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The ways in which the components of a program interact with each other in a concurrent setting can be

considerably more complex than in a sequential setting. The core problem is unrestricted shared mutable state.

An alternative to unrestricted shared mutable state is to restrict the sharing using Ownership. Ownership

can turn what would have been a race into a deterministic failure that can be explained to the programmer.

However, Ownership has predominantly taken place in statically typed languages.

In this paper, we explore retrofitting an existing dynamically typed programming language with an owner-

ship model based on regions. Our core aim is to provide safe concurrency, that is, the ownership model should

provide deterministic dynamic failures of ownership that can be explained to the programmer. We present

a dynamic model of ownership that provides ownership of groups objects called regions. We provide dynamic

enforcement of our region discipline, whichwe have implemented in a simple interpreter that provides a Python-

like syntax and semantics, and report on our first steps into integrating it into an existing language, Python.
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1 Introduction
When a sequential program or programming language graduates to concurrent execution, the

process can be painful [52, 59]. The ways in which the components of a program interact with

each other in a concurrent setting can be considerably more complex than in a sequential setting.

Consider a simple example of the append method on a List in Python. The Python representation

has an object that contains a length, a capacity, and a pointer to a block of memory that contains
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the elements. The append method increases the length of the list by one, and if it does not exceed

the current capacity of the list, it writes the new element into the block of memory. If it exceeds

the capacity, it allocates a new block of memory, copies the elements from the old block to the new

block, and writes the new element into the new block. If we naively use this method in a concurrent

setting, then racing calls to append can result in data loss, and even worse, data corruption.

To enable programs to run in a concurrent context, synchronisationmust be added to the program.

Failure to correctly add synchronisation typically manifests as non-deterministic bugs that are

difficult to reproduce, diagnose, and fix. This is not a great programming experience and makes

the migration from sequential to concurrent programming a difficult one. The core problem is

unrestricted shared mutable state.

An alternative to unrestricted shared mutable state is to restrict the sharing. This restriction

can be a shared-nothing approach such as JavaScript’s WebWorkers or Erlang’s Actors, or more

elaborate approaches often described as Ownership. Many forms of ownership have been proposed

over the years [2, 6, 16, 18, 26, 48] with multiple versions being developed to provide concurrency

safety [11, 17, 26, 51, 56]. Ownership for concurrency safety can turn what would have been a

data race into a deterministic failure that can be explained to the programmer. However, with few

exceptions [23, 32, 50], Ownership has predominantly been explored in statically typed languages.

But what happens if you are in a dynamically typed language? Can we enforce ownership

dynamically to provide safe concurrency? How do we surface ownership without a static type

system to carry the ownership information? Can we add ownership to an existing language like

Python to enable a seamless migration from sequential to concurrent execution of programs?

In this paper, we explore retrofitting an existing dynamically typed programming language, like

Python, with a region-based ownership model building on Arvidsson et al.’s Reggio [4]. Our core

aim is to provide safe concurrency [11, 17, 26, 56], that is, the ownership model should provide

deterministic dynamic failures of ownership that can be explained to the programmer, rather than

allowing racing accesses to potentially corrupt sequential invariants of data structures.

Contributions. We present a dynamic model of ownership called Lungfish (§ 2) that provides

ownership of groups of objects called regions. We use a novel notion of a local region that captures

existing sequential codewithoutmodification, and provides a dynamic notion of borrowed references
that allow objects in the local region to refer into other regions. This approach is integrated with

deeply immutable objects and cowns, concurrent owners [13], to allow for safe sharing of objects

between regions, while protecting the programmer from data races.

We provide dynamic enforcement of our region discipline (§ 3). Our implementation uses a

write-barrier to enforce that the region discipline is obeyed as the object graph is updated. For

legacy sequential code, this introduces a couple of untaken conditional branches for each write to a

field. For code using regions it prevents connecting regions in ways that would potentially lead to

data races. To rapidly prototype and explore our ownership model, we have developed a simple

interpreter that provides a Python-like syntax and semantics (§4). The prototype outputs graphical

traces of the changes to, and enforcement of, the ownership model.

We report on our first steps of integrating Lungfish into Python. This has led to several inter-

esting challenges (§5). As this paper shows, many of the challenges stem from the pragmatics of

programming language design and implementation, and we expect our insights to be as useful as

they are surprising. To evaluate our design, we compare it to our goals for Lungfish (§7). As our

work is ongoing towards a complete Python prototype, not all our goals can yet be empirically

evaluated. However, we provide qualitative arguments for why we believe they will be met.

Why Python? Python was designed as a single-threaded language with a global interpreter lock
(GIL) that ensures that only one thread at a time executes Python bytecode in the interpreter [61].
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Concurrency was introduced through threading, allowing developers to write concurrent code,

but without true parallelism thanks to the GIL. To support true parallelism, Python recently added

support for “subinterpreters”—multiple threads each running its own isolated interpreter with its

own GIL [54], inside a single Python process. Python’s multiple subinterpreters is an example

of share nothing. Communication between subinterpreters is necessarily by copy as different

subinterpreters run their own memory managers and can only manage objects they themselves

created. Shared-nothing approaches permits sequential reasoning inside each subinterpreter (in

the case of Python) with clearly demarcated interaction points with other threads.

Recently, development has begun [65] on “free-threaded Python” which removes the GIL in a sin-

gle interpreter [28]. With the GIL removed, free-threaded Python trades sequential reasoning away

for increased performance enabled by permitting threads to operate directly on shared state. Where

the shared state is mutable, data races are possible. Work on free-threaded Python is concerned with

ensuring that such data-races cannot compromise the integrity of the runtime, but does not prevent

data-races in Python code. When work on free-threaded Python is done, Python will have joined

the most common approach to concurrency and parallelism: threads with shared mutable state.

We are at a point where Python graduates from sequential to concurrent execution. We believe

that using dynamic ownership can reduce the challenges for the programmer in this process.

2 Growing an Ownership Model for Safe Concurrency
Let us set the stage by enumerating our design goals, which we use to both motivate and evaluate

our design choices. Only the first five goals are in the scope of this paper, but without stating the

remaining, some design decisions would be inexplicable. The goal of this work is to retrofit Python,

an existing, “morally sequential” dynamic programming language, with concurrency in a way that

is (G1) safe from data races. In addition to data-race safety we want backwards compatibility for

existing programs: (G2) existing sequential Python programs should work without modification,

and (G3) Python libraries which are morally safe in a multithreaded setting should be usable when

multithreading has been added with little or no effort by the library maintainers. Our design should

(G4) embrace the value set of dynamic languages (e.g., delay errors until they occur, reject as few

programs as possible), and (G5) introduce a low number of new syntactic elements to the Python

language. We also strive to (G6) deliver performance — in particular, (G6a) sequential programs

should not run considerably slower, although we (G6b) are willing to take a small performance hit

for multithreaded programs, speculating that it can be offset against performance increases due

to parallelism. It also (G6c) should not disable or counteract existing performance optimisations.

Finally, (G7), our design should not add considerable complexity to Python’s runtime, to ease the

burden of maintaining the language using a small and largely unpaid volunteer work-force.

These goals have been developed while iterating our design over many months with a group of

core committers to Python (some of which eventually ended up co-authors of this paper; c.f., §9).
In the coming sections, we evolve our design to meet (most of) them.

2.1 A Notion of Safe Sharing and Ownership Transfer
As an initial model, the single thread of our program has exclusive access to all data, i.e., it owns
the data. Our first goal is to organise that data to permit it to be shared safely with other threads,

or alternatively to see which data cannot safely be shared. By safe sharing we mean absence of

data races and uncoordinated access.

First, we distinguish between immutable and mutable data. The former is always safe to operate

on without exclusive access (but c.f. §5.3.5), but the latter requires some form of synchronisation to

ensure “effective exclusive access”, or ownership transfer.
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Fig. 1. Dangers when sharing
data structures across threads.

For ownership transfer to be safe it must not give rise to sharing

of mutable data across threads (which would invalidate exclusive

access). Transferring an object a from one thread to another re-

quires ensuring that the transitive closure of mutable state under a
that becomes reachable to the receiver is no longer reachable on the

sender side (b in Fig. 1). Synchronisation has a similar requirement:

sharing a (without transfer) requires that accesses to the transitive

closure of mutable state under a is properly guarded, both by the

sender and the receiver. Finally, for an immutable object to be safe

to share, when object a is made immutable (we call this freezing),
the transitive closure of mutable state under a must be made im-

mutable too. Fig. 1 shows the subtleties involved when transfering,

sharing and freezing data structures with subobjects.

From the above follows that a programmermust be able to reason

about the transitive closure of mutable state from objects in their

concurrent programs, regardless of if they want to share them as im-

mutable or mutable objects, or transfer them. If all object references

are unique, then a automatically dominates all state reachable from

a, but if more flexible reference structures are permitted, either as

part of a data structure (e.g., a doubly-linked list) or as part of an

operation (e.g., an iterator over a collection), reasoning can become

arbitrarily complicated.

2.2 Region-Based Ownership
To decouple ownership from the unit of concurrency, we use regions
as isolated groups of mutable objects. At any point in time, a thread

has exclusive access to the regions it can reach. Each thread has an implicit local region associated

with it. It contains the thread’s stack frames as well as new heap-allocated objects, which can move

to other regions. New regions can be created dynamically.

† Break 
   isolation

 ‡ Breaks 
uniqueness

R

cb

x R’

†

†

‡
Local

immutable

containedOk

Ok (borrowed)

Bad

bridge

Fig. 2. Region 𝑅 with objects b,
c, bridge R, and nested region 𝑅′.

Local regions give an ownership semantics to all existing Python

programs: all its data is owned by the thread that created it (G2).
To satisfy our performance goal (G6a), assigning between locally-

owned objects must be cheap. We revisit this in §7.

With the exception of the local region, every region contains

a bridge object [32] that reifies the region and acts as a handle

to it along with its contained objects. Bridge objects are exter-
nally unique [15], i.e., at most one of its incoming references may

originate from outside the region itself, or the local region. Only

externally unique references to bridge objects may cross region

boundaries (Fig. 2). This is the case for reference c → R’ making

R the parent of R’. Because x is in the local region, R is free. The
region topology forms a forest of region trees.

2.2.1 Assigning Ownership and Borrowing. In a statically typed language, an ownership system

can be layered on-top of the program as type annotations. In Reggio [4],

iso Foo y = new Foo()
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creates a new Foo object which automatically becomes a bridge object for a new region by virtue

of the iso annotation on the type of y. If iso is replaced by mut, the object created would instead

become a “contained object” inside the equivalent of the local region.
1

In an untyped language, we do not have the ability to layer such metadata on-top of code. Instead,

ownership is determined dynamically as a side-effect of a field update, and region creation is unified

with bridge object creation. This allows us to use Python’s object creation syntax for region creation,

in accordance with (G5). Thus, our equivalent of the Reggio code is (on three separate lines)

y = Foo() 1 x = Region() 2 x.f = y 3

This creates a new Foo object y in the local region, a bridge object x for a fresh region 𝑅, and finally

moves y into 𝑅. (See Fig. 3; R, drawn on the region border, is the bridge object and b is Foo.)

R

x Localby

R

b

x y Local

Line 1–2

Line 3

R’

z w

c

R’

z w

c

Fig. 3. Interaction between local
region and explicit region 𝑅.

We treat ownership in the implicitly created local region differ-

ently from explicitly created regions. The local region’s ownership

is ephemeral, meaning that as soon as an object in the local region

is referenced from another region, we transfer the ownership of

the object to the other region. (This is what happens to b on line 3

in Fig. 3.) Transferring an object from the local region will transfer

all other objects in the local region that the first object reaches. If a

propagating transfer encounters a reference to an object in a third

region, the transfer terminates successfully if the referenced object

is a bridge object. (This is what happens to b→R’ on line 3 in Fig. 3,
where 𝑅′

becomes nested inside 𝑅.) If the referent is not a bridge

object, the entire transfer fails (and an exception is raised), as the

object cannot be moved and the reference breaks region isolation.

Just as ephemeral ownership gives up ownership of objects on

incoming references, it permits outgoing references without claim-

ing ownership. Any residual references from the local region to

an object that is moved into another region becomes a borrowed reference. (The y→ b on line 3

of Fig. 3.) Borrowed references are only permitted from the local region (as no other region has

ephemeral ownership). Just like inference, this design can lead to unintended object ownership,

but unlike inference, this will be discovered at run-time (if it conflicts with the rest of the program).

2.2.2 Regions Facilitate Ownership and Transfer. When there are no references to the region (or

nested regions) from outside, except to its bridge object, and no references from inside the region

(or nested regions) to outside, the region is fully encapsulated — we say that it is closed. This is
the case for both regions in Fig. 2. As a closed region is dominated by the single reference to its

bridge object, the holder of such a reference has exclusive access to — owns — the region and its

contents. Safe transfer of a closed region to another thread only requires the proper move of the

single reference to the bridge object. Thus, it suffices to reason about a single reference to guarantee

absence of residual aliasing for the entire transitive closure of state under it. If the objects a and b in
the transfer example in Fig. 1 were created as R and b in Fig. 3, transfer could proceed in two ways:

detect that the region is not closed and fail, or invalidate the borrowed reference in x and succeed.

2.2.3 Regions Facilitate Freezing. Regions help reasoning about the propagation of freezing: freez-

ing a closed region through a path 𝑝 is guaranteed to not affect other reachable variables or fields.

For example in freeze(x); y.f = 42, if x is closed, then y cannot refer to x or any other object in

the same region, meaning freeze(x) cannot cause y.f = 42 to fail because the object y refers to

1
Reggio does not have a local region, but only one mutable region at a time so mut Foo means the currently mutable region.
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has been made immutable. Once a region is frozen, the region itself is no longer needed because

immutable objects can be safely shared across threads without any need for exclusive access.

2.2.4 Regions Facilitate Coordinating Concurrent Access to Shared Data. So far, we have shown

that regions facilitate concurrent programming with objects which are mutable but not shared or

shared but not mutable. To simultaneously support mutability and sharing we must add a dynamic

component to govern who has exclusive ownership at any given point. To this end we add a new

object kind: the cown, short for “concurrent owner” due to Cheeseman et al. [13].

Cowns are cells that hold a reference to a bridge object (or another cown or immutable object).

Cowns offer mutability without topological restrictions. Instead, they cannot be accessed immedi-

ately: a thread that wants to access a cown must first acquire it. An access to a cown by a thread that

has not acquired the cown throws an exception. We leave the semantics of acquisition outside of

this paper, but it may be a lock-like synchronous operation or an message-passing like asynchronous
operation, depending on the desired concurrency model. In short, exclusive access is mediated by

the run-time. A thread that has acquired a cown may transfer ownership of a region stored in the

cown to itself along with its objects and nested regions. Before the cown is released, the thread may

transfer the region (or another value) back into the cown. The local region cannot be transferred

because it does not have a bridge object that can be stored in a cown. Cowns are released when

created unless they contain any object that is borrowed. In that case, the cown is pending release
and will become released when the final borrow is removed. An acquired cown cannot be released

manually, c.f., §2.3.1. When a cown is released, its contained region must be closed.
By nesting a region, cowns enable ownership-based structural lock correlation, which ensures

that the appropriate locks are held at the time of access [6, 39].

2.3 Summary and Overview of the “Lungfish” Ownership Model

Table 1. Conditions for a reference from a
source object 𝑆 to a target 𝑇 (denoted 𝑆 → 𝑇 )
in Lungfish. ✓ Permitted (sometimes with addi-
tional constraint). ✗ Not permitted. ➞ Triggers
transfer of ownership to satisfy E. Additional
constraints: E if 𝑆 and 𝑇 belong to the same
region; U if 𝑆’s reference to 𝑇 is the only refer-
ence to 𝑇 originating from outside of 𝑇 ; B the
→ reference is borrowed.

𝑆 → 𝑇 𝑇

𝑆 loc
al

im
mu
ta
ble

br
idg
e

co
nt
ain
ed

co
wn

local ✓ ✓ ✓B ✓B ✓

immutable ✗ ✓ ✗ ✗ ✓

bridge ➞ ✓ ✓E∨U ✓E ✓

contained ➞ ✓ ✓E∨U ✓E ✓

cown ✗ ✓ ✓U ✗ ✓

Each thread implicitly allocates stack frames and ob-

jects inside its local region. To safely share (or transfer)

objects with (to) other threads, explicit regions must

be created and objects from the local region moved

into these regions. References across regions must be

externally unique references to bridge objects or bor-

rowed references (i.e., originate in the local region).

References into the local region cause objects to be

transferred to the source region.

We distinguish three kinds of owned objects: con-
tained objects which are mutable and encapsulated in-

side a region; bridge objects which are like contained

objects but additionally permit a single incoming ref-

erence from outside its encapsulating region; and local
objects whose ownership can be transferred implicitly
by an incoming pointer, and hold borrowed references.

As ownership means exclusive access, owned ob-

jects can never be reachable by more than a single

thread at any given point. They are thus safe to access

immediately without any need for synchronising with

anyone. In other words, they permit sequential reasoning. Additionally, we distinguish two kinds

of un-owned objects: immutable objects and cowns. As they are not owned, they can be freely

shared in the system. As immutable objects are guaranteed to not change, they enjoy the same
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immediate access and sequential reasoning as owned objects. Cowns however must be acquired

before being accessed, which guarantees exclusive access dynamically.

Table 1 shows all the reference constraints of our system, which we call Lungfish
2
.

In addition to the above, Lungfish defines a number of functions operating on entire regions (via

bridge objects 𝑏), paths (𝑝 ::= x | 𝑝.f), cowns (𝑐), immutable objects (𝑖), or values (𝑣 ::= 𝑏 | 𝑐 | 𝑖):
– is_closed(𝑏) Returns true if 𝑏 is closed, else false.

– freeze(𝑏) Makes the contents of a region (tree) deeply immutable and removes the region(s).

– merge(𝑏1, 𝑏2) Merges free region 𝑏1 into region 𝑏2 and returns 𝑏1 as a contained object. If the

second argument is omitted, 𝑏1 is merged into the local region, essentially resetting ownership.

– get(𝑐) and set(𝑐, 𝑣) read and update the value of an acquired cown. The get(𝑐) returns the value

and set(𝑐, 𝑣) installs the new value and returns the previous value.

– The keyword move 𝑝Moves the contents of a variable or field. This is the equivalent of a destructive

read [7, 32] or a swap [30] with None (in the case of Python). A new keyword is motivated as no

other Python operators have a side-effect of nullifying a variable or field (G5).

... # no access to x's or y's regions
b = None
with CS(x, y): # CS is a cown set
# x and y are now acquired
... # access to x's and y's regions
b = get(y)
... # or newly created regions
b = None

# x and y are now released

Fig. 4. Acquiring and releasing two
cowns using a with statement.

2.3.1 Concurrency Model. Lungfish can be used with different

concurrency models such as threads and locks, or behaviour-

oriented concurrency [13]. For concreteness, we give all examples

following the style of free-threaded Python, i.e., threads and

locks. What sets this work apart from free-threaded Python’s

approach is ownership-based structural lock correlation [39]: it is

not possible to access anymutable state unless you have exclusive

read and write access to that state. A thread is created in Python

by instantiating a Thread object and passing it a callable object

that implements a run() method and arguments to that function.

These objects will become accessible by both the creating thread

and the created thread. For this to be safe we require these objects to be transferred, cowns, or

immutable, following the three scenarios in Fig. 1. We can spawn a new thread starting in my_method

with a bridge object x, a cown y, and an immutable object z like so:

t = threading.Thread(target=my_method, kwargs={"p1"=move x, "p2"=y, "p3"=z})

Cown
Cown

Cown

x y z

with (CS(x, y)): ...

b Local

Fig. 5. Exclusive access inside the
with in Fig. 4. (Only drawing bridge
objects to reduce clutter).

This creates a new thread 𝑡 , moves the bridge object x from
the local thread into 𝑡 , and shares the cown y and the immutable

object z with 𝑡 . The move invalidates the local variable x. When

starting the thread by t.start() an exception is thrown if any

of the constructor arguments are not bridge objects of closed
regions, cowns, or immutable objects. Without loss of generality,

t.join() returns nothing as a cown can be used to obtain results

from threads (c.f., Fig. 13).
For acquiring and releasing cowns, we use a block-scoped con-

struction that acquires zero or more cowns before the start of

the block and automatically releases the cowns at the end. In a

synchronous concurrency model, this can be achieved using a

context manager [62] that gets called on entry and exit to a with

statement (the CS class in Fig. 4).
3
Fig. 5 shows what is accessible

2
As lungfish both have lungs and gills (c.f., §7.1.2), and resemble snakes (at least to a computer scientist).

3
Note that with blocks do not create new scopes in Python. In examples, we assume variables used only inside the with are

removed at the end of the block. This can be achieved with reflection or a combination of decorators and nested functions.
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inside the with CS(x, y) block, notably not z. A dark green cown is acquired and a light green

region is exclusively accessible to the acquiring thread. Regions nested in unacquired cowns are

dark red. If the b = None was removed, the region will escape its acquiring block. However, that

means that the region isn’t closed, and the release will raise an exception. We will discuss our

intended concurrency model and its Lungfish interface in a future paper.

2.3.2 Limitations. The granularity and flexibility of Lungfish’s concurrency is controlled by the

heap structure. It is not possible to operate concurrently on two objects that reference each other

as those objects must be inside the same region. A region structure that does not fit an intended

parallelism can be dealt with by merging the region into the local region, which permits its objects

to be moved to new regions which can subsequently be operated on in parallel. Whether such

overhead is acceptable will vary from case to case. Parallel operations on arrays require that cells

are cowns. As long as an array’s elements do not overlap, we can turn an array into disjoint regions

á la Arr-O-Matic [68].

3 Dynamic Ownership Enforcement
Next we explain how to check for ownership violations dynamically. As a result of design iteration

with maintainers of dynamic programming languages, there has been a constant shift towards

delaying ownership checking closer to the time of error (G4). In the end, we treat the act of trying

to make a structure that would make data-races possible visible to other threads as an error, rather

than raising the error only if the data races are observed. Thus, errors are caused by the actions of

a single thread, not by several threads operating on shared data.

Motivated by (G4), we require region-based ownership to be enforced only when data is trans-

ferred or shared, that is when spawning a new thread and releasing a cown. In Lungfish, this requires

that the region is closed. If the region is open, then the errors outlined in Fig. 1 are possible, i.e.,
mutable state becoming directly reachable from multiple threads. Note that we raise an exception

when sharing occurs, not if a data race actually takes place on that shared state.

3.1 Tracking Ownership
In Lungfish, every object knows its owning region using a field owner. It is initially set to Local,

which represents that the object is in the local region. When a local object is moved into another

region, we update the object’s owner field to reference the region 𝑟 . For immutable, and cown,

objects the owner field to Imm, and Cown, respectively. Lungfish distinguishes between shared,

inter-region and intra-region references. Shared references are references to immutable and cown

objects, and are always allowed. Intra-region references are always allowed and do not need to

be checked. Inter-region references are split into two types of reference: borrowed and external. A
borrowed reference is any inter-region reference starting in the local region. Note that all stack

variables are borrowed references as they are fields of a frame object in the local region. All other

inter-region references are external references and must satisfy the external uniqueness constraint.
External uniqueness requires that there is at most one external reference to each region and

that the target of the reference is a bridge object. Regions have a parent attribute which is either

None (when the region is a root of a region tree), Cown (when the region is stored in a cown), or

the parent attribute is the enclosing region. Regions initially do not have a parent region, and are

captured when their bridge object is referenced from a region other than itself or the local region.

Capturing an already captured region throws an exception. To make a captured region free, we

simply remove the external reference to the bridge object, which updates its parent to None.

We track a region’s incoming borrowed references through a local reference count (LRC). The
LRC allows us to efficiently check if a region is closed: when the LRC is 0 the region is closed.
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Note that this means that regions referenced from the stack (or fields in the local region) cannot be

closed, which is intentional: they are directly reachable from the current thread, and closed implies

they are safe to transfer or share.

We also track the existence of borrowed references to child regions (aka nested regions). When

we increase the local reference count of a child region, if it moves from an LRC of zero to one, we

increase the LRC of the parent region. Similarly, when it moves from one to zero, we decrease the

LRC of the parent region. This is done recursively up the region tree. This ensures that a region is

not closed if there are borrowed references to any of its child regions.

3.2 Implementation
The core challenge of the implementation is to dynamically enforce the ownership constraints in

Table 1 efficiently. We enforce these constraints through a write-barrier, that is, some additional

logic triggered on stores to fields, assignment to local variables and binding of arguments to formal

parameters. As we model local variables and formal parameters as fields of a frame object it suffices

to just implement the write-barrier for fields.

To track the correct usage of regions, the write-barrier must maintain three things: (1) the region

that an object belongs to, (2) the local reference count, and (3) the parent region of the region, if

there is one. The first is represented by the owner field of each object, which refers to the region

that owns the object. The second and third values are represented using two special fields that are

stored in the region: lrc and parent, respectively. It also contains a field that references the bridge

object. The region is a separate allocation to the bridge object, which simplifies handling cases

where the bridge becomes unreachable, but there are still borrowed references into the region. The

separate allocation allows the bridge to be collected as soon as it becomes unreachable without

needing to update the owner of still reachable objects.

Let us consider a store that updates the field 𝑓 of an object src with the value tgt, where the

field previously contained oldtgt. The store triggers a write-barrier shown in Fig. 6. The first thing

the write-barrier must do is to check if the assignment is allowed by checking that the region of

the updated object src is not Imm or Cown. If the store is allowed, the write barrier updates the

region topology for the new edge from src to tgt, and removes the old edge from src to oldtgt.

In Fig. 6, we define two operations on the region topology for this purpose: addReference and

removeReference. See Fig. 7 for a graphical example of the barrier in use.

The removeReference operation removes a reference from src to oldtgt. If src and oldtgt are in

the same region or oldtgt is a cown or immutable, then there are no region topology updates. If tgt

is a cown or immutable, then the reference count is decreased atomically, and in all other cases, it

is decreased non-atomically. If the reference is borrowed, that is, from the local region into another

region, then the local reference count of the region owning oldtgt is decremented. The final case

handles instances where src and oldtgt are in different regions. From the external uniqueness

constraint, we know oldtgt is a bridge object, and src contains the only owning reference to oldtgt

from outside of oldtgt’s region. The code removes the parent pointer from the returned heap.

The addReference operation adds a reference from src to tgt. This follows a similar pattern to

removeReference. If src and tgt are in the same region or tgt is a cown or immutable, then there

are no region topology updates. If tgt is a cown or immutable, then the reference count is increased

atomically, and in all other cases it is increased non-atomically. If the new reference is from the

local region into another region, a borrowed reference, then the local reference count of the region

owning tgt is incremented. Otherwise, we need to move the tgt object, and all the local objects it

references, into the region owning src. This may fail, if it does not obey the region discipline.

The addToRegion operation is responsible for updating the local reference count for the region

that is being moved into. It assumes reference counted memory management for individual objects.
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1 def writeBarrier(src, oldtgt, tgt):

2 if src.owner in {Imm, Cown}:

3 raise Error

4 addReference(src, tgt)

5 removeReference(src, oldtgt)

6

7 def addReference(src, tgt):

8 # Check if in same region
9 if src.owner is tgt.owner:

10 return incRC(tgt)

11 # Check if tgt is a cown or immutable
12 if tgt.owner in {Imm, Cown}:

13 return incRCAtomic(tgt)

14 incRC(tgt)

15 # Check if borrowed reference
16 if src.owner is Local:

17 return incLRC(tgt.owner)

18 # Add object to a region (may fail)
19 addToRegion(tgt, src.owner)

20 def removeReference(src, oldtgt):

21 # Check if in same region
22 if src.owner is oldtgt.owner:

23 return decRC(oldtgt)

24 # Check if oldtgt is a cown or immutable
25 if oldtgt.owner in {Imm, Cown}:

26 return decRCAtomic(oldtgt)

27 reg = oldtgt.owner

28 decRC(oldtgt)

29 # Check if borrowed reference
30 if src.owner is Local:

31 return decLRC(reg)

32 # Handle removing parent of region.
33 return removeParent(reg)

34

35 def addToRegion(curr, reg):

36 if curr.owner is Local:

37 # Add references to the object,
38 # minus the one we just followed.
39 reg.lrc += curr.rc - 1

40 # Move into the region
41 curr.owner = reg

42 # Recursively move the fields...

42 # ...Recursively move the fields
43 for next in fields(curr):

44 addToRegion(next, reg)

45 return
46 # Account for internal reference
47 if curr.owner is reg

48 reg.lrc -= 1

49 return
50 curr_reg = curr.owner

51 # Ignore external references
52 if curr_reg in {Imm, Cown}:

53 return
54 # Check for bridge object
55 if not curr_reg.bridge is curr:

56 raise Error

57 # Check not already in a region
58 if not curr_reg.parent is None:

59 raise Error

60 # Check for cycle in region topology
61 if curr_reg in parents(region):

62 raise Error

63 curr_reg.parent = region

Fig. 6. Pseudo code for write-barrier. We highlight: operations that may trigger deallocation of multiple
objects; operations that do not run in 𝑂 (1); and Python reference count manipulations .

While moving objects into the region, we add to the local reference count the reference count of the

objects added to the region and remove a reference count for each internal reference that is created

by the move. If addToRegion is given an object that is already in a region, then it is responsible for

adding a parent to a bridge object. This can fail if the object is not a bridge object, already has a

parent, or if adding the parent would create a cycle in the region topology. These checks guarantee

that external uniqueness is preserved.

Note that the addToRegion operation is not constant time. Its time complexity is proportional to

the size of the subgraph being moved combined with the number of parents of the region being

moved into. The second component is due to the check for cycles in the region topology. While

the first comes from the graph walk. The incLRC and decLRC operations are also not constant time,

because they may need to update the local reference count of the parent regions.
4

Our implementation assumes that breaking the region topology is an unrecoverable error. To

make the error recoverable, we need to implement two versions of addToRegion: one that checks

the update is valid, and a second that actually performs the update. If added, a double pass will

increase the cost of adding objects to a region, but will provide a better programming experience.

3.2.1 Move. The move keyword can be implemented by using a temporary variable in the local

region to store the value of the field being moved. For example: y.f = move x.f can simply be

encoded using a fresh temporary variable, tmp, as four statements: tmp = x.f; x.f = None; y.f = tmp;

del(tmp). This is a simple encoding of the move operation that does not require any additional

logic in the write-barrier. The line x.f = None will result in removing the parent of the region, and

y.f = tmp will add the parent of the region to the new object. Finally del(tmp) removes tmp.

4
We do not expect the region hierarchy to be deep, so the cost of these operations should be low. (Potanin et al. [47] measure

average ownership depth to be 5–6 in Java, using a more fine-grained ownership model; we expect less.) If that does not

prove to the be case in Python, we can consider a more elaborate data structure to track the local reference count from

nested regions lazily. This would make closing a region more expensive, but would make the write-barrier more efficient.
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1 class Obj: pass # a
2 x = Obj() # b
3 x.g = Obj() # c
4 r = Region() # R
5 r.h = x # trigger transfer
6 x.f = 7 # immutable
7 x = None # immutable

Line No.

Code WB Comment

1 10 local to local

2 10 local to local

3 10 local to local

4 17 borrowed ref.

5(a) 19 add 𝑏 to R
5(b) 19 add 𝑎 to R
5(c) 19 add 𝑐 to R
6 13 7 is immutable

7 14, 31 stop borrowing

(To reduce clutter, we colour local objects like this     instead of drawing a local region.)
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Line 1
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a
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Fig. 7. Example of exercising the write-barrier. The table explains what line of code from the snippet ends in
what lines on the write-barrier logic in Fig. 6. Line 1 evaluates to a local name bound to a type object. To
reduce clutter, we do not draw the local region or show all __class__ pointers.

4 Prototyping Language Design
𝑃 ::= 𝑏

𝑏 ::= 𝑠 | 𝑠 𝑠
𝐹 ::= def 𝑓 (𝑥∗): 𝑏
𝐿 ::= { } | str | bool
𝑠 ::= while 𝑒: 𝑏

| for 𝑥,𝑥 in 𝑥: 𝑏
| if 𝑒: 𝑏
| if 𝑒: 𝑏 else: 𝑏
| return 𝑒

| 𝑒.𝑓 = 𝑒

| 𝑥 = 𝑒

| 𝑒
| 𝐹

𝑒 ::= 𝑥

| move 𝑥

| 𝑒.𝑓
| 𝑥[𝑠𝑡𝑟]
| 𝑥 !=𝑦
| 𝑥 ==𝑦
| 𝑓 (𝑒∗)
| 𝑒.𝑓 (𝑒∗)
| 𝐿

Fig. 8. Syntax of𝔉ranken𝔖cript.

To guide our design, we implemented𝔉ranken𝔖cript, a toy se-

quential programming language. Its goal is to enable ourselves

and the Python community to interact with and understand

Lungfish’s design space and has been instrumental to explain

the semantics of regions and how the write-barrier works.

𝔉ranken𝔖cript implements all of Lungfish’s region model

explained thus far, including some design alternatives which

are described in the next section. Since it is sequential, it does

not have with blocks, get and set or similar mechanisms. In

the future, we will extend𝔉ranken𝔖cript with a concurrency

model, but our priority has been the design of the region own-

ership model.𝔉ranken𝔖cript is available as an artefact [57],

with a small collection of programs.

When executing a program, the 𝔉ranken𝔖cript interpreter generates a markdown file with

one Mermaid diagram
5
for each line that shows the region and object topology of the program,

highlighting borrowing and region openedness, etc. This allows us to test and communicate

consequences of different designs without biting the bullet of making patches to the Python

runtime (which is itself a moving target).

Fig. 8 shows the syntax of𝔉ranken𝔖cript, which draws syntactically from Python and semanti-

cally from Python and JavaScript. It uses Python-style semantic indentation, which is not shown

for brevity. Metavariables 𝑥 and 𝑓 range over names of variables, fields and functions. str denotes a
double-quoted string. Literals 𝐿 are empty objects { }, strings and boolean values. The language

is prototype-based to avoid the need for special syntax for classes. Objects are dictionaries born

empty; methods are added by storing functions in object fields. Every object has a __proto__ field

which can be assigned to any object which will subsequently be used to lookup missing names.

5
See https://mermaid.js.org/, and also the live editor https://mermaid.live/ to view diagrams.
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Fig. 9. State of the heap after line 7 of Fig. 7
as rendered by𝔉ranken𝔖cript.

The built-in function Region() creates a fresh region

and returns its bridge object. Cown() takes a reference to a

root of a region tree and stores it in a freshly created cown

and returns it. freeze() makes the contents of a region

immutable. None is a built-in immutable object. Mutable

objects are shown in light gray, immutable objects and

references in ice blue and borrowed references as orange.

Running a 𝔉ranken𝔖cript program produces a file

with one diagram per line showing the heap’s evolution

called mermaid.md. Fig. 9 shows the heap after line 7 of

running the 𝔉ranken𝔖cript equivalent of the code in

Fig. 7. See supplemental material for the entire execution.

Despite being sequential 𝔉ranken𝔖cript can still be

used to explore safe concurrency. Successful transfer of

a region into a cown means that the region (its contents

and nested regions) is disjoint from state reachable from the current thread and therefore could

be operated on in parallel as soon as the cown is released. To explore reachability, and ensure

oneself that local state is not reachable from a closed region in a cown, the mermaid_show_tainted()

function can be used to colour the transitive closure of mutable state reachable from the taint

starting point.

𝔉ranken𝔖cript is implemented in Trieste, a C++ DSL for tree rewriting [20]. It can be built on

Linux, Windows and Mac using standard tools and is available as an artefact [57] for this paper.

5 Design Alternatives and Challenges
R

cb

x

y.f = x.f

R’

yz

LRC: 2

Local

R

cb

x
R’

yz

LRC: ≤2

Local

Fig. 10. Implicit freezing of b and
c destroys the integrity of the lo-
cal reference count for 𝑅.

Let us now review alternatives and challenges due to common

features in dynamic languages.

5.1 Implicit Freezing
Our write-barrier raises an error when a reference would otherwise

be created from one region to an object in another region. The

errors are raised on lines 56 and 59 of addToRegion(). An alternative

approach to this behaviour is to “fix” the problematic reference by

freezing the transitive closure reachable from the shared object.

This is straightforward to implement by replacing each Error by

a call to freeze(curr) on the aforementioned lines as well as have

Thread’s start() method freeze contained and local objects passed

to the thread constructor.

The obvious downside of implicit freezing is that it may cause objects to become immutable

unintentionally. When freezing a region, the effects will not propagate beyond the programmer-

curated region, simplifying reasoning about the results of freezing. On the other hand, there are

objects that one might want to freeze implicitly, such as strings and types (c.f., §5.3.2). A possible

middle ground is to support implicit freezing for a select number of types, or by opt-in.

However, implicit freezing interacts badly with our local reference count technique. Consider the

region 𝑅 in Fig. 10. If we create a reference to b from another region, the object will be frozen along

with c. Because b and c were frozen, 𝑅 is actually closed. However, we are unable to detect that

the reference z→ c should no longer contribute to 𝑅’s local reference count, unless we trace the

entire memory of 𝑅 (or the local region), which is an expensive operation when the region is large.
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A pragmatic approach can be taken to handle this: we mark the local reference count as “dirty”

(shown by red colour in Fig. 10). This means that the counter is an upper bound and may prevent

LRC from reaching zero making the region closed. To resolve this we have to resort to other means

such as traversing the local region to invalidate all borrowed references or count them to establish

a correct value for the counter. An alternative approach would be to record more information about

borrowed references, in particular what objects in a region have incoming borrowed references.

This would allow us to remove the total number of incoming references to the frozen objects from

𝑅’s local reference counter, at the expense of increasing the cost for tracking borrowed references.

𝔉ranken𝔖cript permits freezing the transitive closure reachable from any object and supports

implicit freezing by default. This behaviour can be turned off in favor of the strict freezing protocol

described in §2.3 by calling the built-in function pragma_disable_implicit_freezing().

5.2 Invalidation of Borrowed References
Closing a region requires the absence of borrowed references to the region (and its nested regions).

In statically typed languages, the duration of borrowing is typically known at compile-time from

scoping. The most straightforward definition of borrowing only permits borrowed references on

the stack [7]. More powerful definitions permit borrowed references on the heap, using typing

mechanisms to delimit their existance (e.g., Clarke and Wrigstad [15]). In Rust [36], the borrow

checker ensures that the lifetime of the borrowed value outlives the duration of the borrow. Since

Lungfish permits borrowed references from the local region, borrowed references can be in local

variables as well as fields in objects in the local region. To satisfy (G5), we do not introduce any

syntax for borrowing, but rely on programmers to manually invalidate borrowed references, or write

their programs with clever uses of scopes such that local variables are invalidated automatically.

In languages with prompt collection of memory, such as Python which uses reference counting,

borrowed references in temporary objects such as iterators will be cleaned up once the reference to

the iterator object is invalidated. A language implementation using a tracing GC would require

more manual invalidation.

It is possible to think of a borrowed reference as “weak” in the sense that it is only valid as long

as the region it refers into is open. Thus, closing a region could be made to invalidate borrowed

references dynamically. An obvious downside to this proposal is that references may be invalidated

“under foot”: Closing a region may cause references to become undefined elsewhere in the thread.

The close(𝑏) function in𝔉ranken𝔖cript will invalidate all references from the local region into

the region. The function is_closed(𝑏) returns True if the region is closed.

5.3 Dealing with Pervasive (Mutable) State
5.3.1 Mutable Types. Despite studies showing that most objects are thread-local in languages

like Java [66, 67], the sharing situations in Fig. 1 are very common in languages that reify types

and where each object has a reference to its creating type or class. This is the case in Python and

JavaScript, and in both cases, the type objects are mutable. Thus, even the act of instantiating two

objects of the same type in different threads creates an opportunity for the threads to race on the

type object. Freezing an object also requires freezing the type object, or it could change in ways

that could effectively violate immutability. For example, overwriting a getter method on the class

with one that returns a fixed number in the style of Abadi and Cardelli [1] can be indistinguishable

from a change to the object to a client of the object.

Python 3.12’s multiple subinterpreters model addresses this problem by having one type object

for each type per subinterpreter. This avoids races, but instead creates problems if an object is

passed (in a serialised fashion) between subinterpreters with different interpretations of its type.
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In Lungfish, we require that a type is frozen before it is used in more than a single region. This

permits a program to use Python’s reflective capabilities and modify the type up to the point where

the type object is shared across regions. The implicit freezing in §5.1 handles freezing of types

automatically as soon as a type object becomes reachable from a second region. Without such an

automatic solution, programs may become littered with annotations to freeze a type to ensure that

they can run without throwing exceptions, or handling such exceptions.

5.3.2 Immutable Types. But one does not simply freeze a type. In contrast to static languages,

a Python program is constructed dynamically during its execution. This poses challenges with

making reflective objects immutable, as the following example will show. Consider the use of a

conditional expression to determine the base class of a type: class A(B if cond else C):. This

evaluates to a new type object bound to the local name A, but also updates the tp_subclasses list

in the type object for B or C, depending on cond. The tp_subclasses list can be queried through the

__subclasses__() method. There are two aspects to this: If making type objects immutable is to be

interpreted strictly, then freezing a type would prevent deriving from it. We could not program

analyse our way out of this problem and create an immutable, fully populated subclass list from

the start as we cannot determine A’s base type without running the program.

A straightforward solution is to store the tp_subclasses data elsewhere in the system, or remove

it from the immutable fields. This brings us to the second aspect: (a) calls to __subclasses__() racing

with concurrent subclassing, or (b) concurrent subclassing racing on writing to tp_subclasses.

Problem (b) is the simpler problem. Since concurrent class creation will always lead to creation

of discrete type objects, additions to tp_subclasses are not order sensitive. Thus, concurrent

subclassing can be supported by making accesses to the tp_subclasses list thread-safe. Problem

(a) is trickier as it permits different interleavings of an execution to change the behaviour of a

program branching on the observable content of __subclasses__(). Our solution is to disable the

__subclasses__() method on mutable and immutable type objects.

m = A.mirror() # m is a cown
with m:
sc = \
get(m).__subclasses__()

for c in sc:
print(c.__name__)

Fig. 11. Using a mirror to query
a class’ subclasses.

To support querying a class for its subclasses (and similar opera-

tions), we introduce a per-class mirror [8] hidden inside a cown that

must be acquired to access these parts of the reflective API, as show

in Fig. 11. The mirror represents a snapshot of the class taken at

acquisition. This allows concurrent subclassing directly without the

mirror (b) in a way that is unobservable through a concurrent mir-

ror. To observe added subclasses, the mirror must be relinquished

and re-acquired. Note that types must remain immutable since we
permit immediate concurrent access to type objects.

To support our goal of backwards compatibility with sequential programs (G2), we only require

access through mirrors from the point where a second thread is created in the program. When

libraries developed for single-threaded Python are used in a multi-threaded context, we expect

most uses of reflection to break. However, due to the dangers of reflection in a concurrent setting,

forcing programmers to review and refactor this code is not without merit. A strength of the design

is permitting common cases, such as subclassing, to remain unchanged.

𝔉ranken𝔖cript models mutable type objects through its prototype-based design. Every object has

a __proto__ field pointing to a mutable prototype object and lookups of names to an object delegate

to the prototype when the names cannot be found directly in the object. Freezing a prototype is

possible either directly by freeze(), by turning on implicit freezing and sharing a prototype across

regions, or by placing prototypes in a region at the start of a program and then freezing it.

5.3.3 Module State. Python modules define a top-level namespace, which they can refer to inter-

nally using globals(). This namespace is a dictionary which is accessible to an importer through
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1 state = Region()
2 ... # populate state
3 guard = Cown(move state)
4

5 def random():
6 with CS(guard): # acquire
7 ...
8 return result
9 # implicit release

10 state = Region()
11 ... # populate state
12 guard = Cown(move state)
13

14 def random():
15 assert acquired(guard), "Error"
16 tmp = get(guard) # borrow
17 ...
18 return result

20 state = Region()
21 ... # populate state
22 guard = Cown(move state)
23

24 def random(state):
25 ...
26 return (result, \
27 move state)

Fig. 12. Three examples of a module using a cown to store its mutable state using different approaches
to ensure exclusive access to it (G3). Left: module encapsulates cown acquisition (Line 6), making calls to
random() thread-safe. Middle: module assumes its cown has been acquired by the caller (Line 15) and then
borrows the the content of the cown. (The assert is not necessary for safety.) Right: module requires a state
region to be moved into it (Line 24), and moves the state back to the caller together with the result (Line 26–27).

the name of the imported module. Modules make use of this dictionary to hold mutable state

crucial for its operation (e.g., the random module) or immutable constants such as math.pi in the

mathmodule. As dictionaries are mutable by default, a proponent of the Indiana Pi Bill [64] is free to

import math and subsequently assign 3.2 to math.pi without intervention, or add state to a module

whose definition is stateless. Thus, regardless of a module’s internal behaviour, using a module

across two different threads, gives rise to the undesirable sharing situations in Fig. 1.

Forcing a module to freeze its top-level namespace make stateless and immutably stateful libraries

safe to use. However, this will not work for modules such as random. To support gradual Lungfish

adoption, we extend Python so that modules can be marked as Lungfish compliant. Compliant

modules will be frozen imediately after import, at least once the program uses more than one

thread. Recall that freezing does not propagate through cowns. This permits a compliant module to

refactor its necessarily mutable state into a cown. Some libraries may encapsulate this fact and

hide acquisition of the cown entirely inside the library. This works well in the case of random but

not when it is necessary to reason atomically about interaction spanning multiple calls to the same

library. In this case, the library can require that the cown has already been acquired by the caller.

Fig. 12 shows three approaches to mutable state in a module using cowns.

5.3.4 Migration and Non-Compliant Modules. A very crude support for a non-compliant module is

possible by silently lifting its entire top-level namespace into a region shared by all non-compliant

modules wrapped inside a global cown called NonCompliantModule (G3). The import would also

wrap all the module’s functions in a trampoline that performs an assert on the cown:

assert acquired(NonCompliantModule), "Error: NonCompliantModule not acquired"

This will effectively make all interaction with non-compliant modules take place in a critical section,

permitting their use at the cost of suspending all parallelism. The reason for all non-compliant

libraries sharing the same “cown guard” is to facilitate using non-compliant libraries that depend

on other non-compliant libraries. With a single cown per non-compliant library, a user would have

to know the total set of non-compliant dependencies for a library to acquire them.

Interaction with a non-compliant random module would look thus (four separate lines):
6

import random as r1 x = 02 with NonCompliantModule: x = r.random()3 print(x)4

The call to r.random() performs the assertion above, and thus requires that the NonCompliant cown

is acquired, which happens on line 3. Note that the code is written assuming blocking interaction

6
If the random module was made compliant according to Fig. 12, simply replace NonCompliantModule by r.guard which is

the cown wrapping the module’s state region created on Lines 1–3, 10–12 and 20–22.
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with cowns. It would be possible to use behaviour-oriented concurrency [13], in which case line 4

would be nested in the with in line 3, or become an explicit continuation spawned inside the with.

If line 4 is inside the with, the printing is part of the critical section, otherwise not.

If the result of r.random()would create a persistent reference into the module’s implicitly created

region, the release would not succeed because the region in the releasing cown would not be closed

(or alternatively, the object is implicitly frozen (c.f., §5.1)).

5.3.5 Observing Reference Counts. The Python function sys.getrefcount(obj) returns the value

of the reference counter for the object obj. This function makes it possible to observe mutation of

an immutable object’s reference counter. Inspecting the value of the reference counter is done to

check for ownership in certain parts of the Python source code and in libraries such as numpy. If

the value of the reference counter is 1, that means that the object is unique, and therefore safe to

update in-place, which can be very useful to avoid large or frequent allocations. Similar tricks are

played in e.g., Koka [49] to match deallocation with allocation in close proximity.

To avoid code believing it can “own” an immutable object, and to prevent code from observing

concurrent creation of references to a known object, we redefine sys.getrefcount() to return

INTMAX when called with an immutable argument (G3). This is consistent with how Python handles

“immortal” objects
7
to reduce cache invalidation and avoid data races.

This brings us back to our claim in §2.1 that immutable objects are safe to share. While this is

true from the perspective of the programmer, underlying details such as memory management

may still warrant special treatment of immutable objects. In Lungfish, we require atomic reference

count manipulations of immutable objects (Fig. 6), just like for cowns.

6 Putting it All Together
Fig. 13 shows a small concrete example written in Python extended with Lungfish. We model

a bank with one bank account per cown. This fine-grained concurrency permits operating on

accounts in parallel, although our example does not as all operations access the same accounts. We

illustrate multi-cown acquisition to atomically transfer money between accounts, and read/only

cown acquisition to tally the total balance of all accounts in the bank. Transfer operations are

logged, and we share a single log entry across two accounts involved in the same transfer. This

requires the log entries to be immutable. We illustrate both implicit and explicit freezing of log

entries. In the first case (*), the log entry is created as a local object, then moved into the self

account’s region before becoming implicitly frozen when the log entry is appended to the dest

account’s region. In the second case (**), the entry is moved into a region and frozen.

Let us look closer at the transfer of funds from account a1 to account a2 on line 48. The with

block handles acquisition and release in as described in §2.3.1. Because of write acquisition, the

two cowns’ regions are given write permission. This is handled by the CS cown set class under the

hood by implementing the context manager interface.

The calls to ba() opens the regions of both accounts’ cowns and places references to the account

objects on the stack. This borrowing is handled by lines 16–17 in addReference() and increases

both accounts’ regions’ LRCs from zero to one, opening them. In this case, both regions are roots in

region trees rooted in separate cowns, meaning they have no parent regions to inherit permissions

from. When the block ends, the borrowed references have been invalidated, causing LRC to drop

back to zero for both regions — they are now closed. Thus, the releasing of the cowns will succeed.

7
While our immutable objects are not immortal, the immortality concept was motivated by a desire to make the reference

counts of immutable objects immutable too [55].
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1 # Account class for contained objects
2 class Account:

3 def __init__(self, balance):

4 self.balance = balance

5 self.log = []

6 def transfer(self, dest, amount):

7 if self.balance >= amount:

8 dest.balance += amount

9 self.balance -= amount

10 # implicitly immutable entry (∗)
11 log = Log()

12 self.log.append(log)
13 log.entry = "Transfer OK"

14 dest.log.append(log) # freeze!
15 else:
16 # explicitly immutable entry (∗∗)
17 log = entry("Transfer fail")

18 self.log.append(log)
19 dest.log.append(log)

20 raise Exception("Overdraft")

21 # Opt−in implicit freeze support
22 class Log(Freezable):

23 pass

24 # Create log entry
25 def entry(msg):

26 r = Region()

27 r.obj = Log()

28 r.obj.entry = msg

29 freeze(r)

30 return r.obj # immutable
31 # Create account
32 def account(b): # b = balance
33 r = Region()

34 r.account = Account(b)

35 return Cown(move r)

36 # Borrows account from cown
37 def ba(c):

38 return get(c).account

39 # Tally balance of accounts
40 def tally(acc, result):

41 sum = 0

42 with CS([a for a in acc])):

43 for c in acc:

44 sum += ba(c).balance;

45 with CS(result):

46 set(result, sum)

47 # Transfer money between accounts
48 def transfer(a1, a2, m)

49 with CS(a1, a2):

50 ba(a1).transfer(ba(a2), m)

51 # Swap contents of two cowns
52 def swap(a1, a2):

53 with CS(a1, a2):

54 tmp = set(a1, get(a2))

55 set(a2, move tmp)

56 # import the Thread class
57 from threading import Thread

58 # Create accounts and perform tasks
59 a1 = account(100)

60 a2 = account(20)

61 Thread(transfer, a1, a2, 10).start()

62 Thread(swap, a1, a2).start()

63 result = Cown(None) # Empty released cown
64 # Note: tuple of cowns is immutable
65 t = Thread(tally, (a1, a2), result)

66 t.start()

67 t.join()

68 with CS(result): # Print tally result
69 print(get(result))

Fig. 13. Example illustrating regions, cowns, read and write cown acquisition, implicit and explicing freezing,
borrowing and region transfer between cowns.

The tally operation demonstrates the use of a cown as a way to pass data back from a child

thread to a parent. The tally() function takes an empty cown result where the result is stored.

We use the join() method to ensure that printing does not start until the result is available.

Failure Modes. When the code in Fig. 13 is executed, it spawns three threads that all access the two

accounts a1 and a2, racing on transferring money, swapping the two accounts, and tallying the sum

of their balances
8
. The thread creation on lines 61, 62 and 65 all take cowns or immutable objects.

If a1 or a2 were mutable objects, thread creation would have failed (§2.3.1): neither contained nor

local objects may be passed as arguments to threads; if the regions inside a1 or a2were not wrapped

in cowns, they would not be closed at thread start as the original variables are copied, not moved.

If they were moved, they would have been moved to the thread created on line 15, and subsequent

threads would have been passed None. In summary, Lungfish will prevent the accounts from being

shared between threads as directly accessible mutable objects.

As the accounts are cowns they are sharable, because Lungfish ensures that concurrent accesses

to them are properly synchronised. Contents of cowns are only accessible through get and set.

Such calls will fail outside an acquiring with. Because the with blocks on acquiring cowns, they

will serialise the execution, and avoid data races. At the end of the block the cowns are released,

which throws an exception unless the cowns’ regions are closed. This prevents a reference to a

mutable object in a region from escaping and being accessed outside of the block that dynamically

ensures exclusive access to it, as shows in Fig. 4.

7 Evaluation of Design Goals and Implementation Goals
Table 2 summarises our goal fulfilment and points to the discussion in the paper. Implementation

goals that are too early to tell are included to make sense of our design decisions. We expect that

8
In a large system, it is easy to imagine concurrent operations on the same accounts being initiated from different places

and needing to be ordered in some way to avoid racing. To keep things simple, we spawn them in a single place.
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the full implementation will take two person years to complete. In our current state, we have

implemented most of the functionality for immutable objects, and the diff is around 2KLOC.

7.1 Design Goals
7.1.1 (G1). Because Lungfish only allows access to data that is immutable or exclusively accessible

to the current thread, it is data-race free. This ticks (G1).

7.1.2 (G2) and (G3). Existing sequential programs allocate and manipulate only inside the local

region. They will therefore work unmodified despite actually using (ephemeral) ownership.

Lungfish’s isolation permits us to leverage Python 3.12’s multiple subinterpreters so that each

thread runs its own subinterpreter (with its own GIL [54]). A necessary prerequisite of this is to

change howmemory is managed since Lungfish permits objects created by one thread to be accessed

directly by other threads. In Python 3.12, each subinterpreter manages its own isolated memory

using non-atomic reference count manipulations and its own cycle detector. Since mutable regions

are only visible to one thread at a time and all shared objects guaranteed to not change, each subin-

terpreter can safely be extended to handle cycle detection inside its reachable memory. Reference

count manipulations on immutable objects and cowns must become atomic (line 13 in Fig. 6).

Running a per-thread subinterpreter removes the performance limitations of the GIL without

needing to remove the GIL. As a side-effect of this design, existing code that uses old Python threads

or uses parallelism at the C-level, and therefore relies on the GIL for safety in both cases, will not
crash or compromise the Lungfish-enabled CPython runtime This ticks (G2) and (G3).
As its name suggests, Lungfish thus both has GILs and no GILs, and is close enough to pre-

Lungfish Python that existing code should work, even if it uses pre-Lungfish threads or parallelism

at the C-level. (But this code is not guaranteed to be data-race free.)

7.1.3 (G4). Our design delays the point of enforcing region isolation to where it would otherwise

lead to mutable state becoming directly accessible to multiple threads. This is stricter than a data-

race detector which would only err in case of a data race on such shared state, but such tools

can let bugs slip into production that are hidden in unlikely interleavings. While it is possible to

extend borrowing to all regions and let regions intersect while open, it would require a more costly

solution than LRC to track “foreign references”. While on the upside, this would make it possible to

move objects beween regions manually, such code could easily break since a move must reason

about all incoming alias to an object. With these caveats, we believe that we tick (G4).

7.1.4 (G5). We mostly piggyback on existing language constructs to construct and manipulate

regions and cowns, e.g., function calls, constructors and context managers. The only new syntax is

move, but this is notably a convenience only — not fundamental. A move can always be implemented

manually by assigning None to a variable because we never perform a closed check immediately

after a transfer, only on cown release, freeze, or thread start. This ticks (G5).

7.2 Implementation Goals
We do not claim to meet these goals, but reason why we believe that the full implementation will.

7.2.1 (G6a). Single-threaded programs opt out of most of the overhead of ownership checking:

they only allocate in the local region, never perform implicit transfer nor topological changes, and

they never implicitly freeze objects. Thus they exercise fast constant-time parts of our write-barrier.

Some checks can be delayed until the start of the second program thread.

We speculate that the write-barrier will not cause a significant slow-down. A store in CPython

such as x.f = 42 goes through many levels of indirection, branching on e.g., the object’s represen-
tation and if its class replaces the default behaviour for setting attributes with user code.
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Table 2. Goal fulfilment. ✓= goal fulfilled. ?= Too early to tell, but we expect so.

Goal Description Status Discussion

(G1) Data-race freedom ✓ §2, §3

(G2) Existing sequential programs should work unmodified ✓ §2.2, §7.1.2

(G3) De facto safe libraries should be easy to make compliant ✓ §5.1, §5.3.4, §7.1.2

(G4) Delay errors; “favour no false positives over no false negatives” ✓ §3, §7.1.3

(G5) Low number of new syntactic additions ✓ §2.3, §7.1.4

(G6a) Almost no slow-down of sequential programs ? §7.2.1

(G6b) Moderate overhead for multithreaded programs ? §7.2.2

(G6c) Compatible with existing performance optimisations ? §7.2.3

(G7) Preserve maintainability of the runtime ? §7.2.4

7.2.2 (G6b). Multi-threaded programs that create many regions will pay a cost for moving objects

into regions which is proportional to the number of objects in the region. The upper bound for a

topological change is the depth of the deepest region tree, but in practise most region movement

will be cheaper. The cost for freezing objects is linear in the size of the number of objects being

frozen. The program will also pay for implicit freezing of type objects and literals, many of which

are shallow object structures.

When immutable objects are frozen, they can be made more efficient. For example, the overhead

needed to ensure consistency between non-atomic operations on dictionaries and lists can be

completely avoided. It may also be possible to lay out the objects in memory more efficiently.

With respect to memory management of immutable objects, we plan to build on work by Parkin-

son et al. [46] that shows how a single atomic reference count can be used to track the liveness of

an entire immutable strongly connected component as its objects share the same lifetime. Notably,

this approach deals with cyclic immutable garbage without tracing.

Partitioning the mutable heap into regions has positive implications for garbage collection. With

the exception of cowns, cycles in the mutable heap cannot cross region boundaries. Therefore,

cycle detection can be incrementalised and easily parallelised. When Lungfish is added to Python,

each region will have its own cycle detector. Furthermore, programmers are now able to safely

drop a bridge object to quickly deallocate an entire region. We thus expect that making garbage

collection more efficient may offset some of the overhead of ownership checking.

At the present, the lifetime of cowns is managed using atomic reference counting. Since cowns

are mutable, the tricks we employ for immutable objects do not apply. We have not yet developed

any cycle detection for cowns. For now, we rely on programmers to manually break cycles.

7.2.3 (G6c). Because our design is not contingent on removing the GIL, most of the CPython

implementation can stay unchanged, and there are no far-propagating changes due to GIL removal

as in the case for free-threaded Python. (See more below.)

7.2.4 (G7). To see how Lungfish can contribute to preserving the maintainability of the CPython

runtime, let us compare with free-threaded Python.

Because our ownership model is strict and does not permit simultaneous access to mutable

objects from multiple threads, much of the Python runtime should be able to stay the same when

support for multiple threads is added, as well as optimisations which have been developed in

a sequential setting (G6c). In particular, reference count manipulations can stay the same, i.e., a
simple non-atomic increment or decrement, with the exception of immutable objects and cowns,

as these are shared across multiple threads. If we compare with the proposed changes for free-

threaded Python [28], this means no tricks are needed to ensure reference count accesses racing
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with deallocation and no need for biased or deferred refence counting to reduce the amount of

atomic reference count manipulations. Also, cycle detection can stay the same, and built-in data

structures like lists, dictionaries and sets do not need to be rewritten to become thread-safe. We

need to increase the object header with enough bits to identify the object’s owning region but

we believe this space could be created by replacing the intrinsic doubly-linked list that CPython

uses to track memory allocations (and that thus adds two pointers to each object header). Notably,

free-threaded Python relies on mimalloc [37] to be able to free up enough space in the object header

to be size neutral. This alone is an addition of 15 KLOC to the CPython runtime [28].

Most of our checks are performed in the write-barrier in Fig. 6. Python has no write-barrier

infrastructure in place, and piggybacking on reference count manipulation is not an option as these

are encoded as different C macros that inject code in a context assuming existence of variables with

certain names. Once a write-barrier is added to the codebase, much of the heavy lifting is done.

When each thread has its own isolated memory, there are no concerns about visibility, atomicity,

or ordering of memory operations across threads. The Lungfish ownership model thus shifts the

responsibility for ensuring memory safety from hardware mechanisms to run-time software checks,

effectively reducing the need for strong memory consistency models.

Finally, most additions will be contained in a single module that handles the region logic.

8 Related Work
Although early work on object encapsulation started in Smalltalk [32], encapsulation has not been

as common in dynamic languages as in statically typed languages. A reason may be the overhead

necessary to impose encapsulation dynamically, or process encapsulation á la Erlang [3, 45]. With

respect to name-based encapsulation, Smalltalk makes all instance variables private and methods

public [25]. Recently, Thomas et al. [60] explored the overhead of supporting a protected modifier

in dynamic languages. Python supports name-based encapsulation through convention. Ruby, Dart,

Newspeak, and recent versions of JavaScript support private fields.

The early work on object encapsulation [32, 33] triggered a stream on research into managing,

preventing or elucidating aliasing in programming. In this paper we have referred to this stream

of work as “ownership”, which is an umbrella term for hundreds of papers, including works on

uniqueness, fractional permissions, universes and ownership types. Due to the success of Rust [34],

the ownership moniker has become synonymous with affine types in mainstream programming.

Early work on ownership-based dynamic alias protection [44] and follow-up work [27] took a

different approach to ownership and transfer than Lungfish. These works consider a method to

execute inside an object (the current this) which becomes the owner of all objects created in the

method. When this is the wrong default, an object may gift any object it owns to another object.

Preceeding our realisation that type objects must be frozen by 25 years, Noble et al. employ

ownership to protect prototype objects from accidentally propagating changes when shared across

different prototype chains [44]. Notably, neither of these papers restrict the object topology (like

Lungfish does), but rather restrict uses of references that violate ownership (which Lungfish does

not do). This is key in these systems to change ownership when multiple objects form complex

relationships: If 𝐴 and 𝐵 are owned by the same owner and reference each other in a cycle, they

must change owner “atomically” or references that violate ownership will exist temporarily.

This approach is not possible in Lungfishwithout a check on each dereference, which is something

that we have carefully avoided due to its performance implications (reads are more common than

writes). We furthermore consider this a bad fit when the application of ownership is concurrency

safety and trying to save language implementers from having to protect the VM from incorrectly

synchronised programs: if a reference is permitted to cross between two threads, we end up having
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to deal with concurrent reference count manipulations (if memory is managed like in Python), and

lose the ability to perform cycle detection individually for each region.

Early work on applying ownership to concurrent programming [5, 6] extend ownership to

permit threads to own objects (and later also actors [17, 21]) in statically typed languages. These

designs too permit violating references to exist but restrict their use. Particularly exiting early

works in this space [35, 38] do not rely on static isolation but instead dynamically check whether

the current thread is the owner of an object, by checking that a path of owners end in the current

thread. Lungfish uses this design for cowns: access is only permitted if the cown is acquired by the

accessing thread. Objects in a Lungfish region that are reachable by a thread are always owned by
that thread, and can be accessed without a check. A check is instead needed to ensure that a region

can be closed for transfer (i.e., no violating references remain with the sender).

In the context of dynamic languages, and outside the thread paradigm, E [42] and Ambient-

Talk [22] provide a form of dynamically enforced ownership through the vat concept. A vat isolates

a single-threaded control loop that drives all access to the data inside the vat, but the data itself is

not isolated. Any interaction with an object 𝑜 from outside its enclosing vat 𝑣 will be turned into

an asynchronous operation sent back to 𝑣 , ensuring that concurrent accesses to 𝑜 are serialised.

Racket supports isolated “places” [59], similar to actors and communicating using message passing.

Different ownership models use different granularity of ownership. Initial work [15, 18, 48] on

ownership types [14] allowed objects to own other objects, and imposed a hierarchical decom-

position of the heap. Uniqueness, a simple form of ownership has been used in e.g., Clean, Eiffel,
Smalltalk, and Rust to deliver control ownership on a per-object level [10, 32, 36, 43]. Vitek and

Bokowski [63] proposed module-granularity ownership for Java. Arvidsson et al. [4] proposed

region-based ownership for the Verona programming language, similar to e.g., work on Cyclone, a

memory-safe C [29, 31]. Uses of ownership to deliver safe concurrency often couple ownership

with the concurrency model, or the unit of concurrency. In both AmbientTalk and E the unit of

concurrency is also the owner. Several statically typed languages follow suit, for example Joelle [17],

Pony [19], and Encore [9, 12] (actor based) and Loci [66] (thread based). In these systems, the actor

(or equivalent) is the owner of objects and uniqueness is used to permit safe transfer of ownership

of objects between actors. The actor-based Swift language recently introduced support for data-race

freedom, using a region-based model reminiscent of [17] and directly drawing on work by [40], but

without support for nested regions. Python’s evolutionary path is not unique. Racket’s runtime

was highly tuned for sequential programs when concurrency was added, with similar goals to

ours [58]. OCaml was recently retrofitted with support for parallelism [52, 53] removing reliance

on the global “Runtime Lock” that effectively serialised the execution in a single process. There

is now a proposal to extend OCaml with a form of regions called capsules [24], which statically

guarantees data-race freedom, while providing backwards compatibility with sequential code.

Our ownership model is perhaps most similar to work by Fernandez-Reyes et al. [23] on Dala,

a proposal for using ownership to make dynamic languages data-race free. Dala supports three

kinds of objects: immutable (1), uniquely referenced (2), local to the current thread (3). A reference

from an object 𝐴 to an object 𝐵 is permitted only if 𝐴’s kind is higher or equal to 𝐵’s. Dala does not

couple ownership with unit of concurrency, but is more restrictive than Lungfish as it does not

support sharing of mutable state, only immutable state and ownership transfer, and transferrable

objects must be tree-shaped, as in the Kilim system [56]. Inspired by work on gradual ownership

types [50], Dala provides a gradual type system to catch concurrency errors statically. We will

explore something similar for Lungfish in Python, drawing from its closeness to Reggio [4].

The use of with blocks to acquire and release cowns is similar to many scoped concurrency

mechanisms in other languages, such as synchronized in Java. However, the Java mechanism does

not prevent access to the underlying state if it is not wrapped in a synchronized block and only
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protects a single object. The use of with blocks to acquire and release cowns is tied to our ownership

model, and thus is much closer to Rust’s standard library Mutex type, which uses the static borrow

checker to ensure access does not escape the scope of the mutex usage. With Lungfish, we provide

the same guard rails for the programmer as Rust, but in a dynamic language.

9 Interfacing with The Faster CPython Team
This project began by pitching an ownership model based on Reggio [4] to the the Faster CPython

Team [41]. The initial reactions could be described as, at best, lukewarm. The Reggio design had

very strict views of what was a permissable program. This was not a good fit for Python, which is

a very permissive language. As time progressed, our shared understanding developed significantly,

and through frequent discussions with the Faster CPython team, we adapted the Reggio design to fit

with the Pythonic way of doing things. Under guidance from the Faster CPython team, the design

morphed into Lungfish, which is a more permissive ownership model. From Reggio, we removed

the explicit region enter construct, the single window of mutability, and added implicit freezing

and the ability to extract isolated subgraphs from a region. We believe that the “programming

experience” of Reggio can be improved by our insights from Lungfish.

We are very grateful to the team for discussing the project with us regularly (∼every 2 months).

By the time of submission, several Faster CPython team members had contributed sufficient ideas

to warrant author credit. There are still many open questions, and we are looking forward to

continuing the collaboration with the Faster CPython team to bring ownership to Python.

10 Conclusion
Many dynamic programming languages have evolved in a sequential setting. Their semantics,

libraries and runtimes are optimised for single-threaded operation. When concurrency is added,

features which are ubiquitous such as mutable types and module state easily lead to mutable data

being shared across threads. Without dynamic ownership checks, data-races are inevitable.

We have presented Lungfish, a dynamically enforced region-based ownership model that makes

data-races impossible by construction. While our target is the Python programming language, we

believe it will fit other languages as well, such as JavaScript. We have built𝔉ranken𝔖cript, a toy

programming language that demonstrates the semantics of a program graphically, to communicate

the Lungfish semantics effectively to members of the Python community.

Sharing mutable objects across concurrent threads requires a memory model to define the

semantics of all legal operations. When the work on free-threaded Python materialises, Python will

need such a memory model — in the very least defined through the implementation of a data-race

detector or similar debugging tool needed to weed out data-race bugs. With Lungfish, we limit

what operations are legal, which shifts the cost from debugging concurrency bugs (which are

timing-related) to ownership bugs (which are structure-related).

In future work, we will provide a dynamic semantics of Lungfish combined with concurrency

along with proofs of data-race freedom. The region-based ownership model draws heavily on

Reggio [4] which has been proven sound. However, Reggio is statically checked and more restrictive

than Lungfish, so a separate formalism is required. While one cannot stress enough the importance

of having formally stated properties proven to hold in a mathematical model, the foremost challenge

in this work lies in the wicked realm that cannot be easily quantified: design — striking a “good

enough” balance between strictness, performance, usability and backwards compatibility.

We believe Lungfish meets our goals of data-race freedom, backwards compatibility, performance,

delaying checking to avoid false positives, and reasonable performance without adding much

complexity to the Python runtime. With Lungfish, we hope to make Python’s graduation to a

concurrent language smoother and safer.
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11 Data Availability Statement
The published artefact [57] is a Docker image containing the interpreter of𝔉ranken𝔖cript.

The artefact includes example programs to introduce the syntax and functions of𝔉ranken𝔖cript

documented in §4, and scripts to recreate fig. 2, 3, 5, 7, 9 and 10 from this paper.
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