back to an aggregating
actor to recompose the solution. Using BoC (Full) reduces the required message, as causal order
ensures sub-solutions are only aggregated once they have been computed, and thus avoids sending
messages back to an aggregating actor. Note, this pattern requires the work to be divided in a single
behaviour, so whether this is faster depends on the amount of work performed in the asynchronous
behaviours. For Fibonacci this change improves performance whereas for Quicksort it does not,
thus there are related decisions regarding which algorithms should be used for a program.

In Table 3 we compare the performance of these programs written in BoC (Actor) and written in
BoC (Full). We see that 6 benchmarks demonstrate significant improvement in performance. We
also present the lines of code for the implementations of the benchmarks as an approximation of
the complexity of the solutions. Again, we see that 9 of the benchmarks are smaller than the Actor
based implementations. We present the behaviour count for each benchmark, and additionally for
BoC (Full) we separate this by the number of cowns used in each behaviour. We observe that all
the benchmarks with significant speedups have a significantly lower behaviour count, and a high
percentage of these use two cowns. In some benchmarks the number of cowns required changes
when using BoC (Full); often this number gets lower, e.g. Fib, as BoC constructs the computation
bottom up and so is able to reuse cowns, whilst in Pony the computation is top down with actors
waiting in place for subproblem results; in the Dining Philosophers, in Pony, forks are not modelled
as actors whilst they are in BoC, so as to decentralise the fork management and provide a better
solution using BoC. We can also see that the total number of behaviours remains the same or
decreases from BoC (Actor) to BoC (Full); this always comes from creating a single behaviour that
accesses multiple cowns in place of multiple messages to coordinate access over multiple cowns.
We see improvements in both size and speed when adopting BoC (Full).
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Table 3. Average runtime (ms) on selected Savina benchmarks

BoC (Actor) BoC (Full)
behaviours

Benchmark LoC 1 core (ms) 8 cores (ms) cowns behaviours LoC 1 core (ms) 8 cores (ms) cowns 1 cown 2 cowns total

Banking 117 19.8± 0.6 22.6± 1.6 1001 105.4 78 7.9 ± 1.2 9.3± 4.5 1001 104.7 104.7 105.0

Chameneos 105 46.1 ± 0.2 94.5± 1.4 101 105.9 85 49.2± 0.3 122.1± 1.7 101 105.6 105.3 105.8

Count 40 46.1± 0.4 47.7± 0.4 2 106.0 30 45.4 ± 0.4 46.9± 0.6 2 106.0 100.0 106.0

Dining Phils 94 73.3± 0.2 164.9± 0.9 21 106.1 61 22.2± 0.7 16.6 ± 0.8 41 105.3 105.3 105.6

Fib 51 29.3± 0.3 19.4± 0.7 150049 105.5 28 10.9 ± 0.4 13.5± 0.8 75025 0 104.9 104.9

FJ Create 42 10.5± 0.4 12.4± 0.4 40001 104.9 42 9.6 ± 0.3 11.8± 0.3 40001 104.6 104.6 104.9

FJ Throughput 53 53.4± 0.9 100.8± 0.6 61 106.1 52 35.8 ± 1.2 45.8± 2.2 61 105.8 101.8 105.8

Map Series 133 39.0± 0.4 41.2± 4.0 21 105.9 52 17.4 ± 1.0 19.8± 0.9 21 0 105.4 105.4

Quicksort 121 124.7± 0.3 58.8 ± 0.4 1935 103.6 85 105.9± 0.3 78.6± 0.4 968 103.0 103.0 103.3

Sleeping Barber 127 1660± 0.1 3544± 0.9 5003 107.4 106 12.5 ± 7.7 16.5± 10.2 5003 104.8 104.0 104.9

Trapezoid 72 970.0± 0.1 172.0 ± 0.1 101 102.3 68 958.3± 0.1 172.6± 0.1 100 102.0 102.0 102.3

5.3 ReasonableBanking: The Banking Example Revisited

We now revisit the banking example, adding requirements that epitomise those often found in
concurrency applications:

● Tellers can issue transactions between any accounts.
● There can be several Tellers issuing transactions to shared accounts.
● No livelocks and no deadlocks.
● Operations over multiple accounts are atomic.
● Any two transactions issued by one teller which involve the same account must be executed
in the order they were issued.

We call the collection of these requirements the ReasonableBanking. The ReasonableBanking

guarantees are inherently achieved by the BoC paradigm. As already shown in Section 2, the
behaviour transfer involves two account cowns, and transfers the money. Any number of tellers
issue such transfer transactions between the accounts. Figure 4a shows two such transactions.
Whilst it is possible to achieve the ReasonableBanking guarantees in an actor language (e.g.

Pony), it is difficult. The Savina banking benchmark does not satisfy the guarantees because (a) it
is difficult (b) the benchmarks are micro-benchmarks designed to stress components of an actor
system. One design to achieve this is shown in Figure 4b (which presents only part of the protocol
for two transactions for brevity), and goes as follows: There are three types of actor involved
in a transaction, Tellers, Accounts and Managers; Accounts have two state flags (acquired and
stashing) and associated queues which are used to track incoming requests. A Teller selects two
accounts at random and sends a message acquire() to the lowest Account address of the two, and
records the other Account to be acquired. When the Account processes the acquire() message, if
acquired is set then the acquire request is enqueued, otherwise acquired is set and the Account

replies acquired() to the Teller. The Teller will then repeat this process with the other Account.
Once both Accounts are acquired, the Teller will create a Manager actor, and send credit() and
debit() messages to the Accounts, including a reference to the Manager in the message payload.
Each Account will test whether it is processing an operation through stashing, if it is, then the
message will be enqueued, otherwise the account will decide whether the operation will succeed
or not and inform the Manager through a yes() or no() message. The Account will also mark itself
as stashing; this also releases the acquisition by a Teller and the account will process the next
pending acquisition (if one exists). The Manager will aggregate the responses and reply commit() or
abort() to the Accounts and inform the Teller of a completed transaction. The Accounts will then
commit or rollback the operation.
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Fig. 4. ReasonableBanking: Protocols for bank transfers

This is, evidently, a complicated protocol that requires careful construction. Moreover, it requires
the actors (here Teller, and Account) to be aware of the protocol, thus mixing business logic
with the protocol. Furthermore, if a new set of actors had similar protocol requirements, then the
behaviours described above would need to be mixed into their logic.

Table 4. Average runtime (ms) and lines of code (LoC) of ReasonableBanking benchmark

BoC (Full) Pony
LoC 1 core (ms) 8 cores (ms) LoC 1 core (ms) 8 cores (ms)

78 7.9 ± 1.2 9.3 ± 4.5 226 987.9 ± 0.33 344.717 ± 0.35

Table 4 compares ReasonableBanking implemented in BoC (Full) and in Pony. Neither of the
implementations scales with more cores; this is due to the very little work done by the each transfer

– a common feature of the Savina suite. The BoC version is over 100 times faster than Pony on 1
core, and over 35 times faster than Pony on 8 cores. The Savina benchmarks focus on the runtime
overheads, which causes the larger churn of messages to have a drastic effect on performance. In a
realistic application, the improvement would be considerably smaller. The simplicity of the BoC
version, already demonstrated in Figure 4, results in code that is 35% the length of that of Pony.

ReasonableBanking in related work. We discuss related work tackling the issue of updating
multiple actors atomically in Section 6; here wewill use the ReasonableBanking example to elucidate
some of the points more deeply.
In Aeon [Sang et al. 2016], atomicity is achieved through the use of dominators. Actors are

arranged in a DAG, and atomicity is guaranteed by an actor that dominates all the actors required
in a particular operation. This unavoidably restricts parallelism as a dominator is responsible for
serializing events for a set of actors. If we were to attempt the ReasonableBankingBanking example,
then we would need to introduce an actor that dominated all the accounts. This is an additional actor
that is required by the paradigm, but not by the business logic. More importantly, this additional
actor would introduce a single point of contention, which could harm performance. BoC, does not
need this single point of contention.
Chocola [Swalens et al. 2021] proposes that actors state is isolated, but actors can manipulate

shared transactional state through transactions. This requires the programmer to decide if state
should be transaction based or actor based. Transaction based access is synchronous whilst Actor
access is asynchronous. Consider a sequence of three transfers: src1 to dst1, src2 to dst2 and dst1

to dst2 in Chocola; the state of each account would need to be transactional for a behaviour to
transfer funds (each transfer accesses two accounts, thus a single account cannot be an internal
actor state). Moreover, we need that the third transfer should start executing only after the first two
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Fig. 5. Benchmarking results

have completed. The first two transactions can execute in parallel as they access disjoint accounts.
BoC is able to exploit the implicit parallelism whilst retaining order; in Chocola, the two readily
available options are to start each transaction effectively in its own "thread" and lose all order, or
execute them sequentially and lose all concurrency. To achieve both parallelism and order is the
programmers burden through ad hoc coordination. These concerns affect ReasonableBanking, a
series of ordered transfers.
The Akka Transactors [Akk [n. d.]] approach was built on STM, so again required splitting the

world in transactional (STM) state and Actor state, and similar to Chocola performs synchronous
STM operations. So would suffer the same negatives as described above. 2

5.4 Scalability

Although the Savina benchmark suite is targeting highly concurrent Actor frameworks, many of
the benchmarks do not have sufficient parallel work to benefit from multiple threads. For both
Pony and BoC (Actor and Full), we see that about half of the benchmarks are faster with 1 core than
8 cores. This is due to the very small amount of work that is actually parallelised in the examples
relative to the overhead of scheduling work. Additionally, our runtime (and the Pony runtime)
performs work stealing, which can get in the way if there is insufficient work.

To illustrate our runtime’s potential for scaling, we ran a modified version of the Savina Banking
example using BoC (Full), whichwe call BusyBanking.We placed a 10`B busy loop in each transaction.
We present the results in Figure 5a, and see the runtime scales well.

Our second scalability investigation was for the Dining Philosphers. We compare our BoC
runtime with an implementation using standard C++ abstractions (e.g., std::lock). We set the
number of Philosophers to 100, which means that the maximum parallelism is 50 concurrent eats.
While holding both forks, a Philosopher spin-waits for 1ms. We added this processing delay because
it enables defining the optimal processing time of the experiment on an overhead-free system
given the number of philosophers, the number of times they eat, and the available system-level
parallelism. The choice of 1ms was made to reduce the impact of system overheads, either coming
from the operating system and its scheduler or from the BoC runtime implementation, on the
experiment results. We time how long it takes for all the Philosophers to eat 500 times each. We
present the time taken for each number of hardware threads in Figure 5b. We present the “Ideal”,
which we calculated by dividing the 50 seconds of busy work by the number of hardware threads
up to the maximum parallelism of 50.

2Note that Akka has dropped the support of transactors. https://github.com/akka/akka/pull/1878
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The experiment has three main purposes. First, it demonstrates that BoC can be efficiently

implemented on a real system and achieves close to the optimal performance. Second, it show-

cases the implicit parallelism that BoC offers the programmer compared to plain mutual
exclusion and how this can be leveraged to achieve the optimal performance. Third, it compares
BoC with vanilla C++ abstractions offering mutual exclusion, i.e.,mutexes, and shows how the OS

scheduler that lacks application level-insights can hinder scalability, as opposed to BoC
where happens-before ordering makes this insights explicit to the BoC runtime.

We present “Cowns and Behaviours”, in Figure 5b, as the performance of our runtime. In this
configuration we leverage BoC’s happens-before ordering and control the philosopher execution
order. By scheduling alternating Philosophers, first the odd and then the even, we are able to ensure
a really fair order of eating. All the odd philosophers will have a turn, and then all the even. The
happens-before order of the runtime and the fixed and common eat time ensure this continues for
the rest of the execution. As you can see, the performance closely matches the ideal.
As the example reaches the limit of the concurrency, we see the runtime starts to slow down

slightly. We believe this is because the current implementation of work-stealing does not backoff
when there is insufficient work (harming performance). To ensure our runtime could scale beyond
the 50 core mark, we additionally ran a version with 200 Philosophers, which was able to scale to
the size of the machine (not shown).

Comparison to C++ threads and mutexes. The results for C++ implementation using std::lock

are labelled as “Threads and Mutex”. The mutexes are acquired using std::lock, which ensures
deadlock freedom and uses a back-off strategy, when it fails to acquire the set of locks. The backoff
strategy takes a significant amount of the computation time. This is why the code starts significantly
above 50s for the single hardware thread case. As the number of hardware threads increases, the
performance improves, and the backoff becomes a much smaller percentage of the runtime. This
approach does reach the maximum parallelism for some runs with high hardware thread count.

In conclusion, our evaluation suggests the BoC paradigm can support the construction of powerful
protocols in a convenient way, and that the BoC runtime is competitive with Pony (and therefore
with other actor implementations), and has the potential to be much faster for examples that need
the full power of BoC.

6 RELATED WORK AND REFLECTIONS

We have already positioned BoC with respect to actors [Agha 1985; Hewitt et al. 1973]. To elaborate
on the pain point of actors, it is often remarked that actors are not a good fit for operating over
multiple actors atomically [Bernstein 2018; Kraft et al. 2022; Plociniczak and Eisenbach 2010; Sang
et al. 2016]3. BoC directly supports operations over multiple cowns.
Another consideration is the order in which messages are delivered. The actor model does not

specify an order of delivery and so different languages have chosen to provide different guarantees.
In the actor language Pony, messages to the same actor are delivered in causal order [Blessing
et al. 2017; Clebsch et al. 2015]. In contrast, the actor language SALSA gives no guarantees about
ordering of delivery; only that a message will eventually be delivered. Any required ordering must
be achieved through token-passing continuations that enable subsequent behaviours [Varela and
Agha 2001]. Our happens before relation enables causal ordering over multiple cowns.

Similar to BoC’s cowns, De Koster et al. propose extending actors and behaviours with domains

and views as a solution to the shortcomings of isolation in the actor model [De Koster 2015; De Koster
et al. 2012]. Views can acquire access to a domain during the execution of a behaviour. Like BoC’s

3http://doc.akkasource.org/transactors
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nested behaviours, dynamically nested views do not have access to the domain(s) acquired by the
textually enclosing view. The views programmer may wrongly assume a nested view has access to
the outer view, and may obtain runtime errors if the outer view is accessed but has expired. Such
an error can be prevented statically via a type system, such as we propose for BoC in this work.
Multi-actor programming as in Aeon [Sang et al. 2020, 2016] has a similar remit to that of BoC:

that programmers often want to reason about the composition of several messages for collaboration.
It proposes that actors are placed in an acyclic ownership graph, messages are grouped into units
which can be executed in a serializable manner. Like BoC, events are asynchronous; unlike BoC
actors are organized in a DAG, which is used to enforce serialization by locking the actors as the
events traverse the DAG. In the case where a large number of messages is sent concurrently, and
where each of these messages has more than one different actors receivers, Aeon requires the
receiver actors to be dominated by one single actor. In that case, all these essentially concurrent
messages need to be coordinated by that single actor, thus introducing a single point of contention.
Such a pattern is discussed in the ReasonableBanking example in Section 5.3.
Like BoC, Transactors, as they appear in [Field and Varela 2005], address the consistency of

the state of several actors involved in processes with several stages. Unlike BoC, transactors are
concerned with networks, and their failures. Thus, transactors extend the actor model by explicitly
modeling node failures, network failures, persistent storage, and state immutability. Unlike BoC,
messages are sent to/executed by a single actor.
The term transactors are also being proposed in Akka3, but with slightly different meaning.

These transactors, like BoC, address the flexibility of coordination across actors by enabling STM
across multiple actors. Unlike BoC, this does not decouple the state and behaviour of actors and,
so, an actor must present an interface through which transactions can be used. Contrast this with
the ah-hoc creation of behaviours that acquire cowns and use them as necessary. Transactors
do not so much present a single abstraction; rather the unification of two. When a multi-actor
message/operation needs to update state, then that state will need to be transactional, even if part
of it logically belonged to the first, and another part logically belonged to the second actor – we
discussed such an example in Section 5.3. Transactions on that state would need to either each start
on separate threads, thus losing ordering guarantees, or we would have to run all the transactions
operating on that state on the same thread, thus losing concurrency.

On a similar note, the unification of futures, actors, and transactions has been studied in [Swalens
et al. 2021] with a model and with an implementation on top of Closure. The remit here is to offer
a model that supports all three paradigms in a faithful manner, i.e. to preserve the guarantees of
each constituent paradigm whenever possible. Again, this is unlike BoC as multiple parallelism
and coordination abstractions are presented to a programmer instead of one. This means the
programmer must be aware of which intersection they are using and the guarantees it provides.
With respect to the pattern of a multi-actor message updating some state, the same limitations apply
as in the earlier paragraph: If the state is made transactional, then one will either lose concurrency or
lose ordering guarantees - more under the discussion of reasonableBanking in section Section 5.3.

The idea of atomically acquiring more than one resource has been tried in the synchronous
setting in AJ [Dolby et al. 2012; Vaziri et al. 2006] which advocates that instead of focusing on the
flow of control, programmers should identify sets of memory locations that share some consistency
property and group those locations in atomic sets that will be updated atomically. AJ also allows
for a method to coarsen the granularity of atomicity for some of its arguments by annotating them
with the unitfor keyword: the atomic sets of all these objects will be locked atomically. However,
nesting of such functions may create deadlocks, while the asynchronous nature of whens in BoC
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prevents any such deadlocks. Again because of its synchronous nature, AJ is not (and cannot be)
concerned with ordering of method calls with unitfor annotations.

Behaviours in BoC are similar to transactions in that they both provide a powerful abstraction
supporting the execution of several units of concurrency in parallel, while giving the appearance
of each unit being executed sequentially. However, unlike BoC, optimistic transactions might abort
and transaction roll-backs are expensive.
More seriously, not all effects of a transaction can be reversed, e.g. I/O. As a result [Welc et al.

2008] propose irrevocable transactions, i.e. transactions which cannot be rolled back, with the
restriction that at most one such transaction may be running at a time – thus reducing parallelism.
A similar approach is taken in [Harris et al. 2005]. Fully pessimistic transactions [Matveev and
Shavit 2012] expand on irrevocable transactions, eliminating the need for any roll-backs; however,
they require either a single writing transaction (with versioning) or allowing for potential deadlock.

Considerable effort has been devoted to conflict avoidance and resolution in transactions [Herlihy
et al. 2003; Huang et al. 2022; Qin et al. 2021]. Ordering transactions can be used to alleviate
contention and conflict; even better, ordering can improve overall parallelism and throughput [Qin
et al. 2021]. We see ordering appear also in deterministic databases systems where it is not enough
that transactions will commit in some order, but they must commit in a single predetermined
order [Abadi and Faleiro 2018]. BoC implements out of the box causal ordering of behaviours.

Furthermore, the space for handling nested transactions is vast and seemingly unresolved [Koski-
nen and Herlihy 2008; Ni et al. 2007]. Contrast this with BoC, which provides a single clear semantics
for nested whens, that is to say they spawn a new behaviour.
In contrast to BoC behaviours, transactions are not units of concurrent execution, rather they

coordinate concurrent execution, e.g., threads. As such, in contrast to BoC they do not specify an
order of execution. Moreover, nesting in transactions is synchronous, and therefore roll-back of
the enclosing and the nested transaction are intertwined, leading to a large design space, with
implications for the semantics and the implementations [Ni et al. 2007].

In summary, BoC and transactions are at different ends of the design spectrum when it comes to
how much explicit work is required: BoC is explicit, in that it enlists the help of the type system to
achieve isolation, and requires the programmer to declare upfront which cowns are required by a
behaviour, while transactions are implicit, as the programmer need only declare what is a transaction,
and all the scheduling and conflict resolution is expected to be done by the implementation. The
implicit nature of the transactions model makes programming easier, at the expense of more
demands on the implementation, and more complex semantics.

The acquisition ofmultiple cowns in a when is reminiscent of the chord in the Join calculus [Fournet
and Gonthier 1996, 2000]. The join calculus has messages containing values that are sent on named
channels; several such messages may be consumed by join patterns, thus decoupling state from
concurrent units, and supporting the coordinated processing of messages from several channels. The
Join calculus has inspired languages such as JoCaml, JErlang and Polyphonic C♯ with Chords [Benton
et al. 2002; Conchon and Le Fessant 1999; Plociniczak and Eisenbach 2010]. The tight coupling of
state and channels makes the paradigm well-suited for distributed programming. However, this
coupling introduces the need for careful management of messages so as to accurately represent
state, and to maintain isolation of the state. BoC naturally captures isolated state through cowns.
The cowns in BoC provide a natural notion of sequencing of a state, something that has to

be built on top of the join-calculus by threading a state by repeated messaging. Moreover, the
join-calculus encodes order through messages, rather than he implicit order we get from BoC; we
believe that this implicit order would make a significant difference in terms of programmability.
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In some sense, BoC and the join calculus can be seen as dual. Join calculus is about n message
sends triggering a join or chord, whereas BoC is about one message being received by n cowns
triggering a behaviour. Taking this analogy a bit further, the end of a behaviour’s scope would
correspond to the end of a chord. On the other hand, each behaviour spawned (nested or otherwise)
completes independently and does not join with any other unit of execution. A deeper study of the
correspondence between BoC and the join calculus is fascinating further work.

The importance of determinism in parallelism is highlighted by Gonnord et al. [2022]. BoC
guarantees causal ordering which can lead to determinism if all behaviours are causally inter-
connected. Examples of completely deterministic systems can be found in Deterministic Parallel
Java [Bocchino Jr et al. 2009], DThreads [Liu et al. 2011] and Block-STM[Gelashvili et al. 2022]. In
Deterministic Parallel Java, the programmer is required to explicitly express the parallelization
opportunities, which is not always possible given the dynamic nature of the problem. BoC’s implicit
ordering can be used to express the dynamic order dependencies.

There are many systems that provide elaborate dataflow ordering such as MPI [Walker 1994],
CnC [Budimlić et al. 2010] and Naiad [Murray et al. 2013]. These approaches are great at splitting
one task into multiple pieces and combining the results, but do not provide support for mediating
access to resources in the way that BoC can with cowns.

Habanero provides explicit ordering of asynchronous tasks through Phasers[Cavé et al. 2011],
contrast with BoC’s implicit order through program order and cown use. More deeply, Habanero
provides ordering tailored for data parallel tasks, whilst BoC is ordering over resource access. This
means for the pedagogical use of phasers presented in [Shirako et al. 2008], BoC does not have as
intuitive a solution (note, it is still achievable). Conversely, the fine-grained ordering of log access
in Listing 8 in this paper, does not have an intuitive solution using Phasers (one would require
many Phasers to essentially build our implementation on top of Phasers).

Reflections on BoC. We believe BoC is a very natural paradigm for many applications, and the
evaluation demonstrates that BoC compares well with other approaches both qualitatively and
quantitatively. However, there are several programming patterns for which BoC is not intended, or
will be difficult to adapt.

One such programming pattern is a dynamically growing set of resources, where the identity of
the resources to acquire would only be known dynamically. Say we wanted to first acquire r1, and
then, under some circumstances also acquire either r2 or r3. With locks this can be done in a very
natural manner; with STM this can be done with a transaction that just accesses more transactional
objects as it proceeds. Programming this pattern in BoC would be less elegant, and would not have
exactly the same meaning: It would require an outer when that acquires cown r1, and an inner when
that acquires r1 and also either r2 or r3. But then, the inner when will not run until the outer when
has terminated and released r1. Moreover, there is no guarantee that no other (locally unknown)
behaviour will acquire r1 between the outer when releasing it, and the inner when acquiring it.
Another such programming pattern is increasing parallelism through temporarily allowing

a cown to be accessed by several behaviours concurrently in a read-only mode. Once all these
behaviours have terminated, the cown can be acquired uniquely, in a read-write mode. Such
programming patterns are needed, e.g, when many different concurrent units read from a shared
large datastructure (e.g. a map), and send updates to another concurrent unit. Once the latter
collects all the updates, it can modify the large datastructure, and notify the former.

Returning results through promises is currently not supported in BoC. Promises can be encoded
through cowns, thus their inclusion would not add to the expressive power; but their inclusion
would add to the usability of the language.
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One of the more fundamental open questions around the design of BoC is whether the paradigm
can be adapted to distributed programming. The actor model seamlessly extends to distributed
programming, as shown by Erlang and Akka. Could BoC be used as the basis for distributed
programming? Because of isolation of actor state, and because behaviours only access the state of
the particular actor, there is no immediate need to migrate actors – unless you want to co-locate
actors which communicate often. But for distributed BoC to be efficient, we would need this
migration, so that the collection of cowns needed by a behaviour becomes co-located. This might
lead to interesting patterns of migration where commonly used together cowns will reside on the
same node. But we are a long way from making any claims in this space.

7 CONCLUSION

In this paper, we introduced BoC, arguing that it provides parallelism and flexible coordination
though a single powerful abstraction. Furthermore, we argued that it provides a causal ordering
for concurrent units, provides implicit parallelism, and is both deadlock and data-race free. Also,
we have shown the applicability of BoC through examples and challenges. We discussed how to
implement BoC, provided insights into doing so efficiently, and shown that BoC compares well
with actors: it simplifies the design of many problems, while remaining comparable, if not better,
in performance than actors.
We initially developed BoC as part of the programming language Verona, a statically typed,

object-oriented, programming language currently being designed and implemented at Microsoft,
Imperial, Uppsala and Wellington. Crucial aspects of the Verona type system are described in
the OOPSLA companion paper []. The Verona runtime is available in the open github repo4. The
repository contains a C++ DSL-like template library that can be used to evaluate examples. We are
also currently working on an introduction of BoC to Python, where the type guarantees will be
checked dynamically.
In future work, we want to further develop the formal model of BoC (e.g. explore the isolation

guarantees an underlying language must provide), reasoning about the correctness of BoC programs,
study of further aspects of the implementation, e.g., backpressure. In this paper we have shown the
paradigm’s utility on small examples, in the future we aim to push this demonstration to use in
large real-world applications.

In our opinion, the when construct is simple, intuitive, and expressive. We hope future languages
will adopt behaviour-oriented concurrency, and that when will become as ubiquitous as if.
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