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Figure 1. Floorplan localization. We propose a novel probabilistic model for localization within a floorplan consisting of a data-driven
observation (a,b) and a temporal filtering module (c). Evidence is estimated as a 1D-range image from a single (a) and a few consecutive

RGB images (b). A learned soft selection module combines the
integrated over time by an efficient SE2 histogram filter to deliver

output from the complementary cues. The observation likelihood is
the pose posterior. Our system achieves rapid and accurate sequential

localization, outperforming the state-of-the-art in recall and localization speed, while operating on consumer hardware.

Abstract

In this paper we propose an efficient data-driven solu-
tion to self-localization within a floorplan. Floorplan data
is readily available, long-term persistent and inherently ro-
bust to changes in the visual appearance. Our method does
not require retraining per map and location or demand a
large database of images of the area of interest. We propose
a novel probabilistic model consisting of an observation
and a novel temporal filtering module. Operating internally
with an efficient ray-based representation, the observation
module consists of a single and a multiview module to pre-
dict horizontal depth from images and fuses their results
to benefit from advantages offered by either methodology.
Our method operates on conventional consumer hardware
and overcomes a common limitation of competing meth-
ods [16, 17, 20, 28] that often demand upright images. Our
full system meets real-time requirements, while outperform-

ing the state-of-the-art [20, 28] by a significant margin.

1. Introduction

Camera localization is an essential research topic in com-
puter vision. It is key to many AR/VR applications for
head-mounted or handheld mobile devices and is of great
practical interest to the robotics community. Most existing
works localize the camera using a pre-collected database
[40][1][2] or within a pre-built 3D model [24, 34, 37—
39]. However, these representations of the environment are
costly in terms of storage and maintenance. In contrast, in-
door environments including most commercial real estate
such as warehouses, offices and apartments already possess
a floorplan. The floorplan is a generic representation for in-
door environments that is easily accessible, lightweight, and
preserves long-term scene structure independent of a chang-
ing visual appearance, such as the furnishing of the scene. It



encodes rich enough information that humans can localize
in an unvisited scene with its help. Therefore, we propose to
localize the camera with respect to a given floorplan. This
cannot only be used for indoor AR/VR applications such
as floorplan navigation but also empowers robot autonomy
in indoor exploration, navigation as well as search and res-
cue [11]. Our framework can be used complementary to in-
door SLAM, where it can provide an initial guess for cam-
era relocalization and significantly simplify detecting and
verifying loop closures.

Due to its simple and compact form, floorplans contain
many repetitive structures such as corners and walls. This
causes ambiguity in the localization [16, 17, 28], which
can be eliminated to a certain extent by using image se-
quences [35, 36]. However, incorporating the single frame
localization into a sequential filtering framework [45, 49]
is challenging. The single frame localization needs to be
accurate and its efficiency is crucial to ensure a high fre-
quency of the filter with a large amount of samples [20, 28].
To tackle these challenges, we propose a data-driven multi-
view geometry based localization framework, that is both
fast and accurate. Furthermore, we integrate this frame-
work into a novel and highly efficient histogram filter that
outputs a probability over poses and, thus, allows for mul-
tiple hypotheses in ambiguous environments but integrates
evidence over time to resolve such ambiguity.

Most of the existing work assumes an upright camera
pose [16, 17, 20, 28], while some methods [16, 17] ex-
plicitly only consider panorama images. In contrast, our
method is designed to work with low-cost sensors, e.g.,
those readily available in all modern phones. Our frame-
work takes only a single perspective image per time-step but
operates at a high speed to allow for the frequent integration
of new data. To cope with poses with non-zero roll-pitch an-
gle, we utilize the data of an inertial measurement unit and
propose a novel data augmentation method to overcome the
limitation of previous methods [16, 17, 20, 28].

In this paper we propose the following contributions.
i) We base our model on a novel 1D ray representation
that reflects the 2D floorplan representation. ii) We ex-
tract scene geometry from single and multi-view cues. A
novel selection network fuses them in dependence of the
current relative poses to take advantage of either methodol-
ogy. iii) A data augmentation technique using virtual roll-
pitch overcomes the limitations of current state-of-the-art
methods and allows to cope with non-zero roll-pitch angles
in practical use cases. iv)To eliminate ambiguity and boost
localization, the predictions are filtered over time by a novel
and efficient histogram filter formulated as grouped convo-
lution from ego-motion. v) Our full system outperforms
the state-of-the-art methods in both accuracy and efficiency
on existing benchmarks and a real world experiment further
illustrates its potential for practical applications. vi)We col-

lect a large indoor dataset, composed of floorplans and both
short and long sequential observations in 119 Gibson [41]
indoor environments. The dataset will be released publicly.

2. Related Work

Visual Localization is one of the oldest problems in com-
puter vision and is addressed by using various methodolo-
gies. Image retrieval based methods [40][1][2] find the
most similar image in a database and estimate the query
image pose using the pose of the retrieved one. Meth-
ods based on a pre-built 3D SfM model of the environ-
ment [24, 34, 37-39] establish 2D-3D correspondences be-
tween a query image and the 3D structure by matching lo-
cal descriptors and compute the image pose using minimal
solvers and RANSAC.

Recent data driven models deviate from these classical
pipelines. Scene coordinate regression [6][42][44] learns to
regress the 3D coordinates of the pixels in the query image.
Pose regression methods [21][47][50] use a neural network
to directly regress a 6D camera pose from the input image.
These methods rely on a pre-built 3D model that requires
large storage and are scene-specific, which renders them un-
able to handle unvisited environments.

Instead of using a 3D model to recover the full 6D cam-
era pose, some works tackle localization with an overhead
image, such as a map [33, 36], a satellite patch[51, 56] or a
floorplan[ 16, 17, 28] to estimate the SE2 camera pose or R2
camera location. These methods can localize in unvisited
scenes as long as some form of map is provided.

Floorplan localization is often associated with Lidar lo-
calization [3, 4, 23, 27, 48]. However, the use of Lidar
inhibits the usability on common mobile devices. Similar
geometric cues can be obtained from other sources, such
as point cloud reconstruction from a depth camera [18] or
Visual Odometry (VO) [8]. [5] extract room edges and
compare them against the floorplan layout. To reconstruct
3D geometry, these works usually assume the knowledge
of room or camera height [5, 8]. Recently, learning-based
methods use only RGB images to localize in a floorplan.
LalLalLoc [17] estimates the position of a panorama image
in a given floorplan. Assuming known camera and ceiling
height, panoramic depth images are rendered at sampled
positions within the floorplan. Localization is achieved by
comparing map and image features that are embedded into
the same feature space during training. Lal.al.oc++ [16]
eliminates the assumption of known camera and ceiling
height by directly embedding the entire floorplan into the
feature space. Laser [28] represents the floorplan as a set
of points and gathers features, embedded by Pointnet [30],
of the visible points for each pose in the floorplan. Images
are embedded into a circular feature lying in the same space
as the pose features. Similar to Lal.alLoc and LASER, our
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Figure 2. Pipeline overview. Our pipeline adopts a monocular (Sec. 3.2) and a multi-view network (Sec. 3.3) to predict floorplan depth.
A selection network (Sec. 3.4) consolidates both predictions based on the relative poses. The resulting floorplan depth is used in our
observation model and integrated over time by our novel SE(2) histogram filter (Sec. 3.5) to perform sequential floorplan localization.

framework actively compares rendered pose features and
query image features to localize.

PF-net [20] tackles visual floorplan localization within a
differentiable particle filtering framework. Its observation
model is a learned similarity between the image and the
corresponding front-facing map patch. The entire system
is end-to-end trainable. However, their observation model
does not appear as strong as those in [16, 17, 28].

[16, 17, 20, 28] all assume that the images are captured
with an upright camera pose. This is a strong requirement
for devices such as head-mounted or hand-held devices and
appears impractical for some VR/AR use cases. Particu-
larly, LalLalL.oc [17] and LalLaloc++ [16] only work with
panorama images, restricting their deployment on most mo-
bile devices. In contrast, we propose a data augmentation
scheme to cope with non-upright camera poses, improving
the practicability of the method. Furthermore, our method
utilizes 1D-range images as internal representation, instead
of unorganized point cloud data, 2D-depth or RGB images.

LASER [28] and SeDAR [27] use semantic information
such as windows and doors as additional source of informa-
tion. Because such data is not always present in any floor-
plan, we consider only occupancy information in this work.

Sequential localization , i.e. integrating predictions over
time can increase the robustness against the observation
model, eliminate scene ambiguities and boost the perfor-
mance of localization [35, 36]. A common framework for
fusing sequential observations is the Bayesian filter [5, 8,
10, 18, 20, 27], which maintains the posterior distribution of
the current pose in an online fashion. Implementations dif-
fer in the representation of the posterior, which can be Gaus-
sian belief (Kalman Filter [49]), a histogram (Histogram

Filter [19]) or weighted particles (Particle Filter [45]). As
mentioned, PF-net [20] introduces the particle filter specif-
ically for floormap localization. Here we argue that a his-
togram filter allows for more scaleable and effective filter-
ing. [19] consider the measurement update as elementwise
multiplication, and transition as convolution. However, the
presented 1D and 2D cases are not practical for our local-
ization tasks that require at least SE2 pose estimation. To
this end, we propose to consider the SE2 motion update
as grouped convolution with transition filters derived from
known ego-motion that can be implemented efficiently.

Depth Estimation provides strong geometric information
for localization. Recent advances in deep learning have
enabled dense depth prediction from a single image [12—
14, 31, 32, 43]. However, monocular depth estimation can
suffer from scale ambiguity. In contrast, given sufficient
baseline between views, Multi-view stereo (MVS) [9] does
not suffer from this problem. Current data-driven MVS
methods [7, 25, 26, 29, 52, 53] use neural networks to ex-
tract features and learn to filter a cost volume. Instead of
estimating pixel-wise depth we predict the floorplan depth
of each column of the most recent gravity-aligned im-
age, which can be compared directly against the floorplan.
Moreover, we benefit from the advantages of either tech-
nique by learning to fuse their predictions.

3. Method
3.1. Problem Definition and Overview

We solve the problem of localizing RGB images with re-
spect to a floorplan. Given a temporal sequence of k + 1
RGB images Z = {I,|r € {t — k,- - , t}} with known rel-
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(a) Monocular floorplan depth prediction. (b) Localize with rays.

Figure 3. Predicting and localizing with a single image. (a)
A gravity aligned image is fed into the ResNet [15] and Atten-
tion [46] based feature network. Invisible pixels are masked out in
the attention. The network outputs a probability distribution over
depth hypotheses and its expectation is used as predicted floorplan
depth. (b) Equiangular rays are interpolated from the predicted
floorplan depth. We localize by finding the pose in the floorplan
that has the most similar rays as the prediction.

ative poses, camera intrinsics, and gravity directions, we
aim to find the current SE/(2) camera pose s; within a given
2D floorplan, where s; = [sg¢, Sy, S¢,¢] represents the
camera x,y coordinate in the floorplan and its orientation.
We assume the floorplan to encode necessary geometric oc-
cupancy information such as doors and walls but no seman-
tic classes. An example is illustrated in Fig. 3 b.

We first estimate the floorplan depth (i.e., the depth to
the floorplan occupancy) from the current (Sec. 3.2) and a
few recent frames with known relative poses (Sec. 3.3). An
MLP fuses the two estimations based on the relative poses
and their respective mean depth prediction (Sec. 3.4). We
interpolate equiangular rays from the floorplan depth before
using them to localize within the floorplan. A histogram
filter efficiently fuses the current with integrated past belief,
through grouped convolution (Sec. 3.5) to deliver the final
localization. The pipeline is illustrated in Fig. 2.

3.2. Single Image Localization

We first align the image with the gravity direction and use
a ResNet[15] and Attention [46] based network to learn a
probability distribution of the floorplan depth over a range
of depth hypotheses. Pixels that become unobservable by
the gravity alignment are masked out in the attention. The
expectation is used as the floorplan depth prediction as illus-
trated in Fig. 3 a. Finally, we construct an equiangular ray
scan from the predicted floorplan depth to localize in the
floorplan, compare Fig. 3 b. The more compact represen-
tation renders the descriptor independent of the acquisition
device and allows for the offline construction of the map
pose features, i.e., via a circular equiangular ray scan.

3.3. Multiview Stereo Estimation

Inspired by multiview stereo, we adopt a variant of the MVS
network [52, 55] to estimate the floorplan depth from mul-
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Figure 4. Floorplan depth prediction from multiple views. Col-
umn features of the images are extracted and gathered in the ref-
erence frame. Their cross-view feature variance is used as cost. A
U-Net-like network learns the cost filtering to form a probability
distribution, and the floorplan depth is defined by its expectation.

tiple frames with known relative poses. We first extract fea-
tures of the image columns using a ResNet [15] and Atten-
tion [46] based network, and a gravity alignment mask is
used in the attention. With multiple depth hypotheses, the
column features from different views are gathered via plane
sweeping into the reference frame. This procedure is com-
monly used in dense multiview depth prediction [52] with
the exception that we reduce our depth prediction and fea-
tures vertically instead of predicting depth and extracting
features for every pixel. Details can be found in the supple-
mentary material.

The cross-view feature variance forms a cost distribution
over the depth hypothesis. We incorporate the observabil-
ity of the features at different depth hypotheses to compute
meaningful variance. Unlike traditional multiview stereo
methods [7, 25, 26, 29, 52, 53] that construct 3D (without
the channel dimension) cost volumes, we yield 2D cost dis-
tribution. As a consequence, the learned cost filter is 2D
convolution instead of 3D. A soft-argmin computes the fi-
nal floorplan depth from the filtered cost distribution as

d= d}—lrypsoftmax(—c), €))

where diy, € RP is the vector containing the D depth
hypotheses, ¢ € RP is the cost at each hypothesis, and
softmax(—c) is the probability of each hypothesis.

3.4. Learned Complementary Selection

While monocular depth estimation is independent of cam-
era motion but prone to scale ambiguity, Multiview stereo
approaches [52, 55] deliver correct scale, but rely on suf-
ficient baselines and camera overlap. Based on these ob-
servations, we adopt another MLP that softly selects from
the two predictions. The network takes the relative poses
of the frames and the estimated multiview and monocular
mean floorplan depth as inputs and outputs the correspond-



ing weight for the two estimates. The probability distribu-
tions are then fused as the weighted average, i.e.,

Pfue = WP mono + (]— - w)vaa ()

where 0 < w < 1 is the output by the MLP, P ,qn0 and P,
denote the probability distributions from a single and multi
view, respectively. The expectation of the fused probability
distribution Py then provides the final depth prediction.

3.5. Sequential Localization

We use a histogram filter to keep track of the posterior over
the entire floorplan. We use the predicted floorplan depth as
our observation and the following observation model

p(sioy) = e IF7raclln) 3)

where rg, is the floorplan ray at pose s; and ' is the inter-
polated ray from the floorplan depth prediction. We use the
relative pose between frames, i.e., ego-motion as the transi-
tion model

St+1 = St Dty + wy, 4

where t; = [t 1,ty¢,t0¢) a0d wy = [Wa ¢, Wy 1, We,¢] are
the ego-motion and transition noise at time ¢ , respectively,
the operator @ applies an ego-motion on a state. Further
assuming the transition noise w; obeys a Gaussian distribu-
tion, the transition probability is expressed as

1 Ts—1
P(stg1lse, tp) = e 2B mse@b) B s s Gt ()

where we model ¥ = diag(c?, 07, ;) as covariance of the
Gaussian distribution. Applying Bayes rule yields

1
p(serilon t) = — > p(sialse to)p(silor),  (©6)

St

where Z is a normalization factor.

In the following we drop the subscripts indicating the
time-step for simplicity. Our histogram filter represents the
posterior as a 3D probability volume containing the proba-
bility of being at pose [s;, sy, S¢]. The transition is imple-
mented as transition filters [19]. Unlike previous work [19]
operating on euclidean R? state space, we work on SE2 and
transit through ego-motions, so the translation in the world
frame depends on the current orientation. Therefore, we
decouple the translation and rotation and apply different 2D
translation filters for different orientations, before applying
the rotation filter to the entire volume along the orientation
axis. The 2D translation step can be implemented efficiently
as a grouped convolution [22], where each orientation is a
group as illustrated in Fig. 5. The translational filter T for
orientation ¢ can be computed through

Ty(z,y) = e—%‘S'G-Fdiag(tfixfi)flét7 )
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Figure 5. Transition as grouped convolution. (a) Illustration of
the translational filters (from left to right, top to bottom the filters
for 0, 10 to 350° ) and the rotational filters derived from a sample
ego-motion. (b) The probability volume is divided into O groups,
where O is the number of orientations. Each group is convolved
with its respective translational filter and stacked back together.
After circular padding along the orientation axis, the volume is
convolved with the rotational filter to finish the transition step.

where
5t =Ry [se,5y] " — [tarty] " (®)

with R, € R?*2 being the rotation matrix with angle s.
The rotational filter r is

r(g) = e 2071/, ©)

The pose posterior corresponds to the filtered probability
volume and we can obtain the (best) pose prediction and its
uncertainty by a lookup.

4. Training
4.1. Dataset

We collect a customized dataset with perspective images
of 108° horizontal field of view in iGibson [41], an in-
door simulation environment, and manually label the floor-
plans (see Fig. 6) from the provided mesh. The dataset con-
sists of 118 distinct indoor environments and is partitioned
into training (100), validation (9), and test (9) sets. We
collected three datasets according to the type of motions
designed to be typical trajectories for a human holding a
phone. One including in-place turning, which we refer to
as Gibson(g) for general motions, containing 49558 pieces
of 4 sequential views, one without (Gibson(f) for forward
motions), containing 24779 pieces of 4 sequential views,



and one containing 118 pieces of 280 to 5152 steps long
trajectories(Gibson(t) for trajectories). We also evaluate the
proposed single frame localization on Structured3D [54],
a photorealistic dataset containing 3296 fully furnished in-
door environments with in total 78453 perspective images
with 80° horizontal field of view. For Structured3D, we fol-
low the official split.

4.2. Virtual Roll Pitch Augmentation

To cope with non-upright camera poses we propose an aug-
mentation technique during the training through virtual roll
pitch angle simulation. Perspective images with the same
principle point and different viewing angles relate to each
other through a simple homography as shown in Fig. 8a.
With known camera intrinsic matrix K, camera roll and
pitch angle v , 6, the homography from the original image
to the gravity-aligned image is

p=KRK 'p, (10)
where p, p are the homogeneous image coordinates of the
original pixel and the corresponding pixel in the gravity-
aligned image, R is the rotation matrix to the gravity-
aligned pose. To simulate the virtual roll pitch angle, we
use this to calculate which pixel is observable at angle v , 6
and mask out the unobservable ones. This is equivalent to
the gravity-alignment of the image taken at angle 1 , 6.

4.3. Training Scheme

Details on the training procedure can be found in the sup-
plementary material. For all training, we optimize the L1
loss to the ground truth floorplan, except for the monocular
network, for which we added a shape loss computed as the
cosine similarity, i.e.,

d’d*
max{|[d|[]|d*[]z, €}

L=|ld,d*[[; + A (11)

where d,d* are the predicted and the ground truth depth
and e a small constant to prevent from division by zero.

5. Results

We compare our method with the state-of-the-art floorplan
localization methods PF-net [20] and LASER [28], both
without semantic labels. We sample pose position and ori-
entation at a resolution of 0.1mx0.1m and 10°.

5.1. Observation Model

Fig. 6 provides a qualitative comparison between the meth-
ods. While all predictions possess multiple modes, our
probability estimate appears more accurate, due the accu-
rate floorplan depth estimation and the invariance of the ray
representation. In the following, we thoroughly investigate
the performance of the proposed observation model.
Single Frame. We evaluate single frame localization accu-
racy on Gibson(f) and Structured3D. As shown in Tab. 1,
the proposed monocular network, Ours, significantly out-
performs both baselines on Gibson(f) seeing almost 200%
improvement across all metrics. Also on Structured3D our
method surpasses the state of the art by a large margin.
When taking the orientation into account, the recall does
not drop much (35.1% at 1m 30 deg compared to 36.6%
at 1m on Gibson(f) and 21.3% to 22.4% on Structured3D).
This underlines the accurate orientation estimation of our
method. We notice here the performance of LASER on
Structured3D does not align with that reported in [28], we
suspect this is due to slightly difference in the dataset (per-
spective Structured3D compared to their perspective images
cropped from panoramic Structured3D) and the random roll
pitch angles this dataset contains.
Multiview. Because the existing indoor datasets either do
not provide sequential images or a floorplan, we evaluate
the proposed multiview module, Ours,, only on the col-
lected Gibson dataset. Tab. 1 verifies that the multiview
module can clearly outperform the two baselines on Gib-
son(f), and notably increases the recall by more than 20%
at all thresholds compared to our monocular module. This
shows the effectiveness of using multiview geometry cues
in the observation model for floorplan depth estimation.
However, multiview estimation can suffer from small
baselines or insufficient overlap present in the general mo-

Gibson(g)

Gibson(f) Structured3D R@ olm 05m Im  1m30°
R@ 0.Im 0.5m Im 1m30 0.Im 0.5m Im 1m30 PF-net 10 9 <6 19
PF-net 0 2.0 6.9 1.2 0.2 1.3 3.2 0.9 LASER 0.7 7.0 11.8 9.5
LASER 04 6.7 13.0 10.4 0.7 6.4 10.4 8.7 Ours, 4.3 26.7 337 32.3
Ours, 4.7 28.6 36.6 351 1.5 14.6 224 21.3 Ours,, 9.3 27.0 31.0 29.2
Ours,, 13.2 409 45.2 43.7 - - - - Ours; 10.5 343 39.6 38.0
Oursy 122 394 445 43.2

Table 1. Comparison between our observation model and the baselines.

Table 2. Complement single and multiview.
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Figure 6. Single observation likelihood. Utilizing the front-
facing map patch, PF-net does not account for occlusion or the
camera’s field of view. Using a set of point features, LASER is
not invariant to rotation and translation. Contrary, our 1D ray-
scan representation possess such invariance and inherently con-
siders occlusions.
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tion dataset, Gibson(g), which includes nearly in-place ro-
tation. Here, as shown in Tab. 2, the recall of the multiview
module falls below that of the monocular module for both
larger thresholds, 1m and 1m 30°.

The selection network is evaluated on the general motion
dataset Gibson(g) in Tab. 2. The selection network, Ours,
delivers a 30-50% improvement across all precisions com-
pared to both individual networks Ours, and Ours,,. As a
baseline selection we also evaluate selection by threshold-
ing the relative motions between sequential frames named
Ours;. While this baseline achieves a 18% improvement
over the individual networks, which further proves the idea
of complementing monocular with multiview estimation,
the selection network learns a more sophisticated selection
rule and achieves at least an additional extra 12% improve-
ment. Examples of the selection decisions are illustrated
in Fig. 7.

Virtual Roll-Pitch. Fig. 8b compares the recall of the
monocular module trained with and without virtual roll-
pitch augmentation on Gibson(f) at 1mx1mx30° resolu-
tion. The network trained without augmentation shows de-
creasing recall when the roll pitch disturbances are imposed
(especially for large pitch angles). In contrast the proposed
virtual roll-pitch augmentation increases the robustness of
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(a) Virtual roll pitch. (b) Robust to non—uprlght camera poses.

Figure 8. Virtual roll pitch augmentation. (a) After gravity
alignment we mask out unobservable pixels (in black). During
training we augment the data accordingly. (b) If trained without
augmentation, the recall of the network decreases as the roll and
pitch angle increases. Training with augmentation significantly in-
creases robustness against non-upright camera poses.
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Figure 9. Posterior evolution and trajectory. Our strong obser-
vation model already provides an accurate estimation at the initial
step. Due to the ambiguous nature of the floorplan (the hallway),
the posterior estimates shows multi-modality. After 10 steps, our
system tracks firmly at a frequency of 27Hz on this 18.4mx 15.5m
floorplan using a laptop NVidia RTX 3070Ti GPU.

the recall against non-upright poses.

5.2. Sequential localization

Our full sequential localization pipeline is evaluated on the
Gibson(t) dataset, containing long simulated trajectories.
A qualitative study in Fig. 9 shows that the proposed his-
togram filter can effectively maintain a global posterior of
the camera pose. At the start the distribution has multiple
modes, as the camera movement provides more and more
evidence, the distribution converges to a single sharp peak.

LASER  Ours;  Oursy

Success rate @ 1m (%) 59.5 89.2 94.6
RMSE(succeeded) (m) 0.39 0.18 0.12
RMSE(all) (m) 1.96 0.88 0.51

Table 3. Comparison of observation models integrated into our
histogram filter. RMSEs are computed from the last 10 frames
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Figure 10. Localization success rate vs. precision threshold for
different filter history sizes. The more frames are used within the
filter, the higher the localization success rate.

Success Rate. As a metric we consider sequential local-
ization at Xm as successful if the prediction stays within a
radius of Xm over the last 10 frames. We integrate the base-
line observation models into our histogram filter and com-
pare them against our pipeline in Tab. 3. Our full system
achieves a success rate of 94.6% at 1m using a history of
100 frames, surpassing the two baselines by more than 58%,
and our monocular observation by 10%. We also compare
the RMSE (over the last 10 frames) of our trajectory track-
ing in both succeeded and all runs. Here, our full pipeline
delivers 70% lower error (0.12 m and 0.51 m, respectively)
than the baselines. We compare success rates for various
number of frames in Fig. 10. In general, using more frames
increases the success rates.

Timing. Tab. 4 compares the runtime of different com-
binations of observation and filtering models. Despite the
slightly slower feature extraction of our proposed observa-
tion model, the rapid matching helps it to achieve the high-
est iteration rates. The particle filter (PF) suffers from ex-
pensive resampling and feature rendering and demands in-
stanciating a large number of samples for global localiza-
tion in a large area. Analogously, our histogram filter (HF)
utilizes presampled “particles”, constructed offline, and can
avoid constant rerendering at runtime. As a result, our his-
togram filter achieves 45% faster iteration than the particle
filter.

6. Real-world Experiment

Since no real-world indoor dataset with both sequential ob-
servations and floorplan exist that allows training and test-

Feature Iteration
. Matching(s)
Extraction(s) HE PR
PF-net(obs) 0.042 2.375 - -
LASER(obs) 0.008 0.224 0.241 0.287
Ours 0.033 0.003 0.037 0.067

Table 4. Timing. Because PF-net is too slow we do not test its
performance in filters.

Figure 11. Sequential localization in HGE. The localization area
is 75mx 81m with challenging observations including motion blur,
non-lambertian surfaces, ambiguities and occlusions. Our trajec-
tory tracks the ground truth closely from the second step. It de-
viates slightly later due to the ambiguous floorplan labeling, how-
ever, recovers shortly thanks to the filters and converges to a sharp
posterior estimation in the end.

ing, we show the potential of our pipeline in real-world sce-
nario by customizing LaMAR [35]. LaMAR is a real world
dataset containing three scenes. We select the trajectories
in HGE indoor scene containing trajectories within a sin-
gle floor, and split it into training and testing set. We use
our single frame observation model with the proposed his-
togram filter to localize. The entire floor has an area of
80m x 120m, and the data includes challenging observations
as shown in Fig. 11. We use the data within 75mx81m and
localize within the floorplan of the same size. Our system
localizes and tracks the camera pose from the second step
and closely follows it afterwards. Despite the large scene
scale, our histogram filter is still efficient enough to localize
at 3 hz.

7. Limitations and Conclusion

Through the process, we realized a lack of indoor datasets
with sequential observations and floorplan. Although we
tried to mitigate this by collecting a dataset in a simulated
environment, more real-world datasets are highly desirable
to close the domain gap. While our proposed system ef-
fectively uses geometric cues, ambiguities could be further
reduced by utilizing semantic information from both the im-
age and the floorplan. In this work, we present a data-driven
and probabilistic model for localization within a floorplan.
The system is more practical than previous methods, de-
manding only consumer hardware, perspective RGB images
and non-upright camera poses, while operating at very high
frame-rates. Our system allows for both accurate single-
frame and sequential localization in unvisited environments.
It outperforms the state-of-the-art in both tasks across dif-
ferent datasets and various metrics by a significant margin.
Finally, we illustrate its real world potential on a challeng-
ing large scale indoor dataset. Our work could be interesting
in many indoor AR/VR applications and boost robot auton-



omy in indoor environments.
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