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SURVEY ARTICLE

Ironies of Generative AI: Understanding and Mitigating Productivity Loss in 
Human-AI Interaction

Auste Simkutea� , Lev Tankelevitchb� , Viktor Kewenigc , Ava Elizabeth Scottc , Abigail Sellenb , and 
Sean Rintelb 

aUniversity of Edinburgh, Edinburgh, UK; bMicrosoft Research, Cambridge, UK; cUniversity College London, London, UK 

ABSTRACT 
Generative AI (GenAI) systems offer opportunities to increase user productivity in many tasks, such 
as programming and writing. However, while they boost productivity in some studies, many others 
show that users are working ineffectively with GenAI systems and losing productivity. Despite the 
apparent novelty of these usability challenges, these ‘ironies of automation’ have been observed 
for over three decades in Human Factors research on the introduction of automation in domains 
such as aviation, automated driving, and intelligence. We draw on this extensive research alongside 
recent GenAI user studies to outline four key reasons for productivity loss with GenAI systems: a 
shift in users’ roles from production to evaluation, unhelpful restructuring of workflows, interrup
tions, and a tendency for automation to make easy tasks easier and hard tasks harder. We then 
suggest how Human Factors research can also inform GenAI system design to mitigate productivity 
loss by using approaches such as continuous feedback, system personalization, ecological interface 
design, task stabilization, and clear task allocation. Thus, we ground developments in GenAI system 
usability in decades of Human Factors research, ensuring that the design of human-AI interactions 
in this rapidly moving field learns from history instead of repeating it.

1. Introduction

Generative artificial intelligence (GenAI) systems, such as large 
language models (LLMs) that can generate novel content and 
perform many other tasks, present myriad opportunities and 
challenges to humans in knowledge-intensive domains. GenAI 
applications have emerged in domains such as healthcare 
(Nova, 2023), research (Lund & Wang, 2023), writing (Chen 
& Chan, 2023; Dang et al., 2023), creative work (Gmeiner 
et al., 2023; Kulkarni et al., 2023; Oppenlaender, 2022; 
Pennefather, 2023a), consulting (Dell’Acqua et al., 2023), and 
recruitment (Budhwar et al., 2023). Software engineering has 
been particularly impacted, with GenAI-assisted programming 
tools, such as GitHub Copilot (Friedman, 2021), being increas
ingly used to support software engineering practices and per
form tasks such as auto-completing code, translating code 
across languages, and answering programming questions, 
among others (Ross et al., 2023; Sarkar et al., 2022).

GenAI’s ability to solve domain-specific problems speaks 
to its potential to augment human performance and trans
form productivity. Recent research already suggests the 
enormous positive impact these systems could have on 
workers’ performance in domains including programming 
(Peng et al., 2023), writing (Noy & Zhang, 2023), law (Choi 
& Schwarcz, 2023), and consulting (Dell’Acqua et al., 2023). 
Based on this research, the expectation is that new tools will 
often free up users’ time and allow them to focus on higher- 

level tasks, increasing their productivity. However, when 
using the new tools in practice, many users, such as pro
grammers, report increased cognitive load, frustration, and 
time spent on the tasks that GenAI is intended to support. 
Feedback from Copilot users, as well as usability studies of 
GenAI-driven programming tools, suggest that, in some 
cases, using GenAI support can, in fact, lead to productivity 
loss. For example, software engineers and novice pro
grammers struggle to effectively prompt systems, debug gen
erated code, lose their state of flow when interrupted by 
long code suggestions, and get stuck in ineffective practices, 
such as reviewing, editing and then ultimately deleting sug
gestions (Barke et al., 2023; Prather et al., 2023; Sarkar et al., 
2022). Similar observations are emerging in creative domains, 
where graphic (Kulkarni et al., 2023; Oppenlaender, 2022) 
and manufacturing (Gmeiner et al., 2023) designers struggle 
with prompt engineering and other aspects of GenAI inter
action. This suggests that the potential of GenAI systems to 
boost productivity may not be guaranteed, evenly distributed, 
or fully exploited.

These observations mirror the long line of Human Factors 
studies exploring human-automation interactions in safety- 
critical systems in aviation, industrial plants, and other areas 
(Endsley, 2017; Lee & Seppelt, 2009). Indeed, they reflect the 
“ironies of automation” (Bainbridge, 1983), which capture 
the idea that the more advanced an automated system is, the 
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more important the human operator may be.1 Despite auto
mation taking over human manual control in areas where it 
is expected to provide superior performance, humans are still 
left to supervise automation. However, operators might have 
insufficient support to supervise, and so instead of being sup
ported by automation, they find themselves cognitively over
burdened, trying to decipher systems’ outputs and spot 
errors. Similarly, in the context of GenAI, users’ roles have 
shifted from producing output to evaluating it, often with lit
tle contextual information and situational awareness. This is 
exacerbated by GenAI tools’ ability to produce outputs at a 
capacity too demanding for adequate evaluation, with ques
tionable reliability, and with poor explainability (Chen et al., 
2023; Liao & Vaughan, 2023; Schellaert et al., 2023). 
Moreover, poor system and interface design can result in 
unhelpful restructuring of workflows, which increases cogni
tive load and undermines productivity gains (Bainbridge, 
1983). This is echoed in programmers’ experiences and feed
back around Copilot features (Barke et al., 2023; Prather 
et al., 2023; Sarkar et al., 2022), with evidence of similar 
effects emerging in other domains (Dang et al., 2023; 
Gmeiner et al., 2023; Gu et al., 2023). Finally, as a result of 
which tasks get automated, as well as poor system design, 
automation often makes easy tasks easier while making hard 
tasks even harder. This same pattern is now being observed 
in usability studies of GenAI systems (Barke et al., 2023; 
Sarkar et al., 2022).

In this paper, we answer recent calls for bridging Human 
Factors and Human-Computer Interaction research to 
advance human augmentation by AI and human-AI interac
tions (Chignell et al., 2023). Extrapolating from over 30 years 
of Human Factors research on the “ironies” of human-auto
mation and productivity loss, we synthesize an overview of 
the usability and productivity challenges observed in recent 
GenAI user studies. We demonstrate how these challenges 
emerging in GenAI systems mirror those experienced by 
operators when automation was introduced to their work
flows decades ago. Based on these parallels, we highlight key 
areas of productivity loss and provide insights into the 
human factors leading to these issues, exploring aspects 
including feedback, situational awareness, cognitive work
load, workflow disruptions and others. We focus primarily 
on programming due to the early adoption of tools like 
GitHub Copilot and the accompanying usability research, 
but we also reflect on emerging studies from other domains, 
such as healthcare, writing, and design, showing that these 
issues are not limited to a single domain. Moreover, we dis
cuss potential design solutions, emphasizing the importance 
of following the Human Factors principles of feedback and 
flexibility when designing GenAI systems. We suggest that 
the fast-paced innovation of GenAI will benefit from the 
decades of Human Factors research in order to design 
GenAI systems that truly harness the full productivity 
potential of this technology. In summary, our paper makes 
the following contributions:

1. Based on Human Factors research and a synthesis of 
recent GenAI studies, we identify key challenges that 

can lead to productivity loss, grouped into four broad 
categories: (i) the production-to-evaluation shift, (ii) 
unhelpful workflow restructuring, (iii) task interrup
tions, and (iv) task-complexity polarization.

2. We provide potential design directions from Human 
Factors research that address each category of chal
lenges: (i) continuous feedback, (ii) system personaliza
tion, (iii) ecological interface design, (iv) main task 
stabilization and timing, and (v) clear task allocation. 
Throughout, we also emphasize the importance of fol
lowing the Human Factors principles of feedback and 
flexibility.

3. We motivate further research into the impact of GenAI 
systems on aspects such as situational awareness and 
cognitive workload to better understand systems’ unin
tended effects on human performance. We also encour
age future researchers to take advantage of the plethora 
of relevant Human Factors work to enrich their under
standing of existing human-GenAI interaction issues 
and anticipate others.

2. Methodology

We used a narrative review approach to identify, analyze, 
and synthesize the relevant literature into the presented 
themes (Sukhera, 2022). This proceeded in two stages. First, 
we distilled the key challenges to effective human work with 
automation from Bainbridge’s seminal work on the “Ironies 
of Automation” (Bainbridge, 1983). This work highlights 
that increased advancement of automation systems has also, 
ironically, increased the importance of human oversight and, 
in some cases, has complicated human work. We focused on 
the following challenges emphasized by Bainbridge:

1. the change in humans’ role from production to 
monitoring

2. monitoring and overtaking challenges resulting from 
increased system complexity and reduced awareness of 
system states

3. poor design solutions failing to integrate other technol
ogies and support human workflows

4. automation effects of increased cognitive workload in 
already difficult tasks

We did not focus on challenges relating to reduced 
opportunities for skill development and increased expertise 
demands for monitoring systems. These issues are undoubt
edly important but were too early to be observed in research 
on GenAI at the time of this paper’s writing, and should be 
explored in future work. The four identified challenges 
served as a starting point, and we used further Human 
Factors research to expand on these and their influencing 
factors. As our aim was only to illustrate the challenges 
identified in Human Factors research in order to analyze 
their parallels in emerging GenAI research, our search of 
Human Factors research was not exhaustive, and focused on 
highly cited work that was conceptually related to 
Bainbridge’s work (Bainbridge, 1983). We also reviewed the 
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references in identified articles in a snowballing approach. 
Based on this search, we refined the four conceptual themes 
and influencing factors presented here:

1. as the human role shifts from production to monitor
ing, the human ability to effectively monitor automation 
is challenged by reduced situational awareness, which is 
exacerbated by increased automation capacity, increased 
system complexity and opaqueness, and reliability issues

2. effective human work is disrupted by automation, which 
introduces workflow changes, such as the loss of task 
sequence or feedback

3. poor design solutions for automation systems, such as 
poor timing or suggestions, can interrupt human work

4. automation makes easy tasks easier, while making cog
nitively demanding tasks more difficult due to automa
tion monitoring and output management demands, and 
other challenges

Finally, with these themes in mind, we conducted a search 
of the literature on Generative AI. We searched Google 
Scholar and the Association of Computing Machinery Digital 
Library (ACM DL) using the keywords: generative AI, large 
language model, LLM, ChatGPT. Articles had to be studies of 
GenAI system usage, reviews, or conceptual syntheses related 
to Generative AI usability (rather than technical evaluations 
of systems). Given the early stage of GenAI adoption, most 
articles focused on areas of fast adoption, including program
ming, writing, creativity and other aspects of knowledge 
work. As we focused specifically on productivity losses (rather 
than gains), we selected articles that indicated human-AI 
interaction challenges resulting in reported productivity losses 
or ineffective use of GenAI systems. Importantly, we acknow
ledge that productivity gains are plausible and have indeed 
been observed, as noted in Section 1 (e.g., Dell’Acqua et al., 
2023; Noy & Zhang, 2023; Peng et al., 2023). Articles also 
had to be in English, and be available in their entirety. Given 
the rapid pace of progress in the field, we included pre-prints 
as well as peer-reviewed articles. The cut-off date for the 
search was 2024-01-20. As our approach was a narrative 
review, our search was not systematic or exhaustive, and there 
may be articles we have missed. Finally, we aligned our obser
vations from the research on GenAI with the four conceptual 
themes that stemmed from the Human Factors literature, 
finalizing the four productivity challenges of GenAI automa
tion: (1) the production-to-evaluation shift, (2) unhelpful 
workflow restructuring, (3) task interruptions, and (4) task- 
complexity polarization. Table 1 presents the articles we 
included in Section 3 on the productivity challenges of 
GenAI. For each article, it summarizes the domain, task or 
focus area, methodology, and relevant theme (i.e., sub-section 
in which it is cited).

3. Productivity challenges of Generative AI 
automation

Here, we outline the key productivity challenges that have 
been observed in human-automation interaction over decades 

of Human Factors research and are now becoming apparent 
in user studies of GenAI systems. Our focus is on GenAI sys
tems, the integrated whole comprising GenAI models and 
interfaces. Some challenges pertain to GenAI models (e.g., 
issues around prompting), and some pertain to interface 
design (e.g., issues around task interruptions).

We begin with challenges related to the shift from man
ual control or production to a more passive supervisory role 
of the user, such as monitoring and evaluation of AI outputs 
(Section 3.1). We explore specific aspects related to this 
shift, such as reduced situational awareness, the contributory 
factors of automation’s high capacity, complexity and 
opaqueness, reliability, and potential resultant complacency 
and over-reliance. We then outline how the introduction of 
automation such as GenAI can unhelpfully restructure users’ 
workflows, stifling their productivity (Section 3.2). We focus 
on how the introduction of new tasks, such as prompting or 
output adaptation, can affect user performance and how 
workflow restructuring can lead to loss of task sequence and 
feedback. We also explore the influence that task interrup
tions from AI suggestions can have on users’ productivity 
(Section 3.3). Finally, we explore how automation such as 
GenAI can paradoxically lead to easy tasks being made eas
ier and hard tasks made harder, a phenomenon we refer to 
as “task-complexity polarization” (also known as “clumsy 
automation” in Human Factors research (Wiener & Curry 
(1980); Section 3.4)). Figure 1 outlines the four types of 
challenges.

3.1. The production-to-evaluation shift

Decades ago, the introduction of automation shifted many 
manual control tasks to monitoring tasks, leaving humans to 
supervise the automation (Sheridan, 2012). However, moni
toring (or vigilance) is tedious and requires attention, and 
can, therefore, paradoxically impose a considerable workload 
on humans (Grubb et al., 1995; Warm et al., 2008). For 
example, when automation was introduced in the aviation 
context (e.g., detection of air traffic in an aircraft’s vicinity), 
pilots’ workload was not reduced but moved to supervising 
activity. Pilots reported spending more time interacting with 
automation and trying to understand it instead of concen
trating their efforts on their primary task of flying the air
craft (Rudisill, 1995). In other domains, operators 
supervising automation also spent a significant amount of 
time and effort learning how to manage the new technology 
(Baxter et al., 2012) (see Section 3.2.2).

GenAI workflows have introduced a similar shift from 
manual control to monitoring—in this case, from the pro
duction of outputs to their evaluation—with Sarkar (2023) 
terming this new user role “critical integration” (see Figure 
1a).2 In AI-assisted coding, users spend extended periods 
reviewing and validating code suggestions (Barke et al., 
2023; Vaithilingam et al., 2022), sometimes at the expense of 
other productive tasks like writing code or running tests 
(Vaithilingam et al., 2022; Weisz et al., 2022). Some pro
grammers have said that working with Copilot felt like a 
“proofreading task” (Weisz et al., 2022). Accordingly, in 
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Table 1. Generative AI articles included in the review of productivity challenges.

Article Domain Task (or focus) Methodology
Challenge  

theme�

Chen et al. (2023) General – Conceptual review 1

Dell’Acqua et al. (2023) Creating recipes User study; quantitative (game activity, outcomes); n¼ 220 
(students)

1

Drosos et al. (2020) Programming AI programming assistance by 
example

User study; mixed (formative interview [n¼ 7; professionals], 
activity, questionnaire [n¼ 12; professionals])

1

Kazemitabaar et al. 
(2023)

Programming Code generation in self-paced 
learning

User study; mixed (longitudinal tasks, activity, knowledge retention 
tests); n¼ 69 (students)

1

Liao et al. (2023) Design UX design for AI systems Formative study; mixed (think-aloud, interview); n¼ 23 
(professionals)

1

Preiksaitis et al. (2023) Healthcare Physician assistance Conceptual review 1

Sarkar (2023) Knowledge work  
and creativity

– Conceptual review 1

Schellaert et al. (2023) General – Conceptual review 1

Srinivasa Ragavan et al. 
(2022)

Data science Formula generation in 
spreadsheets (end-user 
programming)

User study; mixed (think-aloud, task measures, interview); n¼ 20 
(professionals)

1

Sun et al. (2022) Programming Prompting, code translation, code 
auto-completion

Formative study; qualitative (scenario-based design workshops); 
n¼ 43 (professionals)

1

Weisz et al. (2022) Programming Code translation User study; mixed (qualitative evaluations; questionnaire); n¼ 32 
(professionals)

1

Woodruff et al. (2023) Knowledge work – Formative study; qualitative (participatory research workshops); 
n¼ 54 (professionals)

1

Zamfirescu-Pereira et al. 
(2023)

General Recreating an expert as a chatbot User study; mixed (think-aloud); n¼ 10 (graduate students, 
professionals)

1

Noy and Zhang (2023) Writing Knowledge work tasks (reports, 
press releases, analysis plans, 
emails etc.)

User study; mixed (experimental longitudinal task, evaluations, 
questionnaire); n¼ 444 (professionals)

1

Arnold et al. (2021) Writing Writing reviews for books, film, 
and travel

User study; quantitative (descriptive prompt evaluation 
questionnaire); n¼ 30 (MTurk)

2

Calderwood  
et al. (2020)

Writing Creative writing of novels User study; qualitative (think-aloud, interview); n¼ 4 (novelists) 2

Jayagopal et al. (2022) Programming Learnability of code generation 
tools

User study; qualitative (think-aloud, interview); n¼ 22 (students) 2

Jiang et al. (2022) Programming Learnability of code generation 
tools

User study; qualitative (longitudinal take-home tasks, video 
observation, activity, interview); n¼ 14 (professionals with mixed 
experience)

2

Kulkarni et al. (2023) Design Text-to-image generation for 
visual design

User study; mixed (video observation, questionnaire, design 
evaluation); n¼ 16 (non-professional designers)

2

Oppenlaender (2022) Creativity Text-to-image generation for 
visual art

Field study; qualitative (online ethnography); n¼ unknown (text-to- 
image tool community)

2

Pennefather (2023a) Creativity – Conceptual review 2

Pennefather (2023b) Creativity – Conceptual review 2

Xu et al. (2022) Programming and  
data analysis

Code generation and retrieval for 
file manipulation, machine 
learning, data visualisation etc.

User study; mixed (task performance, code logs, questionnaire); 
n¼ 31 (students, freelancers)

2

Bhat et al. (2023) Writing Writing film reviews User study; qualitative (concurrent and retrospective think-aloud); 
n¼ 14 (students)

3

Clark et al. (2018) Writing Image-to-text generation for 
creative writing of stories

User study; mixed (questionnaire, interview); n¼ 36 (MTurk) 3

Frey and Osborne (2023) General – Conceptual review 4

Liao and Vaughan (2023) General – Conceptual review 4

Chen and Chan (2023) Writing Ad copywriting User study; mixed (ad clicks, text analysis, questionnaire); n¼ 355 
(Prolific)

1,2

Gmeiner et al. (2023) Design Manufacturing design generation User study; qualitative (think-aloud); n¼ 14 (study 1; professionals) 
n¼ 6 (study 2; students)

1,2

Dang et al. (2023) Writing Creative and argumentative 
writing

User study; mixed (formative interview [n¼ 6; Prolific], experiment 
with activity [n¼ 129; Prolific], text analysis; open feedback 
themes)

1,2,3

Barke et al. (2023) Programming Code generation and other AI 
assistance

User study; qualitative (observation, interview); n¼ 20 (students, 
professionals)

1,2,3,4

Prather et al. (2023) Programming Code generation and other AI 
assistance for novices

User study; mixed (observation, think-aloud, interview); n¼ 19 
(students)

1,2,3,4

Sarkar et al. (2022) Programming – Conceptual review 1,2,3,4

Vaithilingam et al. (2022) Programming Code generation User study; mixed (observation, task completion, questionnaire); 
n¼ 24 (students)

1,2,3,4

Ross et al. (2023) Programming Code generation User study; mixed (longitudinal tasks; conversation logs; event logs, 
questionnaire); n¼ 42 (professionals)

1,2,4

(continued)
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some cases, working with current GenAI systems might not 
benefit users relative to a more manual approach. For 
example, when Vaithilingam et al. (2022) compared pro
grammers’ experience with Copilot versus traditional auto
complete, they found that Copilot participants failed to 
complete their tasks more often. When they did complete 
them, they were no faster than those who used autocom
plete. Vaithilingam et al. (2022) suggest that assessing the 
correctness of generated code created an efficiency bottle
neck, often leading participants down an unsuccessful path 
of debugging. This not only took time out of their main 
task, thereby decreasing productivity, but also required a sig
nificant amount of cognitive effort. A similar shift towards 
evaluation of outputs has been observed in consultancy 

(Dell’Acqua et al., 2023), and in creative writing, where most 
of the writing time is now being replaced by editing AI-gen
erated text (Noy & Zhang, 2023). Overall, practitioners from 
various domains, such as advertising, education, business and 
law, overwhelmingly agree that GenAI outputs will require 
supervision (Woodruff et al., 2023).

3.1.1. Reduced situational awareness
A key reason why monitoring automation (like evaluating 
GenAI outputs) is so demanding is that, due to processing 
being relatively more passive, it reduces operators’ situ
ational awareness: their perception of data and elements of 
the situation, comprehension of the situation, and the 

Table 1. Continued.

Article Domain Task (or focus) Methodology
Challenge  

theme�

Gu et al. (2023a) Data science Understanding and verification of 
AI assistance for data analysis

User study; qualitative (observation, interview); n¼ 13 (students 
and professionals)

1,3

Mcnutt et al. (2023) Data science Coding assistance in notebooks User study; qualitative (interview, design probe); n¼ 15 
(professionals)

1,3

Weisz et al. (2021) Programming Code translation User study; qualitative (interview, design probe); n¼ 11 
(professionals)

1,3

Choi and Schwarcz 
(2023)

Law AI assistance for legal reasoning 
(law exams)

User study; mixed (exam results, written response analysis); n¼ 48 
(students)

1,3,4

Gu et al. (2023) Data science AI assistance for data analysis 
execution and planning

User study; qualitative (observation, interview); n¼ 22 
(professionals)

1,3,4

�‘Challenge theme’ refers to (1) the production-to-evaluation shift, (2) unhelpful workflow restructuring, (3) task interruptions, and (4) task-complexity polariza
tion (as per Section 3).

Figure 1. Productivity challenges of Generative AI automation: (a) the production-to-evaluation shift, in which users’ situational awareness of their working environ
ment is reduced, increasing the cognitive demand required to evaluate AI outputs; (b) unhelpful workflow restructuring, including the addition of new challenging 
tasks of prompting systems and adapting outputs, a loss of task sequence due to AI suggestions or other changes, and a loss of feedback when AI suggestions are 
presented without the relevant context; (c) task interruptions from automated AI suggestions; and (d) task-complexity polarization, in which automation tends to 
make easy tasks easier and hard tasks harder when implemented in practice.
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projection of future status (Endsley, 1995). Passive process
ing resulting in decreased situation awareness has been 
observed with experienced air traffic controllers (Endsley 
et al., 1997; Metzger & Parasuraman, 2001) and in other 
automated tasks (Manzey et al., 2012). Low situation aware
ness significantly decreased operators’ ability to effectively 
monitor and observe errors in the automation and to deter
mine whether the given situation is outside the bounds of 
automation capabilities (Jones & Endsley, 1996).

Evidence suggests that users of GenAI systems similarly 
experience reduced situational awareness. For example, partici
pants in Vaithilingam et al. (2022) reported that their debug
ging of AI-generated code was hampered because they could 
not use their intuition about where the bug might be and 
instead ended up refactoring or abandoning the code entirely. 
This is echoed by participants in Barke et al. (2023) who say, 
e.g., “I don’t see the error immediately, and unfortunately, 
because this is generated, I don’t understand it as well as I feel 
like I would’ve if I had written it.” Participants in Weisz et al. 
(2022) noted a trade-off between writing and debugging code, 
citing a lack of comprehension for AI-generated code transla
tion and “spotting errors in ‘foreign’ code” as challenges. 
Similarly, in data science, users report feeling out of control 
when unable to understand AI-generated suggestions (Mcnutt 
et al., 2023) and highlight readability “as being a critical fea
ture of usable synthesized code” (Drosos et al., 2020). For 
novices in a domain, this reduced situational awareness can be 
particularly challenging, as noted in Prather et al. (2023). In 
the healthcare domain, AI-generated medical records may lead 
physicians to become detached from patients’ medical history, 
and in turn spend additional time analysing GenAI outputs to 
compensate for the missing information (Preiksaitis et al., 
2023). These findings indicate that gaining situational aware
ness of GenAI output is demanding and takes users’ time and 
attention away from proceeding with the main task.

The next sections describe factors that can exacerbate 
already reduced situational awareness, as well as a potential 
outcome of the “monitoring” challenge of automation: com
placency and over-reliance.

3.1.2. Factors exacerbating low situational awareness
Automation research shows that low situational awareness 
can be exacerbated by several factors, including automation’s 
high output capacity and systems’ complexity, opaqueness, 
and low reliability.3

3.1.2.1. High automation capacity. Monitoring automation— 
in this case, evaluating GenAI output—is, ironically, made 
more difficult by the high capacity of automation, which makes 
it challenging to understand and anticipate system behaviour. 
For example, when traders in the digital stock exchange 
changed roles from executing to monitoring trades, they under
performed as they were unable to effectively monitor the trades 
in real-time (Haldane & May, 2011). As such, they resorted to 
monitoring them at a higher level of abstraction and required 
additional resources to process that information, thereby miss
ing more trades that were executed in the meantime.

Similarly, GenAI is notable for its high capacity in outputting 
content, such as entire documents or software programs, or mul
tiple simultaneous suggestions (Barke et al., 2023; Chen et al., 
2023; Sarkar et al., 2022; Schellaert et al., 2023). This makes eval
uating these outputs challenging. In GenAI-assisted coding 
(Barke et al., 2023), found that users deal with the plethora of 
code suggestions by quickly assessing them using a “pattern 
matching” approach, where they search for the presence of cer
tain keywords or control structures. The impact of high output 
capacity can be worsened by poor system design. For example, 
participants in Barke et al. (2023) noted that the separation of 
Copilot’s multi-suggestion pane from their main code increased 
cognitive load due to the lack of relevant code context when 
reviewing and trying to differentiate the code suggestions.

3.1.2.2. Automation complexity and opaqueness. Evaluation 
is further challenged by the complexity and opaqueness (i.e., 
poor explainability) of automated systems, which can reduce 
situational awareness. More features and modes create more 
possible interactions among system components and a corre
sponding reduction in system predictability as the system 
increasingly considers multiple factors or component states 
(Endsley et al., 2003). This can lead to unfamiliar and infre
quent system states, which add to the challenge of compre
hending systems’ workings. For example, even well-trained 
pilots were startled by unexpected flight automation system 
behaviours in complex systems (Wiener & Curry, 1980). 
System opaqueness similarly reduces situational awareness 
and affects monitoring, for example, in the use of automa
tion aids in local government organizations (Lindgren, 
2023). Put another way, system complexity and opaqueness 
make it more difficult for users to create an accurate mental 
model of the system needed for the correct interpretation of 
information, including situations where manual control will 
be needed (Baxter et al., 2012).

The opaqueness and complexity of GenAI systems are 
cited as key barriers to usability, including prompting and 
evaluating outputs (Liao et al., 2023; Sun et al., 2022). One 
issue, termed “fuzzy abstraction matching” (Sarkar et al., 
2022), describes the opaque relationship between the content 
of prompts and the resultant output, driven by the flexibility 
of GenAI models to produce plausible but potentially incor
rect outputs for prompts with a wide range of abstraction. 
Another issue is the sheer range of implicit and explicit 
parameters available to users, which increases systems’ com
plexity (Schellaert et al., 2023). This not only makes prompt
ing a challenge (e.g., Dang et al., 2023; Zamfirescu-Pereira 
et al., 2023) but also the evaluation of outputs (e.g., Barke 
et al., 2023; Liang et al., 2023; Weisz et al., 2021) as the two 
are inextricably intertwined in current systems. The top 
usability issue for AI programming assistants, as surveyed in 
Liang et al. (2023), is not knowing what part of users’ code 
or comments the GenAI system is relying on to produce 
output. Likewise, one participant in Barke et al. (2023) 
laments the challenge of evaluating code suggestions, “it 
might be nice if it could highlight what it’s doing or which 
parts are different, just something that gives me clues as to 
why I should pick one over the other.”
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3.1.2.3. Automation reliability. The challenge of monitoring 
automation is further exacerbated by systems’ unreliability. 
For example Metzger and Parasuraman (2005), found that 
air traffic controllers who worked with unreliable automa
tion to make aircraft-to-aircraft conflict decisions were 
unable to monitor the systems effectively and were ultim
ately better at detecting conflicts without automation. 
Similar impacts of reliability were found for target detection 
and decision-making tasks (Galster et al., 2001; Wickens 
et al., 2000). Evaluation of GenAI outputs is likewise exacer
bated by the non-determinism of GenAI models (Schellaert 
et al., 2023), which can produce different outputs for the 
same input, resulting in lower reliability from the user’s per
spective. More than merely being non-deterministic, GenAI 
systems can introduce subtle or non-intuitive errors into 
outputs, particularly in long outputs such as multi-line code 
suggestions (Sarkar et al., 2022) (see also Section 3.4). 
Woodruff et al. (2023) found that knowledge workers across 
domains overwhelmingly cited a lack of reliability as a key 
reason for humans having to review GenAI outputs. 
Example concerns ranged from violation of brand standards 
and copyrights in generated content, to inaccuracies in legal 
documents (Woodruff et al., 2023).

3.1.3. Potential complacency and over-reliance
Ultimately, as Human Factors research shows, the shift from 
production to evaluation, the resultant reduced situational 
awareness, and additional workload can result in compla
cency, over-reliance on systems, and increased errors 
(Parasuraman & Riley, 1997). Trying to recover from these 
errors further increases the workload and, as workload 
affects monitoring ability, can create a vicious cycle. In 
high-workload situations, there are fewer attentional resour
ces available for monitoring imperfect automation, resulting 
in a risk of errors (McBride et al., 2011) and significantly 
longer error detection time (Dixon et al., 2005). 
Complacency due to high-workload conditions has been 
observed in aviation, where pilots would fail to conduct suf
ficient checks of system state (Funk et al., 1999; 
Parasuraman et al., 1993). In a spacecraft simulator study, 
operators did not properly assess the recommendations and 
simply complied with them, which resulted in missed fail
ures (Manzey et al., 2006).

An increase in complacency and over-reliance related to 
output evaluation has been observed in GenAI user studies. 
For example, when verifying the correctness of AI-generated 
code, some programmers reported skimming through the 
output rather than reading and evaluating the code rigorously 
(Sarkar et al., 2022; Vaithilingam et al., 2022). This is espe
cially prevalent for those with less experience, such as end- 
user programmers (Sarkar et al., 2022) or novices 
(Kazemitabaar et al., 2023; Prather et al., 2023). In some 
cases, this has led to errors that users either missed (Ross 
et al., 2023) or had to later spend time debugging 
(Vaithilingam et al., 2022). Notably, in advertising, both 
expert and non-expert writers showed overconfidence in the 
quality of AI-generated drafts, failing to thoroughly revise 
them (Chen & Chan, 2023). Complacency and over-reliance 

have also been reported in the data science domain (Gu 
et al., 2023; 2023; Srinivasa Ragavan et al., 2022); in the legal 
domain, where “AI-assisted exams were more likely to miss 
hidden issues” (Choi & Schwarcz, 2023); and in the design 
domain, where one participant commented, “I would never 
design it like that, but this [GenAI system] thinks it can do it 
like that [ … ] But this is what it gave me, so I don’t have a 
problem with that.” (Gmeiner et al., 2023). Over-reliance has 
been shown to lead to decreased performance; for example, 
management consultants showed overall poorer performance 
when they blindly adopted AI-generated outputs (Dell’Acqua 
et al., 2023).

3.2. Unhelpful workflow restructuring

Automation can restructure workflows in unhelpful ways by 
introducing new challenging tasks, disrupting familiar task 
sequences, and removing informative feedback (Figure 1b). 
This changes what strategies operators use, how they per
ceive information, and how they act in a specific context, 
potentially leading to ineffective use of freed-up time and 
cognitive resources. Thus, rather than reducing what they 
work on when all or part of tasks are automated, people 
instead rely on different strategies for working on that task 
(Bainbridge, 1983). For example, when automation introdu
ces new tasks in operators’ workflow, disrupting their famil
iar workflow, they struggle to adapt their strategies (Klein 
et al., 2006). Likewise, when automation unexpectedly 
increases the workload during peak times, operators tailor 
the system or the task to accommodate the automation 
needs (Cork et al., 1998). If tailoring the system is not pos
sible, users are forced to tailor their tasks, often having to 
add new tasks to their workload (Cork et al., 1998). For 
example, physicians using automation aids learned how to 
manipulate monitors displaying physiological data to fit 
their work strategies. However, because this manipulation 
was an additional task physicians had to perform, they 
avoided using the system in high-workload situations (Cork 
et al., 1998). Moreover, when automation changes the famil
iar sequence of the task, for example, by removing a step, 
operators make errors and repeat their actions. For example, 
physicians might forget to record a dose of medication in a 
log and mistakenly repeat the procedure (Altmann & 
Gregory Trafton, 2015). Finally, when automation removes 
the critical feedback necessary to make an informed deci
sion, operators succumb to errors. For example, in aviation, 
pilots were missing critical failures due to relevant informa
tion from vibration and smell being lost in the automation 
process (Moray et al., 1986).

3.2.1. Prompting as a new task
The central role of prompting in GenAI systems is one 
major way in which such systems are restructuring work
flows. Studies show that users struggle with prompting, ded
icating considerable time and effort to it. In Xu et al. (2022), 
programmers using a code generation plugin invested sig
nificant effort in experimenting with prompts to understand 
how their queries worked best. Likewise, in Jiang et al. 
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(2022), participants using an LLM-driven tool developed 
various strategies to deal with model failures, for example, 
rewording prompts by reducing the scope of the request or 
looking for alternative wording. Trying to adapt prompts is 
a cognitively demanding task, as participants must form a 
mental model of what the model can work with (the prob
lem of “fuzzy abstraction matching” (Sarkar et al., 2022)). 
Beyond being demanding, prompting may interfere with 
other aspects of users’ workflows. For example, Copilot 
users’ code commenting workflows can change. Participants 
in Barke et al. (2023) wrote and re-wrote detailed comments 
intended for Copilot, hoping to increase the context avail
able to the system, and then also spent time deleting com
ments for Copilot after the fact.

Similar workflow changes were observed in the design 
and writing domains. For example, one non-professional 
designer in Kulkarni et al. (2023) complains, “it felt like I 
was fighting it … I felt like it was helpful, but I also felt like I 
had to massage every word and select every character very 
carefully not to upset it so that it could generate something I 
wanted” (see also Oppenlaender (2022)). Dang et al. (2023) 
distinguish between diegetic prompts (instructions implicitly 
conveyed by inputted content to be acted on by the system) 
and non-diegetic prompts (instructions explicitly conveyed to 
the system). The latter is particularly disruptive to users’ 
workflows in the writing domain, as they “[force] writers to 
shift from thinking about their narrative or argument to 
thinking about instructions to the system” (Dang et al., 
2023; see also Yuan et al., 2022), a finding echoed in the 
coding domain (Jayagopal et al., 2022). More broadly, 
prompting seems to function as a new task that competes 
with other workflow tasks, adding to the workload and 
potentially increasing over-reliance on automation as users 
invest more time into it (Endsley & Rodgers, 2016). Indeed, 
this might explain why some users try to coerce AI output 
to be useful (see Section 3.2.2) or become complacent in 
reviewing it (see Section 3.1.3).

3.2.2. Output adaptation as a new task
Another workflow change with GenAI is the need to adapt 
generated output, effectively a new type of task. In Barke 
et al. (2023), several participants chose to adapt Copilot sug
gestions to use as a template for their code. Rather than 
accepting or rejecting code entirely, they deleted and edited 
parts so they would not have to write it from scratch. 
Others used the strategy of slowly breaking down large 
blocks of code and adapting them as needed or cherry- 
picking code from multiple suggestions. This suggests that 
the use of suggestions is not straightforward, and complex 
strategies are created by programmers for their workflows. 
The productivity gains of these workflow changes remain 
unknown, and although participants in Barke et al. (2023) 
found them helpful, they may ultimately decrease productiv
ity. For example, if the adapted code has an error, the neces
sary debugging will add to the workload, as observed in, e.g. 
Barke et al. (2023) and Vaithilingam et al. (2022). In the 
design domain Gmeiner et al. (2023), found that manufac
turing designers struggled with GenAI assistance. In this 

case, the GenAI system was found to be “dominating the 
design process,” and “designers either gave up and accepted 
unsatisfying results, improvised ‘hacky’ strategies to work 
around the AI or abandoned the AI assistance altogether 
and proceeded to work manually.”

The productivity gains or losses of output adaptation 
may depend on users’ expertise. In Vaithilingam et al. 
(2022), participants of varying levels of expertise struggled 
to adapt the code suggestions, and many abandoned them 
entirely, thereby losing time. Among novices, code adapta
tion may particularly reduce productivity. Prather et al. 
(2023) studied novice programmers working with Copilot, 
identifying an unproductive interaction mode they termed 
“shepherding,” in which participants spent considerable time 
trying to coerce Copilot to produce useful code. This 
included accepting suggestions, then deleting them without 
any changes, or spending considerable time adapting sugges
tions without writing any code of their own. More broadly, 
the assortment of code adaptation strategies reflects a new 
layer of complex tasks that programmers are introducing to 
their workflow to accommodate and effectively use GenAI. 
Ironically, the more complex the code, the more powerful 
the potential productivity benefits, yet the more intricate 
and time-consuming the process of reviewing and adapta
tion might become (e.g., Barke et al., 2023).

3.2.3. Loss of task sequence
Workflow changes can also lead to difficulty in following 
the familiar sequence of steps in a task. Many tasks have 
sequential constraints, a set of steps that have to be per
formed in a specific order. When one of the steps is skipped 
or repeated, errors can occur (Altmann & Gregory Trafton, 
2015). To perform a task correctly under sequential con
straints, the cognitive system has to keep track of where it is 
in the sequence and select the correct next step when one 
step is complete (Altmann & Gregory Trafton, 2015). 
Changes in the structure of the task can make it difficult for 
one to follow the natural sequence of the steps. Automation 
research showed that operators’ reactions are slower and less 
integrated when they cannot generate the sequence of activ
ity themselves (Janssen et al., 2015). Not having a task struc
ture to follow also prevents users from monitoring their 
own progress. Under manual control, users obtain informa
tion about the results of their actions and then can correct 
themselves (Smith, 1979). Without this information, they are 
more likely to repeat the same type of errors (Wiener & 
Curry, 1980).

In GenAI workflows, auto-suggestions generated by the 
system or the requirement to prompt systems are examples 
of disruptions to the familiar sequence of steps, which could 
lead to productivity loss, as evidenced in recent studies. In 
the coding domain Barke et al. (2023), found that long code 
suggestions in Copilot disrupted users’ task sequence by 
“forcing them to jump in to write code before coming up 
with a high-level architectural design.” Analogously, in the 
design domain Gmeiner et al. (2023), found that the need 
for prompting meant that designers had to specify required 
parameters in advance instead of working step-by-step, 
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thereby requiring designers “to think through the design 
problem in advance, which is challenging and different from 
the usual iterative design process.” This loss of task sequence 
can be particularly disruptive among novices. For example 
Prather et al. (2023), identified an unproductive interaction 
pattern among novice programmers called “drifting,” in 
which participants spent time adapting code suggestions, 
then deleting them, and repeating the cycle. Thus, they 
unproductively drifted from suggestion to suggestion with
out a direction. Moreover, this was exacerbated if the gener
ated output contained an error, which sent users down a 
“debugging rabbithole,” in which they spent time trying to 
adapt incorrect code rather than focusing on the correct 
solution (Prather et al., 2023). In film production, 
Pennefather (2023a) observed a filmmaker working with 
GenAI that had to shift between multiple software, strug
gling to identify which was the most suitable for which part 
of their creative process. The creative described the process 
as “an exercise in randomization and an attempt to control 
chaos” (Pennefather, 2023b) (see Oppenlaender (2022) for 
similar observations with creative text-to-image generation 
workflows).

Task sequence can also be obscured when a large part of 
the workflow is automated. For example, both expert and 
non-expert copywriters were anchored to GenAI suggestions 
and produced lower-quality results when GenAI generated 
the majority of the text versus when it only provided feed
back to users (Chen & Chan, 2023). Similarly, professional 
novel writers (Calderwood et al., 2020) and inexperienced 
writers working with GenAI (Arnold et al., 2021) found 
guidance more useful than the injection of generated text. In 
these examples, users’ familiar task sequences in a given 
domain are disrupted by aspects of GenAI systems.

3.2.4. Loss of feedback
Automation can deprive users of key feedback needed to 
assess the state of automation and its ability to perform tasks. 
For example, automation can cause users to change from 
processing raw data to processing integrated information. 
Introducing automation into paper-making plants moved 
operators away from the information associated with informal 
feedback (e.g., smells, sounds) and put them in control rooms 
(Lee & Seppelt, 2009). This change not only required opera
tors to learn the task of plant control but also deprived them 
of contextual information that could help them diagnose 
automation failures and intervene appropriately. Similarly, in 
aviation, relevant information from vibration and smell was 
lost in the automation of process control operations (Moray 
et al., 1986), and the automation of auto-feathering systems 
in commercial aircraft removed the signal telling pilots about 
engine shut-downs (Billings, 1991). The lack of transparency 
or supporting contextual feedback often only becomes an 
issue under system failures when operators lack the relevant 
detail for detecting or addressing them (Endsley et al., 1997).

An analogous loss of feedback has also been observed in 
GenAI-assisted coding. Participants in Vaithilingam et al. 
(2022) noted that, in comparison to internet search tools 
like Stack Overflow, Copilot lacked additional information, 

such as discussions, explanations, and comparisons of code 
solutions. This sentiment was echoed by participants in Ross 
et al. (2023), who noted that their AI code assistant “lacked 
the ‘multiple answers’ … and ‘rich social commentary’ … that 
accompanies answers on Q&A sites.” Thus, programmers 
using these tools see the code, comments, and data but miss 
out on the rich feedback that is usually available when pro
gramming with access to various media sources.

3.3. Task interruptions

Another aspect stifling productivity gains from GenAI is 
task interruption (Figure 1c). There are various cognitive 
costs related to interruptions (Altmann & Gregory Trafton, 
2002; Janssen et al., 2011; Salvucci & Taatgen, 2011). 
Interruptions can disrupt the user’s thought processes 
(Altmann et al., 2014) and initiate a switch between tasks 
that requires time and cognitive resources, which negatively 
affects performance (Janssen et al., 2015). Particularly long 
and complex interruptions significantly disrupt people’s abil
ity to resume their original tasks (Mark et al., 2008; 2012; 
Monk et al., 2008). Moreover, interruptions can also break 
the user’s flow state (Taekman & Shelley, 2010).

Copilot auto-suggestions have been shown to interrupt 
users’ main tasks, with programmers referring to Copilot 
auto-suggestions as “interrupting their thoughts” (Sarkar 
et al., 2022), “intrusive,” and “messing up thought process” 
(Prather et al., 2023). Accordingly, some programmers 
decide to switch the suggestions off to avoid distractions 
(Sarkar et al., 2022) or chose to disable the tool completely 
(Barke et al., 2023), while others admitted being “tempted to 
follow what it’s saying instead of just thinking about it” 
(Prather et al., 2023). Beyond programming, similar inter
ruptions are reported in the writing domain (Bhat et al., 
2023; Clark et al., 2018; Dang et al., 2023) and in data sci
ence (Gu et al., 2023; Mcnutt et al., 2023).

Particularly distracting are the long, multi-line code sug
gestions. For example, these have been observed to break 
programmers’ flow when in “acceleration mode,” a state in 
which programmers work with well-formed intent, relative 
to an “exploration mode,” in which programmers start a 
novel task or debug (Barke et al., 2023). Programmers were 
distracted from their flow as they felt compelled to read the 
code. If they chose to consider it, they then had to review it 
for errors. Thus, long code suggestions force users to switch 
back and forth between writing and reviewing code, and if 
the code has errors, they must then switch to debugging 
(Vaithilingam et al., 2022). This may be particularly disrup
tive if the errors are unrelated to the current task focus, as 
found in Weisz et al. (2021). Interruptions may be particu
larly impactful for novice programmers, who are tempted to 
read the large blocks of code despite their perception as a 
nuisance (Prather et al., 2023). Accordingly, their attention 
is shifted from thinking and problem-solving to deciphering. 
Ironically, the feature that should accelerate productivity sig
nificantly increases participants’ cognitive load due to the 
associated task-switching.

Programmers, particularly experienced ones, eventually 
learned to dismiss long, multi-line suggestions (Barke et al., 
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2023; Sarkar et al., 2022). Nevertheless, even when ultimately 
rejecting these, their thought processes were already dis
rupted. This was the case not only for novice programmers 
who reported “[wasting] time reading instead of thinking” 
(Prather et al., 2023), but also for experienced programmers: 
“I was about to write the code, and I knew what I wanted to 
write. But now I’m sitting here, seeing if somehow Copilot 
came up with something better than the person who’s been 
writing Haskell for five years … ” (Barke et al., 2023). 
Similarly, in the writing domain, some users learned to 
ignore suggestions in certain contexts, whereas others delib
erately sped up their writing to avoid getting distracted by a 
suggestion (Bhat et al., 2023).

That complex code suggestions are the most distracting 
during “acceleration” and are more helpful during 
“exploration” (Barke et al., 2023) suggests that their timing 
is a key factor. Indeed, automation research speaks to this. 
People respond faster to interrupting tasks if the interrup
tion was scheduled as a breakpoint between main task 
chunks (Iqbal & Bailey, 2008) or when they occur at subtask 
boundaries (Bailey & Iqbal, 2008; Iqbal & Bailey, 2005; 
Janssen & Brumby, 2010). Similarly Cutrell et al. (2000), 
found that users interrupted earlier in a task were more 
likely to request a reminder after being interrupted, and 
Cutrell and Guan (2007) showed that the later in the main 
task an interruption occurs, the less recovery time is needed 
when subsequently returning to it. Indeed, in the data sci
ence domain Gu et al. (2023), found that when AI sugges
tions were out of sync with users’ current analysis plans, 
participants were either distracted or ignored them.

3.4. Task-complexity polarization

Automation often makes easy tasks easier but fails to reduce 
the workload during cognitively demanding tasks, and in 
fact, often makes them harder (Lee & Seppelt, 2009). This 
has been termed “clumsy automation” in Human Factors 
research (Cook et al., 1991), but we introduce the more pre
cise term task-complexity polarization (Figure 1d). One 
explanation is that easy tasks are easier to automate, and so 
the more difficult tasks tend to remain under manual con
trol, albeit alongside the additional task of monitoring auto
mation, and within a now more fragmented workflow (Lee 
& Seppelt, 2009). For example, automation has been shown 
to reduce pilots’ mental workload when it is already low 
during easy tasks, as when the plane is on autopilot during 
a straight flight. However, automation increased the mental 
workload of pilots when the flight-related workload was 
already high, e.g., during landing, as they then had to simul
taneously reprogram the system managing autopilot, activate 
landing procedures, and manage communication (Wiener & 
Curry, 1980). Humans are also ineffective in shifting cogni
tive resources saved by automation to support more difficult 
tasks. In the study by Metzger and Parasuraman (2005), air 
traffic controllers used automation designed to aid conflict 
detection and resolution tasks. This was expected to free up 
enough mental resources that controllers could allocate to 
performing more complex tasks. However, automation did 
not reduce the mental workload in routine tasks that were 

demanding, such as communication and accepting and 
handing off aircraft. Either the aid did not free enough 
resources, or the controllers could not allocate them to 
improve communication performance. Studies on automated 
decision-making used to support government tasks showed 
that the new technology often only reduced the easy assign
ments but left the difficult ones to the government workers, 
making their work more difficult and fragmented (Lindgren, 
2023).

GenAI studies show that a similar pattern is emerging in 
current users of GenAI systems. First, there is evidence that 
GenAI systems are most helpful at making easy tasks even 
easier. For example, GenAI has been shown to be the most 
effective in supporting novice writers performing easy 
assignments and low-skilled customer service agents in 
entry-level tasks (Frey & Osborne, 2023). In AI-assisted pro
gramming, users across studies were most confident in using 
GenAI for simpler tasks, such as “writing boilerplate, repeti
tive code” (Barke et al., 2023), “short chunks of code” (Ross 
et al., 2023), or “coding in narrow contexts” (Sarkar et al., 
2022). Barke et al. (2023) found that the most successful 
Copilot users were able to decompose the coding task into 
“microtasks,” which Copilot was effective at completing (see 
also Vaithilingam et al. (2022)). However, it is precisely the 
task decomposition process itself that is the more cognitively 
demanding task, and for which Copilot was not able to pro
vide support. Indeed, Copilot’s limitations with larger coding 
problems meant that “[it] led to more task failures in 
medium and hard tasks” (Vaithilingam et al., 2022) (see also 
Ross et al. (2023); Sarkar et al. (2022)). In the data science 
domain, some users similarly reported feeling most confi
dent in relying on GenAI for “peripheral tasks such as 
error-checking or report generation, rather than the central 
analysis process” (Gu et al., 2023). Likewise, in a study of 
AI-assisted legal analysis using GPT-4, Choi and Schwarcz 
(Choi & Schwarcz, 2023) conclude that” AI helps with sim
ple legal analysis but stumbles over complex legal reason
ing.” Thus, whereas GenAI succeeds at making easy tasks 
even easier, current systems are less effective at supporting 
harder tasks.

There is also evidence that GenAI can make hard tasks 
even harder. First, as discussed throughout, GenAI systems 
can shift users’ roles to one of cognitively demanding output 
evaluation (Section 3.1), restructure workflows in unhelpful 
ways (Section 3.2), and interrupt workflows (Section 3.3), all 
of which can interfere with users as they work on demand
ing tasks, for example by depriving them of relevant context 
or disrupting their task sequence. This can be particularly 
disruptive for novices, as one participant noted about long 
code suggestions, “if you do not know what you’re doing, it 
can confuse you more” (Prather et al., 2023).

Secondly, GenAI systems can introduce errors into out
puts that users must deal with. In AI-assisted coding, GenAI 
systems can “introduce subtle, difficult-to-detect bugs, which 
are not the kind that would be introduced by a human pro
grammer writing code manually” (Sarkar et al., 2022). 
Errors are particularly likely in longer code suggestions 
(Barke et al., 2023; Sarkar et al., 2022), precisely the ones 
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that might help users address complex tasks. This makes the 
already demanding task of debugging even more difficult, 
not only because of the inherent challenge of debugging 
“foreign” code (as discussed in Section 3.1), but also because 
of errors’ subtlety and the difficulty in discerning whether 
an error is the user’s or the system’s fault (Barke et al., 
2023; Sarkar et al., 2022; Vaithilingam et al., 2022). A similar 
concern about GenAI systems introducing errors has been 
raised in the data science domain (Gu et al., 2023).

Thirdly, when users are stuck on a demanding task, 
although GenAI systems can provide multiple suggestions to 
help, this ends up overwhelming some users. Weisz et al. 
(2022) found that users’ frustration and mental demand 
were significantly heightened when multiple AI-generated 
code translations were shown to participants. Users similarly 
found the multi-suggestion pane in Copilot to be over
whelming when they accessed it during a state of coding 
“exploration” (i.e., starting a novel task or stuck on a task 
Barke et al. (2023)). Thus, ironically, GenAI systems can 
make hard tasks even harder in various ways that may 
ultimately leave users with the same or increased cognitive 
workload.

4. Human factors solutions

Beyond diagnosing the usability challenges of automation, 
Human Factors research has spent decades studying 
approaches to mitigate these challenges (e.g., Endsley, 2017; 
Parasuraman et al., 1997; 2000; Sheridan & Parasuraman, 
2005). Here, we outline some key potential design solutions 
that could reduce the productivity loss in human-GenAI 
interaction. These include providing continuous feedback to 
users and enabling explainability (Section 4.1), enabling sys
tem personalization (Section 4.2), applying ecological inter
face design (Section 4.3), using task stabilization and 
interruption timing techniques (Section 4.4), and enabling 
clear task allocation between users and systems (Section 
4.5). Besides targeting individual productivity loss chal
lenges, these solutions share the underlying Human Factors 
principles of providing feedback and enabling system flexi
bility (Carayon & Hoonakker, 2019).

More broadly, we argue that these proposed approaches 
aim to (i) increase user agency in how they adapt the 
GenAI support to users’ preferred ways of working, reducing 
the cognitive load stemming from disrupted workflows; (ii) 
increase users’ situational awareness of system changes and 
potential errors, reducing the cognitive load associated with 
the monitoring and evaluation of AI outputs; and (iii) 
increase user flexibility through the more granular applica
tion of AI support to their tasks, freeing users from having 
to make a binary decision of either using GenAI tools 
potentially ineffectively or not using them at all (Chen et al., 
2023; Sarkar et al., 2022). Throughout, we focus on the pro
gramming domain as an example of how these approaches 
can be applied to GenAI systems. Critically, although these 
approaches are grounded in Human Factors research, their 
use in GenAI systems and the wider range of relevant appli
cation domains (e.g., many types of knowledge and creative 
work) needs further testing and evaluation. Ongoing 

research is necessary to validate the effectiveness of the pro
posed solutions in this context.

4.1. Continuous feedback and explainability

When GenAI is introduced to users’ workflows, their role 
can shift from active involvement in performing the task 
(i.e., production) to more passively reviewing the AI- 
generated outputs for errors (i.e., output evaluation). The 
latter is a cognitively demanding task due to the lack of sup
porting contextual information and the resultant loss of situ
ational awareness. We propose that feedback about system 
behavior is a key strategy to keep users engaged and in the 
loop of GenAI system performance.

During the monitoring stages, receiving continuous feed
back is crucial for the operator to remain in the loop and rec
ognize moments when interruption and input are needed 
(Lee & Seppelt, 2009; Loft et al., 2007). Feedback is essential 
to help operators know if their requests have been received if 
the actions of the automation system are being performed 
properly, and if any errors are occurring (Norman, 1990). 
With GenAI systems, this includes knowing which aspects of 
the input are serving as prompts, how they are being inter
preted by the system, how the output matches them, and 
whether there are any errors. Thus, feedback is tied to care
fully designed explainability features (Liao & Vaughan, 2023; 
Sun et al., 2022). It should help users know why the system is 
responding in a certain way and allow them to build mental 
models of the system’s behaviour, how it interacts with them, 
and where they can expect failures (i.e., cause-and-effect rela
tionships). Other explainability features such as knowing the 
confidence of the information provided, seeing alternate solu
tions and usage examples, and having access to familiar infor
mation sources can help to support users’ ability to notice 
system mistakes and reduce the cognitive burden of monitor
ing (Liao & Vaughan, 2023; Sun et al., 2022; Tankelevitch 
et al., 2024). Figure 2 illustrates example approaches to pro
viding feedback and increasing explainability. Notably, by 
helping users develop a more accurate mental model of the 
system, feedback and explainability features can also serve to 
support users in better prompting and output adaptation 
(Chen et al., 2023; Liao & Vaughan, 2023), thereby helping 
them structure their workflows more effectively (i.e., also 
addressing the challenge of unhelpful workflow restructuring 
as per Section 3.2).

We suggest that GenAI tools should continuously provide 
relevant feedback to users, updating them on the system’s 
state, particularly during the monitoring stages. Feedback 
should be informative but non-intrusive, where the amount 
and form of feedback adapts to the interactive style of the par
ticipants and the nature of the problem (Norman, 1990).

In the context of GenAI systems, feedback is important for 
understanding system inputs and outputs and the cause-and- 
effect relationship between them. In the case of automated 
suggestions, users expressed a need for more information on 
specifically which code and comments Copilot relies on as 
inputs (Barke et al., 2023) and explanations on why certain 
code and documentation suggestions were made (Chen & 
Zacharias, 2024). In the case of conversational interfaces, 
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feedback could highlight prompt changes and the resulting 
output changes (Zamfirescu-Pereira et al., 2023), use explain
ability features indicating factors that influenced the output 
(Bauer et al., 2023), or use an analytic dashboard that shows 
statistics of AI tools’ performance changes (Wang et al., 
2024). Feedback could also be used to support pattern-match
ing between the AI suggestions and users’ task goals. For 
example, the output could have keywords highlighted, such as 
function calls or variable names, that would be a meaningful 
indication of a code fit (Barke et al., 2023). It could also 
include more context and documentation with the output, 
e.g., links to Stack Overflow or official documentation pages 
(Xu et al., 2022), real-time information about libraries 
(Feuerriegel et al., 2024) or provide relevant usage examples 
(Moreno et al., 2015). To understand outputs, Vaithilingam 
et al. (2022) suggested using inline comments or highlighting 
different parts of the code based on confidence to help users 
understand the code generated by Copilot (see also 
Vasconcelos et al. (2023); Weisz et al. (2021)). The authors 
also suggested supporting debugging by automatically gener
ating test cases and test data for users to validate and identify 
corner cases (Vaithilingam et al., 2022). Weisz et al. (2022) 
proposed using alternate translations, where the system 
showed users the alternative it had considered to help them 
identify errors. In the writing domain (Yuan et al., 2022), 
proposed that systems should give prompt suggestions to 
users. Chen and Zacharias (2024) suggested highlighting out
puts with low certainty, indicating areas that should be 
inspected.

Feedback can be overwhelming if it is poorly presented 
or excessive. It can also be incomprehensible without proper 
context, abstraction, and integration (Lee & Seppelt, 2009). 
As such, feedback should be provided by applying methods 
of ecological interface design (Rasmussen & Vicente, 1989) 

(see Section 4.3) and notification design (Paul et al., 2015) 
(see Section 4.4), which are effective approaches for improv
ing situational awareness and error detection.

4.2. System personalization

Human Factors studies have shown that when system per
sonalization is constrained, the cognitive demands on opera
tors and the associated productivity loss both increase (Cook 
& Woods, 1997). Indeed, as described in Section 3.2, 
increased cognitive demand and productivity loss have been 
observed in studies of GenAI-assisted programming as users 
try to understand and accommodate systems by changing 
their ways of working. This could be mitigated by allowing 
users to flexibly personalize systems to fit their tasks and 
ways of working (Lee & Seppelt, 2009).

Users should be able to personalize the inputs to the sys
tem. For example Barke et al. (2023), proposed that users 
should be able to control the context they provide to 
Copilot, enable comments that make code invisible to the 
tool, or decide that the tool will rely on Stack Overflow-style 
prompts rather than in-context code. Similarly, users should 
be able to choose the type of assistance to receive (or the 
output format of that assistance) to support their preferred 
ways of working. For example, in creative writing, choosing 
to receive feedback from GenAI, rather than a chunk of AI- 
generated text, preserved writers’ creativity and alleviated 
anchoring effects and over-reliance (Chen & Chan, 2023). 
Users could also personalize the system to provide help 
when needed rather than having suggestions generated auto
matically (Wang et al., 2024) (see also Section 4.4.3 for 
more on timing). An important aspect may be the ability to 
inform the system about users’ state of work (e.g., 
“acceleration” or “exploration,” as per Barke et al. (2023)), 

Figure 2. Examples of approaches to providing continuous feedback and increasing explainability which can help address the challenges of the production-to- 
evaluation shift (Section 3.1). Examples include providing alternative solutions, adding links to relevant documentation or other information sources, providing rele
vant usage examples, conveying information based on confidence, highlighting prompt changes and resulting output changes, and providing information linking 
errors to inputs.
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such that suggestions better match the users’ task character
istics and goals in terms of complexity, variety, length, and 
frequency (Gu et al., 2023). Systems could automatically 
detect users’ states (Barke et al., 2023; Gu et al., 2023), 
guided by user-adjustable parameters, and respond accord
ing to user-provided preferences, feedback, or through the 
use of prompts (Tankelevitch et al., 2024).

In summary, GenAI system personalization could include 
allowing users to choose what to input into the system, the 
type of GenAI assistance to receive (and its output format), 
and how the system behaves in relation to users’ fluctuating 
states of work, including the timing of assistance (Figure 3). 
Personalization is particularly important as users might have 
varying levels of task and domain expertise, which has been 
shown to affect their preferences and needs regarding the 
amount and kind of information provided (Paris, 1988). For 
example, novice programmers might want to spend some time 
working on the problem themselves and only ask Copilot for 
support when they are stuck (Prather et al., 2023), whereas 
experts might want to simply complete their lines (Barke 
et al., 2023). Notably, personalization is a broad concept and 
aspects of it relate to solutions targeting interruption timing 
(Section 4.4) and task-complexity polarization (Section 4.5).

4.3. Ecological interface design

The introduction of GenAI to users’ workflows can disrupt 
them, leaving workers looking to adjust their ways of work
ing or their familiar task structure. These processes increase 
cognitive load and result in productivity losses. Moreover, 
these disruptive changes can prevent users from being able 
to exercise their expertise and from benefiting from AI 

support. To align GenAI systems with users’ workflows 
effectively, we suggest that GenAI systems be designed 
according to an ecological interface design (EID) approach. 
EID emphasizes designing interfaces that reflect users’ per
ceptual constraints within a work environment in a highly 
domain- and context-specific manner (Rasmussen & 
Vicente, 1989). Specifically, it emphasizes (i) combining 
what users control and what they see in the system so that 
they can interact using clear, real-time signals; (ii) providing 
a consistent mapping between work domain constraints and 
interface cues; and (iii) showing the system’s key relation
ships directly on the screen, making it easier for users to 
form a mental model of the system (McIlroy & Stanton, 
2015; Rasmussen & Vicente, 1989). EID has been shown to 
reduce workload and improve performance in aviation risk 
management (King et al., 2022), medical domains (Effken 
et al., 1997), and automation-assisted driving (Stoner et al., 
2003).

In practice, this approach suggests that an automation 
aid or AI system should be designed to perform consistently 
with operators’ mental models, preferences, and expectations 
in a given work domain (Goodrich & Olsen, 2003). For 
example, GenAI systems should consider a broader domain 
context for their inputs by including information from inter
actions with external sources within the work domain (e.g., 
with Copilot, the consideration of code beyond the current 
file Bird et al. (2023)). Which sources and when they are 
considered should be clearly specified to users to support 
real-time control.

Systems should also consider work domain constraints. 
For example, Copilot should consider the natural task 
sequence of certain programming tasks by providing support 

Figure 3. Examples of system personalization that can address the challenges of unhelpful workflow restructuring. This includes (i) providing personalized control 
over the input into GenAI systems, which can support prompting and output adaptation; (ii) personalization of system behaviour (e.g., format and frequency of out
puts) in response to user’s changing states of work, which helps prevent a loss of task sequence; (iii) personalization of the type of AI support (e.g., providing feed
back on user’s work instead of generating novel outputs), which can help mitigate the loss of feedback.
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for high-level architectural design (or planning) when it is 
needed and avoiding code suggestions that might interfere 
with this process (Gu et al., 2023) (see also Section 4.4 for 
more on managing interruptions). Likewise, interfaces 
should adapt to support debugging when long code sugges
tions are provided, as outlined in Section 4.1. Systems 
should also help users understand how code suggestions 
map to and affect other aspects of the code beyond the local 
insertion point. Likewise, when helping physicians with 
administrative tasks, GenAI system outputs should include 
records of patients’ unique medical histories and physicians’ 
clinical reasoning (Preiksaitis et al., 2023).

EID also aims to support users’ ways of perceiving infor
mation in a specific domain. For example, it encourages 
using a hierarchical visual structure to display relevant infor
mation to allow multiple levels of information to be (mean
ingfully) visible simultaneously in the interface. This way, 
users can guide their attention to the level of interest, 
depending on their level of expertise and current task 
demands (Rasmussen & Vicente, 1989). This also supports 
flexibility, as users do not have to attend to a specific 
description level. For example, depending on where users 
are in their workflow, GenAI systems can provide pro
grammers with suggestions at different levels of abstraction 
(Gu et al., 2023), from high-level pseudo-code to low-level 
implementations, organized in a visual hierarchy, which 
would be particularly helpful for novices (Prather et al., 
2023). Similarly Gu et al. (2023), suggest that interactive vis
ualizations, linked to users’ code and other parts of the 
interface, can be used to support decision-making. Also in 
line with EID principles, Feuerriegel et al. (2024) argued 

that GenAI tools should be embedded in workflows via user 
interfaces that are tailored to users’ domain-specific needs 
and challenges.

Finally, as discussed in Section 4.1, explainability features 
are essential to help users form an accurate mental model of 
AI systems. These features should be integrated directly into 
the interface (e.g., as in AI Chains Wu et al. (2022)), taking 
into consideration the work domain context and domain 
expert knowledge (DeGrave et al., 2023; Pasquale & 
Malgieri, 2023). In the healthcare domain, explainability has 
been shown to be most effective when combined with 
insights from medical experts. Without considering domain 
specifics, explanations (e.g., in dermatology) lacked impor
tant context and included unnecessary information (e.g., 
background skin texture) that confused expert dermatolo
gists DeGrave et al. (2023) (see also Huang et al., (2023) for 
similar results in radiology). Indeed, a review of research on 
decision-support system implementation in medicine shows 
that misaligned user interfaces and explainability of AI out
puts are key issues for successful clinician-AI interaction at 
work (Zając et al., 2023). For example, clinicians were inef
fective working with decision-support systems when 
explanatory information was incomprehensible, or if interfa
ces presented multiple risk scores simultaneously (Zając 
et al., 2023). In summary, EID features could be used in the 
context of GenAI by considering interface design that (i) 
supports real-time control by mapping user input and wider 
context into feedback provided by the interface, (ii) supports 
users’ specific ways of perceiving information in a given 
domain and task, (iii) uses domain-specific explainability 
features (Figure 4).

Figure 4. Examples of how ecological interface design can help address the challenges of unhelpful workflow restructuring. This includes (i) supporting real-time 
control by mapping user input and wider context into feedback provided by the interface, which can support prompting and output adaptation, (ii) supporting 
users’ domain- and task- specific perceptual and cognitive constraints, which can help mitigate the loss of task sequence, and (iii) aligning explainability with the 
domain context, which can help mitigate the loss of feedback.
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4.4. Main task stabilization and interruption timing

As discussed in Section 3.3, GenAI system suggestions (e.g., 
Copilot code suggestions) interrupt users, especially during 
their flow states, distracting them and potentially leading to 
productivity loss. Accordingly, some users disable auto-sug
gestion features or GenAI systems entirely because of their 
distracting nature (Barke et al., 2023; Liang et al., 2023; 
Sarkar et al., 2022). Writers similarly prefer not to be inter
rupted by AI-generated snippets of text (Chen & Chan, 
2023). Instead of forcing users to avoid interruptions by dis
abling tools, systems should preserve users’ flow states by 
incorporating task stabilization techniques or by carefully 
timing interruptions around their flow states. We discuss 
three solutions to mitigate the negative impact of task inter
ruptions: (i) task stabilization with attention guidance, (ii) 
task stabilization via pre-interruption alerts, and (iii) timing 
of interruptions (Figure 5).

4.4.1. Task stabilization via attention guidance
Interruptions can be designed to support task stabilization, 
i.e., to help users prepare their current (main) task for the 
temporary switch in focus (Czerwinski et al., 2004; Parnin & 
DeLine, 2010). For example, among software users and 
developers (Paul et al., 2015), found that interruptions were 
helpful when they directed users to the parts of the current 
task (or a new task) they needed to attend to. Interruptive 
notifications were also useful as progress indicators, helping 
users plan and resume their next task after interruption. In 
the case of GenAI systems such as Copilot, this could mani
fest in long code suggestions being divided (e.g., via colour) 
into small logical units for programmers to easily parse dur
ing the acceleration (flow) mode (Barke et al., 2023). 
Alternatively, systems could direct users’ attention to certain 
keywords (e.g., via highlighting) that could help them iden
tify the applicability of the suggestion by using “pattern 
matching” (Barke et al., 2023). In line with Human Factors 
principles, interface design should provide cues to guide 
users’ attention to the next appropriate action. Otherwise, 

users may fall into “procedural traps” (Rasmussen & 
Vicente, 1989; Reason, 1990), novel situations where they 
rely on their normal rule set but without the usual success. 
Indeed, this has been observed in Copilot studies, where 
programmers end up in “debugging rabbitholes” (Prather 
et al., 2023; Vaithilingam et al., 2022).

4.4.2. Task stabilization via pre-interruption alerts
Task stabilization can also be achieved by using pre-inter
ruption alerts, which function as progress indicators, helping 
users plan and resume their next task after interruption 
(Paul et al., 2015). Andrews et al. (2003) found that those 
who received a pre-interruption alert could resume the main 
task faster than participants who did not. This aligns with 
studies showing that adding a brief lag period before inter
ruption helps users set place-keepers at their current task 
point, making it easier for them to return to it after being 
interrupted (Altmann & Gregory Trafton, 2015; Brumby 
et al., 2013). Similar pre-interruption alerts may be helpful 
for GenAI systems. For example, when Copilot is about to 
suggest a long code chunk, an alerting notification could 
create a brief pause period necessary to lock the users’ main 
task state. Even better, AI systems should set place-keepers 
automatically together with auto-suggestions, along with any 
other context-relevant information that could help users 
return to their train of thought. This would begin to address 
the challenge of helping users regain their prior context 
post-interruption, as has been raised in GenAI-assisted cod
ing (Ross et al., 2023) and data science (Gu et al., 2023; 
2023).

4.4.3. Timing of interruptions
Timing interruptions thoughtfully is another way to reduce 
their associated productivity loss. Interruptions are valuable 
for user productivity when they provide valuable awareness 
about things outside the user’s attention, such as new or 
background tasks (Paul et al., 2015). However, interruptions 
can be disruptive when related to a task currently in focus. 

Figure 5. Three types of approaches to mitigate the negative impacts of task interruptions: (i) main task stabilization via attention guidance, (ii) main task stabiliza
tion via pre-interruption alerts, and (iii) interruption timing.
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We propose that systems such as Copilot should be able to 
recognize when the user is in focus (Barke et al., 2023; Gu 
et al., 2023). Then, interruptions should be limited to sup
porting contextual alerts or providing information about 
ongoing tasks in the background (e.g., providing explainabil
ity information). Otherwise, during this stage, suggestions 
should carefully align with users’ flow (Gu et al., 2023), in 
line with ecological interface design. The system should rec
ognize the strategies that users use during the flow state and 
support them by completing their thought processes, for 
example, auto-completing the end of the code line (Barke 
et al., 2023), providing only short code suggestions (Prather 
et al., 2023). Recognizing when users are not in a flow state, 
systems could give users prompt examples and suggestions 
(Yuan et al., 2022), provide feedback (Chen & Chan, 2023), 
or goal-orientated guidance (Arnold et al., 2021). This could 
be supported further by user personalization as per Section 
4.2. This would enable GenAI support to be used more nar
rowly (e.g., to provide warning messages and supporting 
contextual information or short snippets of code) rather 
than users having to use the GenAI ineffectively or turn it 
off completely.

4.5. Clear task allocation

GenAI user studies suggest that current systems make easy 
tasks easier and hard tasks harder for users, a phenomenon 
we have termed task-complexity polarization (and referred 
to as “clumsy automation” in the Human Factors literature 
Wiener and Curry (1980)). Thus, it appears that these systems 
are not applied effectively to reduce overall workload. 
Human Factors research shows that one of the ways to 
address this is by clearly specifying how tasks are allocated 
between the human and system, particularly during high 
workload periods (Enstrom & Rouse, 1977; Sinaiko, 1972). 
This not only better distributes the workload according to 
the respective strengths and weaknesses of humans and 

automated systems but also reduces the cognitive demand 
on users stemming from trying to discern the relative 
responsibilities on a moment-by-moment basis. For example, 
in aviation, reducing pilots’ workflow to a single loop 
(eliminating the need for the operator to interact with the 
automation through the high workload tasks) resulted in 
better performance in a cockpit simulator. Similarly, allocat
ing tasks to the computer and allowing the operator to deal 
with the queue items manually have also been shown to 
reduce workload (Chu & Rouse, 1979). We suggest that the 
allocation of tasks between the user and GenAI system should 
be clearly defined and supported by GenAI systems. The user 
should know which tasks the GenAI system deals with at a 
given moment (Cook & Woods, 1997). Moreover, allocating 
tasks to automation systems and allowing the operator to 
deal with the queue items manually has also been shown to 
reduce cognitive workload (Chu & Rouse, 1979). Thus, users 
should also be able to allocate tasks to the GenAI system and 
themselves (Figure 6).

As discussed in Sections 3.1 and 3.4, for simple tasks or 
in low workload conditions, users often let the GenAI sys
tem operate continuously. However, when complex tasks 
needed to be performed, they often stepped in and overrode 
the system and, in some cases, engaged in ineffective practi
ces (e.g., reviewing code suggestions, editing, and then delet
ing them Prather et al. (2023)). Instead of having to do this, 
users should be able to proactively allocate responsibilities to 
the GenAI system. For example, according to their experi
ence with the system, personal preferences, or expertise, 
they could identify tasks or parts of the tasks that they are 
confident that AI will perform successfully without their 
oversight or ones that they found AI to be most helpful 
with. For example, users might prefer manually translating 
certain types of code (Weisz et al., 2022), allowing the tool 
to be responsible for generating control structures while the 
user fills out the body (Barke et al., 2023), or using prompt 

Figure 6. User awareness of task allocation and agency over task allocation can help address the challenge of task-complexity polarization.
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engineering strategies to assign a certain role (e.g., critical 
code reviewer) to the GenAI tool (Ulfsnes et al., 2024). 
Likewise, users could allocate only repetitive “boilerplate” 
code for the system to complete autonomously while 
requesting its high-level planning support (rather than entire 
code completion) during more complex or exploratory tasks. 
In creative domains, this might mean that GenAI tools pro
vide ideas in an open-ended form (e.g., probing questions), 
rather than as explicit suggestions (Arnold et al., 2021), an 
approach that was found to be particularly helpful in copy
writing (Chen & Chan, 2023). Making this initial allocation 
of responsibility and clearly understanding how tasks are 
divided would reduce the cognitive load of interacting with 
the GenAI system throughout demanding tasks. Moreover, 
it would help users better manage their demanding role as 
evaluators of AI output (as per Section 3.1).

Supporting effective task allocation depends on GenAI 
systems having a clear understanding of the work domain 
context, which is enabled by ecological interface design (see 
Section 4.3). As such, the described Human Factors 
approaches work in synergy to support human-GenAI inter
action and productivity.

5 Conclusions

We have synthesized and analyzed the productivity chal
lenges emerging during human-GenAI interactions, focusing 
on the much-studied domain of software development and 
noting similarities in areas such as data science, design, and 
writing. We have demonstrated the parallels between prod
uctivity challenges in older Human Factors automation stud
ies and recent GenAI studies. Drawing on the human 
automation studies, we have categorized these challenges 
and the underlying reasons related to Human Factors, such 
as workload, feedback, and situational awareness. We show 
how aspects like the shift from active production (e.g., writ
ing code) to passive evaluation (e.g., reviewing code), 
unhelpful workflow restructuring, task interruptions, and 
task-complexity polarization can stifle human performance 
and effective implementation of GenAI.

Further extrapolating from human-automation studies, 
we have provided a set of design solutions that could help 
avoid productivity losses in human-GenAI interaction. More 
broadly, we argue for more consideration of users’ work
flows, unique ways of working, and domain specificities 
when designing GenAI tools. To achieve this, we propose 
that systems be designed in accordance with ecological inter
face design, the principle of continuous feedback, support 
for flexibility via task allocation between users and systems, 
and user-guided system personalization. We also provide 
concrete design solutions for effectively guiding user atten
tion during interruptions. Human Factors research provides 
a fertile starting ground to explore these solutions for 
GenAI. However, because the technology is still novel and is 
being applied in a wider set of domains than previous forms 
of automation, we suggest that future research is critical to 
test the validity and effectiveness of these solutions in the 
GenAI context.

Our paper is an initial bridge between Human Factors 
and Human-Computer Interaction issues of human-GenAI 
interaction. There is, of course, far more nuanced Human 
Factors research that can help understand and address the 
key productivity challenges in this fast-paced area. 
Reciprocally, we also expect that future Human-Computer 
Interaction research may open up new domains of explor
ation for Human Factors.

Notes

1. Endsley (2023) makes a similar parallel between the ironies 
of automation and the challenges of modern AI systems; 
however, whereas they cover both generative and non- 
generative AI and take a high-level view of AI, the current 
paper focuses specifically on GenAI and examines concrete 
usability challenges documented in recent user studies of 
GenAI systems.

2. This shift from production to evaluation is relative rather 
than absolute, as, for example, crafting prompts still 
constitutes a form of production (see Section 3.2.1).

3. Situational awareness can also be reduced due to 
automation-related unhelpful structuring of workflows 
(Section 3.2), including changes in the task sequence 
(Section 3.2.3) and the loss of feedback (see Section 3.2.4).
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