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SUMMARY

The substantial embodied carbon of cement, coupled with the ever-increasing need for construction mate

rials, motivates the need for more sustainable cementitious materials. An emerging strategy to mitigate CO2 

emissions involves incorporating carbon-negative biomatter; however, this introduces new challenges due 

to complex hydration-strength relationships and the combinatorial design space. Here, using machine 

learning, we develop a closed-loop optimization strategy to accelerate green-cement design with minimal 

CO2 emissions while meeting compressive-strength criterion. Green cements incorporating algae are tested 

in real time to predict strength evolution, with early-stopping criteria applied to accelerate the optimization 

process. This approach, using only 28 days of experiment time, attains both the strength requirement and 

93% of the achievable improvement in global warming potential (GWP), resulting in a cement that has a 

21% reduction in GWP. We further validate model-informed relationships via analysis of hydration, demon

strating the potential for developing materials grounded in scientific understanding.

INTRODUCTION

To meet the goal of reducing global greenhouse gas (GHG) emis

sions by 45% by 2030 and achieve net zero by 2050,1 urgent 

actions are required. To that end, the concrete industry, respon

sible for 8%–11% of global CO2 emissions,2,3 is under significant 

pressure to reduce its carbon footprint. Cement production, 

which contributes 90% of the carbon emissions of concrete,4

is a key target. Strategies to mitigate its GHG emissions include 

the use of alternative fuels5,6 or decreasing the amount of 

cement in the cementitious binder. For the latter, research has 

focused on incorporating industrial wastes, such as fly ash,7

granulated blast furnace slag,8 or silica fume,9 as supplementary 

cementitious materials (SCMs) or forming alkali-activated 

cement-free geopolymers.10 However, sourcing SCMs from car

bon-intensive industries and the chemical treatments required 

may not be sufficient to meet GHG goals.11

A promising alternative for sustainable materials involves us

ing fast-growing, untreated plant, algal, or microbial biological 

matter (biomatter) as polymeric matrices or fillers.12–16 Among 

these, algal biomatter stands out due to its combined carbon- 

negative potential, rapid growth on non-arable land, and 
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availability. Although the properties of these biomaterials sug

gest they could significantly mitigate the carbon footprint of 

cementitious materials, the concept of utilizing intact algal bio

matter in the design of green-cement formulations remains 

largely unexplored. Recent studies17–19 found that microalgae 

can retard cement hydration without compromising strength at 

concentrations below c = 5 wt % but completely hinder hydra

tion reactions, leading to final strength reductions of more than 

85%, at higher concentrations.18 Improving understanding of 

the interactions between algae and cement and their impact 

on strength is critical to developing sustainable cement for 

construction.

Designing novel biomatter cements is challenging due to the 

complexity of materials and combinatorial design space. Tradi

tional trial-and-error approaches are inefficient, especially as 

28-day compressive strength is the standard target property, intro

ducing delays in the design cycle. Design of experimental ap

proaches aims to reduce the number of experiments via the use 

of surrogate input-output models.20,21 Recent advancements in 

machine learning (ML) have improved predictive capabilities in 

concrete science,22,23 but ML models typically require large data

sets to learn the relevant relationships. To address this, some 

studies have incorporated domain knowledge, enabling improved 

predictive performance with fewer samples. For instance, Li et al.24

incorporated properties derived from empirical and physical 

models into the training datasets and demonstrated improved 

training convergence, performance with small datasets, extrapola

tion capability from laboratory to on-site data, and robustness to 

outliers. Pfeiffer et al.25 and Ament et al.26 developed Gaussian 

process models for time-evolving concrete properties, but these 

still rely on 28-day compressive-strength data.

In this study, we demonstrate a closed-loop experimental 

design framework for accelerating the discovery of sustainable 

green-cement formulations. Specifically, we aim to discover 

the formulation with the minimum global warming potential 

(GWP) while meeting a 28-day compressive-strength criterion. 

We address several shortcomings of past approaches. First, 

we introduce a novel material system by incorporating the green 

macroalgae, Ulva spp. (hereinafter Ulva), to partially replace or

dinary Portland cement (OPC). Ulva was selected not only due 

to its local availability and established use in other sustainable 

materials research27 but also because we hypothesized that its 

tissue and hierarchical structure may provide better structural 

reinforcement and fewer hindrance effects to cement hydration 

compared to microalgae. Furthermore, it would serve as a car

bon sink. The application of intact macroalgae, and Ulva in 

particular, to the best of our knowledge has not been explored 

to date. In contrast to studies applying ML to cementitious sys

tems with conventional SCM relying on existing databases,22,28

our proposed material system serves as an example of how new 

algae cements can be developed, highlighting both the chal

lenges and potential of this promising material class. We intro

duce a domain-knowledge-informed ML model capable of high 

predictive performance with a small number of samples, thereby 

circumventing the time- and resource-intensive data-curation 

process that has challenged past studies. In addition, inspired 

by early-stopping methods in ML training,29–32 we introduce a 

novel early-stopping criteria to terminate experiments prior to 

28 days. We compare the optimization efficiency of this 

approach with other conventional models, showing an acceler

ated design process without sacrificing performance. Finally, 

we validate the interpretability of our approach with materials 

characterization to verify the relationships learned by the ML 

model. By proactively utilizing GWP to inform the optimization 

of real-time experimentation—rather than conducting multi- 

objective optimization post hoc25,33—this work establishes a 

framework with the potential to accelerate the design of sustain

able cement with feasible experimental resources while satis

fying critical performance requirements.

RESULTS

Designing an efficient methodology for the discovery of 

environmentally friendly cement

Our goal is to accelerate the design of a novel green-cement 

formulation, which meets a specified strength criterion while 

minimizing GWP. In this section, we describe the four primary 

components of our design approach: the design space, the esti

mation of GWP, the prediction of compressive strength, and the 

design of experiments with early termination. A summary of our 

approach can be found in Figure 1.

Design space

We select 28-day compressive strength as the design property 

of interest as this is often used as the minimum specification 

for green cements. Based on American Society for Testing and 

Materials (ASTM)standard C150,34 we specifically set the 

28-day compressive-strength target to 28 MPa plus a safety fac

tor of 10%, resulting in a final minimum strength criterion of 30.8 

MPa. Motivated by optimizing factors that likely impact 

compressive strength, we select the design space of Ulva con

centration (c, in g of Ulva/g of solid powder), Ulva average parti

cle size (APS, in μm), water-cement ratio (wc, in g of water/g of 

OPC), and environmental humidity (RH) during the initial 7-day 

curing process (see Figure 1A). For each variable of the design 

space, we specify an upper and lower bound and an interval 

size to define the search space. Based on the drastic strength 

reduction at high biomatter concentration shown in previous mi

croalgae-cement studies,17,18 we scan the Ulva concentration 

up to 15 wt % with the interval of 0.5 wt %. Meanwhile, we 

consider water-cement ratios from 0.38 to 0.5 as typically rec

ommended for cementitious materials with varying filler sizes 

to ensure full hydration.35 Using blade milling, ball milling, and 

sieving, Ulva particle sizes are divided into four classes, and 

the humidity of the curing environment is set in three levels rep

resenting low, medium, and high relative humidity (see Table 1

for a summary).

Global warming potential

A life-cycle assessment (LCA) is conducted to quantify the envi

ronmental impact of the green cement in order to compare the 

environmental benefits with commercial Type I/II Portland 

cement. In this case study, the GWP is selected as an index of 

the environmental impact due to the stress on the high carbon 

footprint generated by the cement production processes and 

is calculated based on attributional LCA.36 Aiming to accelerate 

the design process of green cement, the scope of this study is 

presumed to be at the laboratory scale rather than the industrial 
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scale. To focus on the impact of the formulation and processing 

of green cement, other factors involving the locations and 

transportation of the raw materials and products are excluded, 

resulting in a system boundary only including the cultivation of 

Ulva, collection of Portland cement, and the manufacturing 

processes including humidity-controlled curing for 7 days. 

The system boundary and the process flow diagram are 

shown in Figure S1. The declared unit of the final product is 

defined to be 1 g of hardened green cement after 28 days of 

curing.

The GWP, expressed in grams of CO2 emitted per gram of hy

drated Ulva cement, was estimated using a deterministic model 

relying on relevant values for specific CO2 emissions from the 

literature. GWP is assumed to be a function only of the four pa

rameters of our design space: water-cement ratio, Ulva concen

tration, Ulva particle size, and relative humidity during the first 

7 days of hydration, as described in the preceding section. 

Note that, within this deterministic CO2 assessment, the particle 

size is represented by P80 (see Figure S2) since this attribute is 

generally used to assess the energy input necessary to reduce 

particle size using the Bond work index.37 Throughout the rest 

of the manuscript, however, the particle size is characterized 

by the APS, providing a more intuitive size than P80. Additionally, 

relative humidity influences only the curing process rather than 

the material compositions, making it an independent parameter 

for a separate GWP calculation. The GWP is calculated using the 

following relation:

GWP =
μOPC+

c

1 − c
⋅μUlva(P80)+wc⋅μwater

1+wc+
c

1 − c

+ μRH(RH);

(Equation 1) 

where the symbol μ corresponds to specific CO2 emissions for 

each component or curing condition associated with the 

green-cement fabrication.

To provide a reasonable optimization framework, our model 

is based on typical values of specific CO2 emissions from liter

ature and some simplifying assumptions enabling a compre

hensive model. It should, however, be noted that, in practical 

industrial settings, the specific CO2 emissions can vary widely 

and the values used in our model are therefore not universally 

accurate. Still, the general framework presented can be adapt

ed using other values of specific CO2 emissions. The most 

important aspect of our GWP expression is that it contains 

terms of positive emissions (e.g., μOPC >0) and negative emis

sions (e.g., μUlva <0), corresponding to carbon sequestration 

during growth of the Ulva through photosynthesis. In this 

model, we assume that CO2 absorption is permanent, i.e., no 

CO2 emission will occur from the incorporation of Ulva in the 

green cements during the curing process, based on the mea

surement of CO2 emission described in Note S1. The value 

and the variation of each emission term of Equation 1 are 

described in detail in the "attributional LCA: Deterministic 

model for specific CO2 emissions" section and a summary is 

provided in Figure 1C.

Table 1. Definition of the design space

Parameter Symbol Unit Values

Ulva concentration c wt % (100 ×

gulva/(gulva + gan:c))

[0.5, …, 14.5, 

15.0]

Water-cement 

ratio

wc [-] (gwater/gan:c) [0.38, …, 0.48, 

0.50]

Average particle size APS μm [2.86, 37.40, 

138.49, 388.27]

Relative humidity RH % [10, 50, 95]

A B C

Figure 1. Closed-loop optimal experimental design for accelerating the discovery of green cement 

(A) Composition and conditions of the fabrication of Ulva cements. Ordinary Portland cement (OPC) is mixed with ground Ulva and water before casting in cubic 

rubber molds and curing in an environment of controlled humidity. 

(B) Optimization procedure is built on two loops. The outer loop (blue) selects formulations from the design space to be tested based on the associated GWP and 

predicted strength values. The inner loop (green) determines whether an experiment should continue. 

(C) Variation of the global warming potential (GWP, reported in g CO2/g hydrated green cement) as a function of the four design parameters (wc, c, P80, and RH). 

In each plot, one parameter is varied while the other three are fixed using the following default values: wc = 0.45, c = 5%, APS = 37:40 μm (corresponding to P80 = 

98.7 μm), and RH = 50%.

Please cite this article in press as: Lin et al., Closed-loop optimization using machine learning for the accelerated design of sustainable cements incor-

porating algal biomatter, Matter (2025), https://doi.org/10.1016/j.matt.2025.102267

Matter 8, 102267, September 3, 2025 3 

Article
ll

OPEN ACCESS



Predictive model

To predict the compressive strength based on the design space 

features of cementitious materials, we selected a class of models 

to meet the following aims: (1) incorporation of domain knowledge 

to enable learning from a small number of samples, (2) uncertainty 

quantification to enable Bayesian optimization, and (3) predictions 

that adapt to early strength measurements. To achieve all three 

aims, we leverage an amortized Gaussian process (aGP) model,25

a class of Gaussian process (GP) model that employs a hyperpara

meter network to predict the required GP hyperparameters. An 

aGP models each element of the design space using its own GP 

model. As a GP specifies a distribution, uncertainty quantification 

(aim 2) is natively addressed. Since aGP models are most effective 

when defined with a non-zero mean function, we introduce a 

domain-inspired mean function based on the exponential function 

proposed for the strength evolution of algae-based cements18

σ = σf

(

1 − exp

(

−
t

τ

))

; (Equation 2) 

where σ is the compressive strength, σf is the final strength, t is 

time, and τ is the characteristic time. The parameters σf and τ 

are modeled as hyperparameters and are predicted by the hy

perparameter network. The formulation introduces a strong prior 

and addresses aim 1 (see Figure 2A). Finally, we employ the abil

ity of GP models to condition on data to allow for updated predic

tions based on early measurements (aim 3; see Figure 2B). This 

approach contrasts with more standard approaches aiming to 

predict only the design property of interest, i.e., 28-day 

compressive strength. See the ‘‘prediction of compressive 

strength’’ section for additional methodological detail.

Accelerated optimization

Our experimentation proceeds in rounds, each composed of an 

outer and inner loop component. To efficiently search the 

design space, during the outer loop, used to select which for

mulations to test, we prioritize experiments based on their abil

ity to improve upon the current best GWP and their likelihood of 

meeting the strength criterion (Figure 2A). Once a formulation is 

selected, it proceeds to the inner loop (Figure 2B). At each time 

point, compressive strength is measured and the early-stop

ping criterion is applied to determine if experimentation should 

continue or terminate, using the posterior prediction to make 

this determination. An example of the application of the inner 

and outer loop criteria can be found in Figure 2. The 

A

B

Figure 2. An example of the application of the aGP model for strength prediction during closed-loop testing for accelerated design 

(A) The outer loop selects experimental formulations based on a criterion that considers both the GWP and the prediction of 28-day compressive strength. 

(B) The inner loop uses the sequentially measured experimental data to update the compressive-strength prediction of the suggested formulation. If the predicted 

strength meets the termination criteria, no further data are collected for the formulation. If it fails to meet the termination criteria, data collection continues to the 

next time point. At the end of the round, all experimental data are used to update the aGP model and the process is repeated.
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‘‘accelerated optimization algorithm’’ section contains further 

methodological detail.

Quantification and comparison of accelerated design 

process

Assessing the closed-loop optimization

To evaluate the optimization process and the efficiency of our 

experimental design, here we demonstrate the results of the 

sequential training from four rounds of closed-loop optimization. 

Given a budget of 28 days, corresponding to four rounds of 

experimentation time, and the initial aGP model trained an initial 

dataset of 24 formulations (see the ‘‘design space and initial data 

collection’’ section for detail), we began closed-loop testing. 

Based on the observed data, the initial best GWP was 0.626 g 

CO2/g. The recommended formulations for the first round of 

optimization (as shown in Figure 3A; Table S1) focus on 95% 

RH, wc = 0:5, Ulva concentration c in the range of 7–8%, and 

APS less than 388.27 μm. We conducted the real-time experi

ments according to the recommended formulations by the 

model and updated the day 2 compressive strength in the model. 

The formulation of wc = 0.5, c = 7%, APS = 37.4 μm, RH = 95% 

met the early-stopping criteria and was terminated as an 

accepted formulation. In contrast, the difference between the 

estimated and observed 2-day strength for the remaining three 

samples was sufficiently large to motivate continuing the exper

iment. After the updates from the experimental data on day 4, the 

model suggested only conducting a day 7 compression test on 

formulation wc = 0.5, c = 7%, APS = 138.49 μm, RH = 95% as 

the predictive strength may not be able to satisfy the require

ment, and indeed, after day 7 testing, this formulation was re

jected. At this point, all observed data were used to update the 

aGP model by fine-tuning the hyperparameter network. This pro

cess was repeated for rounds (weeks) 2–4, and all the explored 

formulations are shown in Figure 3A and Table S1. The majority 

(11 out of 16) of experiments were terminated based on day 2 

measurements, with an average duration of 2.8 days. Only one 

experiment in the first round continued for 7 days. In the final 

round (week 4), the model reached a point where it suggested 

Figure 3. An overview of model evolution during accelerated design 

(A) The initial dataset shows the data that were collected during initial experimentation based on LHS and its corresponding GWP. The subsequent plots 

from rounds 1 to 4 depict the strength-qualifying formulations at the outset of each round, which evolves non-linearly as the predictive model is updated with new 

data. The selected formulations of the minimal GWP for testing in the next round are also shown in each plot, as noted with black circles. All plots only show data at 

95% RH. 

(B) Contour plots indicate the predicted 28-day compressive strength σ̂28 as a function of water-cement ratio wc and Ulva concentration c. All plots show data at 

95% RH and 37.4μm APS. In combination with (A), we observe the frontier of qualifying formulations shifting to higher concentrations of biomatter. 

(C) The retrospectively observed performance of the predictive model at each round, comparing the estimated compressive strength σ̂ and measured 

compressive strength σ at different time points. Note that this characterization of model performance is based on predictions of 28-day compressive strength that 

are made prior to observation of compressive strength on day 28.
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formulations based on the best probability of improvement as 

there were no formulations predicted to qualify and improve on 

the current best GWP. At the end of four rounds, we proposed 

that wc = 0.5, c = 10.5%, APS = 37.4 μm, RH = 95% is the 

optimal formulation, with a GWP of 0.571 g CO2/g, correspond

ing to a decrease of 0.055 g CO2/g from the initial best GWP.

To validate our approach at the end of optimization, we 

measured the 28-day strength for all tested formulations. It 

was discovered that wc = 0.5, c = 11%, APS = 37.4 μm, RH = 

95% is the true optimal, with a GWP of 0.567 g CO2/g, indicating 

a maximum achievable GWP reduction of 0.059 g CO2/g. During 

closed-loop testing, this formulation was erroneously predicted 

as non-qualifying; all other formulations (15 out of 16) were 

correctly categorized as meeting or not meeting the strength cri

terion. This means our approach resulted in 93% of the achiev

able decrease in GWP using only 28 days of experiment time. 

Overall, compared to a standard cement, assuming c = 0%, 

RH = 95%, and wc = 0:38, our suggested formulation leads 

to 21% reduction in GWP, from 0.725 to 0.571 g CO2/g.

As the concentration of Ulva has the largest impact of our 

design space variables on GWP, we generally expected the opti

mization to prioritize maximizing the concentration. We see this 

manifest in the increasing Ulva concentration of formulations 

selected in each subsequent round (see Figure 3A). Interrogating 

our predictive model, we observe rapid evolution of the model’s 

understanding of the relationship between Ulva concentration, 

water-cement ratio, and 28-day compressive strength as shown 

in Figure 3B. With the initial dataset, the model is able to identify 

that higher Ulva concentration requires a higher water-cement 

ratio and prioritizes this region. From round 1 to 4, the positive 

slope of wc vs. c gradually shifted to the right, where the recom

mended biomatter content increased from 7.5% to 11.5% 

while mostly focusing on higher wc from 0.48 to 0.5. Similarly, 

the model rapidly identifies lower APS as resulting in higher 

compressive strength, appropriately trading off the small in

crease in GWP due to lower APS for the possibility of increasing 

concentration (see Figure S3).

Retrospective analysis leveraging the 28-day compressive- 

strength measurements reveals the success of the aGP model. 

The improvement in prediction, as quantified in Figure 3C, 

despite using only strength data from an early age, is due to con

straints imposed by the domain-informed mean function, which 

couples early and late strength measurements.

Comparing different experiment design strategies

As further validation of our approach in accelerated design, we 

consider four alternative experiment design methods and simu

late the suggested formulations using an aGP model trained on 

all of the measured data collected after closed-loop experimen

tation, i.e., including 28-day compressive strength (full data 

model). Although the model is not perfect, we determine it is 

the best source of simulated data (see Note S2 for further detail). 

The alternative approaches aim to span competing techniques 

and varying numbers of hyperparameters. First, we evaluate 

Latin hypercube sampling (LHS), an approach that does not 

require a predictive model. Second, given their prevalence in 

the literature, we evaluate two standard GP models with two 

different kernel choices. The first uses a simple, standard 

approach where time and formulation are concatenated into a 

single input vector and used as input to a Matérn kernel. The re

sulting GP has three hyperparameters. The second uses a prod

uct kernel over time and formulation, resulting in five hyperpara

meters. Finally, we include our proposed aGP model without 

early stopping; this model has six hyperparameters. See Figure 

4A for the summary of five approaches and the "comparison 

methodology" section for additional simulation detail.

Motivated by our result of 93% improvement in GWP within 

28 days, we perform our comparisons by considering both the 

decrease in GWP given a 28-day budget as well as the amount 

of time required to achieve at least a 90% improvement in 

GWP. We stress that, despite only having four dimensions, our 

design space is rather large. If we were to consider only formula

tions that improve upon the optimal qualifying cement after initial 

data collection and restrict our search space to 95% RH through 

an exhaustive search, running four experiments at a time, the 

A B

Figure 4. Comparison of optimization time to ≥90% improvement in GWP 

(A) A summary of the five approaches considered for experimental design. 

(B) Percentage of improvement in GWP as a function of experiment time for the five approaches.
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complete data collection would take almost 11 years. Comparing 

the percentage of GWP improvement over time for different ap

proaches as shown in Figure 4B, we see this time decrease to 

approximately 5 years by employing an LHS using the median 

of 1,000 repeated trials. LHS also results in 34% of the achievable 

improvement when restricted to a 28-day budget. Conversely, 

we observe 0% of the achievable improvement in 28 days 

when using standard GP approaches. However, these ap

proaches do result in more rapid adaptation and achieve 100% 

of the GWP improvement in 196 and 168 days when using Matérn 

and product kernels, respectively. Finally, we note that, without 

early stopping, the aGP model achieves 45% of the GWP 

improvement in 28 days and 100% in 140 days. Although our 

closed-loop approach only achieved 93% of the GWP improve

ment, it was 5× faster than the next-best approach. Overall, we 

observe a clear advantage to both the use of the aGP model 

and the early-stopping criteria for accelerated design.

Data-informed bonding-structure-properties 

relationships

Given the success of the aGP model in closed-loop experimen

tation, we perform a post hoc analysis to better understand the 

relationships between the design space variables and compres

sive strength. For this analysis, we use the full data model, also 

used as the simulator, for our comparative analysis. This model 

is trained on all available data and is the highest-performing 

model (root-mean-square error (RMSE) = 5.02 MPa; see 

Figure S4A). Here, we vary elements of the design space and 

observe the predicted effect on compressive strength.

Focusing on the impact of Ulva concentration and wc on the 

28-day strength (see Figures 5A and 5B), we observe a diagonal 

ridge of approximately constant strength along an increasing 

Ulva concentration and the wc line for smaller APS at the fixed 

humidity RH = 95%, indicating that higher wc is required at 

higher biomatter concentrations to achieve the same strength. 

Despite the presence of a valley between the ridges at approxi

mately c = 5% and wc = 0.45 for APS = 2:86 μm (see 

Figure S4B) and 37.40 μm in Figure 5A, we hypothesize that 

the ridges of 48 MPa are continuous as we see the valley disap

pearing with increasing particle sizes (Figures 5B and S4C) and 

attribute the valley to the lack of data points at these specific 

conditions (around c = 5%, wc = 0:45). Because of the func

tional form of the mean function, (θi)2 can be interpreted as an 

approximation of the characteristic time τ. The characteristic 

time, reported in days, describes the required time for a formula

tion to reach 63% of the final strength.18 We refer to the model’s 

approximation as τ̂. As shown in Figures 5C and 5D at fixed 

wc = 0:5 and RH = 95%, for both APS values, τ̂ gradually in

creases with increasing c when c ≤ 10% and then exponentially 

increases when c > 10%. τ̂ of Ulva cements with APS = 388:27 

μm is consistently lower than that with APS = 37:40 μm, sug

gesting a faster hydration rate with larger Ulva particles. Interest

ingly, the exponential increase in τ̂ at c = 10 − 12:5% for 

APS = 37:40 μm corresponds to the steep change in its 

A

B

C

D

E

F

Figure 5. Data-informed knowledge from aGP model trained with the complete dataset 

(A–D) At 95% RH, the predicted 28-day compressive strength of formulations at varying Ulva concentration c and water-cement ratio wc with (A) APS = 37:40 μm 

and (B) APS = 388:27 μm Ulva particles. Predicted 28-day strength σ̂28 and characteristics time τ̂ at varying Ulva concentration at (C) APS = 37:40 μm and 

(D) APS = 388:27 μm. 

(E) At c = 10% and RH = 95%, σ̂28 and characteristics time τ̂ at varying APS. 

(F) The trade-off relationship between predicted 28-day strength and GWP and the Pareto front.
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28-day strength from 48 to 8 MPa (see Figure 5C), which indi

cates that exceeding that concentration threshold triggers a 

drastic change in hydration mechanisms. This rapid decrease 

in strength, seen in the small Ulva particles, is similar to the 

drastic strength reduction we previously reported for microalgae 

cements above 5 wt %.18 This phenomenon may be related to 

our previously proposed hypothesis18 for the retardation and 

long-term hindrance of hydration reaction attributed to the acid

ified carboxylic and hydroxyl groups of the algal carbohydrates 

with increasing biomatter concentrations.

Comparing the impact of Ulva concentration on strength at 

fixed wc = 0:5, green cements with APS = 388:27 μm particles 

present a monotonic decline in strength (Figure 5D), while those 

with APS = 37:40 μm show a strength peak above 30 MPa at 

c = 5 − 10% (Figure 5C). This peak of strength highlights the 

potential of optimizing low-carbon green cement with small 

Ulva particles but also implies a different hydration mechanism 

induced by varying particle sizes. Indeed, when investigating 

the effect of Ulva particle size on the strength and hydration 

speed at fixed wc = 0:5 and c = 10% in Figure 5E, τ̂ increases 

with decreasing particle size and therefore the hydration rate is 

slower with decreasing biomatter particle size and increasing 

surface area. Specifically, τ̂ of green cement with APS = 

37:40 μm is around 2-fold greater than APS = 388:27 μm, indi

cating that the retardation effect of small Ulva particles on 

cement hydration is more pronounced than that of large parti

cles. However, while the lower τ̂ derived from larger Ulva parti

cles indicates the presence of more mature cement after the 

same curing period, their 28-day strength decreases with 

increasing particle size, which contradicts the conventional 

expectation of increased strength with a higher degree of hydra

tion. This surprising trend suggests mechanisms other than the 

degree of hydration may govern the strength.

Interestingly, the effects of Ulva concentration and particle sizes 

on strength also have important impacts on the optimization of 

GWP. In Figure 5F, we display the predicted final strength and 

the respective GWP of all 2,520 formulations in the design space. 

We observe a relatively sparse distribution of data points in the re

gion below GWP 0.62 g CO2/g green cements and above 30.8 MPa 

of final strength, which corresponds to our target region for optimi

zation. As the GWP is primarily determined by the concentration of 

Ulva (see Figure 1C), a higher Ulva concentration results in a lower 

GWP. However, at Ulva concentrations between 10% and 12.5%, 

the aGP model predicts the strength to be highly sensitive to the 

Ulva concentration; hence, few data points both meet the strength 

requirement and have a low GWP. This relationship manifests as a 

Pareto front, the boundary that delineates the highest possible 

strength for the lowest possible GWP, with a very high slope. 

Our closed-loop experimental design approach suggested 

the formulation of (c = 10:5%;wc = 0:5;APS = 37:40 μm, 

RH = 95%) as the optimal. Post hoc analysis indicates that this 

point is sub-optimal but is indeed on the Pareto front. Interestingly, 

c = 11%;wc = 0:5;APS = 2:86 μm, RH = 95% is also a quali

fying formulation but not on the Pareto front due to the impact of 

milling energy demonstrating the important role of particle size in 

calculating GWP (see Figure S5).

To provide a physical understanding of the predicted particle 

size effects of Ulva on cement’s hydration reactions, we con

ducted thermogravimetric analysis (TGA) on composites with 

c = 10% and wc = 0:5 and particle sizes APS = 388:27 and 

37.40 μm. This method enables the characterization of the hy

dration product, calcium hydroxide (Ca(OH)2) which degrades 

between 380◦C and 520◦C, and calcium carbonate (CaCO3) de

grading between 600◦C and 780◦C.38 As shown in Figures 6A 

and 6B, the Ca(OH)2 content of the Ulva cements is identical be

tween different particle sizes in the early age at around 3 wt %, 

yet the decomposition temperature of Ca(OH)2 of Ulva cements 

with APS = 37:40 μm is slightly lower than with APS = 388:27 

μm by 10◦C, implying a smaller crystal size of Ca(OH)2. As 

confirmed by the X-ray diffraction (XRD) patterns in Figure 6C 

and peak analysis in Table S2, on day 7 the portlandite (Ca 

(OH)2) peaks at 18.1◦, 34.1◦, and 47.1◦ have a 37.8% lower inten

sity and 14.7% larger full width at half maximum (FWHM) for Ulva 

cements with APS = 37:40 μm compared to APS = 388:27 μm, 

confirming the smaller crystal size induced by smaller Ulva par

ticles. Meanwhile, on day 7, the APS = 37:40 μm Ulva results 

in 2 wt % higher content of CaCO3, as quantified from TGA, 

and 11.8% higher peak intensity and 50% larger calcite 

(CaCO3) crystal size, as quantified by the XRD peak at 23.1◦, 

compared to APS = 388:27 μm, suggesting that calcium-based 

hydration products are more accessible for carbonation in the 

microstructure of composites with smaller particles.

Indeed, scanning electron microscopy (SEM) images (Figures 

6D–6G) confirm the distinct microstructures of Ulva cements 

with varying particle sizes. Large voids in the range of 

hundreds of μm are present in APS = 388:27 μm samples 

(Figure 6D), in contrast to the smaller voids of tens of μm in 

APS = 37:40 μm samples (Figure 6F). These apparent interfacial 

gaps between the cement matrix and the large Ulva particles 

may be caused by the volume change of biomatter. We hypoth

esize that the cells take up and release some of the water in the 

adjacent cementitious matrix for continuous hydration, while the 

rest of the water taken up slowly evaporates after the cement is 

hardened, leading to the biomatter shrinkage. In contrast, the 

small Ulva particles are better incorporated in the cement matrix 

with clear Ulva cell and tissue imprints in the cement matrix (see 

Figures 6F and 6G). The presence of fibrous crystals distributed 

across the biomatter and cement matrix results in a relatively 

loose network of hydration products with smaller interfacial 

gaps, as shown in Figure 6G. This micromorphological differ

ence may explain the higher CaCO3 content in the Ulva cements 

with small biomatter particles, as the cement hydration products 

are more accessible to air compared to the dense hydrated 

cement matrix with the additions of large Ulva particles. How

ever, since the CaCO3 particles function as inert fillers and the 

thermal degradation profiles of Ulva cements with different bio

matter particle sizes are identical at day 28, we hypothesize 

that the strength differences are due to variations in fracture 

behavior induced by the micromorphological differences. As 

shown in Figure S6, the APS = 37:40 μm samples experience a 

classic semi-brittle failure and have a three times higher 

compressive strength than the APS = 388:27 μm samples. This 

suggests the large interfacial gaps present in the Ulva cements 

with large Ulva particles act as stress concentrators and fracture 

initiation points, triggering crack development and crumbling at 

lower stress. In contrast, the interconnected hydration products 

Please cite this article in press as: Lin et al., Closed-loop optimization using machine learning for the accelerated design of sustainable cements incor-

porating algal biomatter, Matter (2025), https://doi.org/10.1016/j.matt.2025.102267

8 Matter 8, 102267, September 3, 2025 

Article
ll

OPEN ACCESS



and smaller voids in the small particle-sized Ulva cements lead to 

higher strength.

Based on these characterized material properties, we have 

shown that the aGP model is capable of capturing the impact 

of specific variables that are otherwise difficult to characterize 

without extensive studies. For example, the smaller size of por

tlandite caused by the small Ulva particles at an early age sub

stantiates the longer characteristic time (τ̂) required for green ce

ments with small biomatter particle size, as suggested by the 

aGP model. This perspective on hydration rate and strength evo

lution highlights the unique insights discoverable via the use of a 

domain-informed mean function with an aGP. Moreover, these 

impacts of biomatter particle sizes on the hydration mechanism 

and strength further enable us to depict the trade-off between 

increased GWP from milling and increasing strength over time, 

as well as decreasing GWP with biomatter concentration and 

sacrificing strength. The above demonstration of ML-informed 

discovery reveals the potential not only for expanding the funda

mental understanding of advanced green cements during mate

rial optimization but also for modulating the material’s perfor

mance and environmental impact simultaneously.

DISCUSSION

Our analysis demonstrates the value of closed-loop experi

mental design for green cements. In 28 days, our approach 

discovered a green-cement formulation achieving 93% of the 

potential reduction in GWP, a 21% decrease compared to stan

dard OPC, representing an estimated 5× speed-up over the next 

best approach and saving 112 days of experiment time. This 

success highlights the active-learning capabilities of our ML 

model, allowing us to make real-time experimental selections 

without access to 28-day strength measurements and by relying 

on a limited training dataset, thus providing true validation of our 

methodology. Although previous studies have aimed to discover 

low-carbon cements,25,26,33,39 ours is the first to focus on bio

matter substitution, rather than SCM. While existing empirical40

and some ML-based methods25,26 can estimate later-age 

strength using early-age measurements, these approaches are 

tailored to well-established cementitious materials incorporating 

SCM. Building on this foundation, we develop a more generaliz

able predictive model via aGP, which is better suited to capture 

not-yet-characterized non-linear relationships presenting in 

novel material systems. Our methodology tackles the challenges 

posed by the complex interactions between biomatter compo

nents and the cementitious matrix, such as concurrent effects 

from particle size, poor interfacial adhesion, new reaction prod

ucts, and modified carbonation kinetics, all influencing the 

strength development in this class of green cements. Moreover, 

our design framework is not specific to green cements, and can 

be used to optimize formulations leveraging other sustainable 

materials as well.

Many experimental and computational design choices were 

made during our study. In this section, we interrogate some of 

A B C

D E F G

Figure 6. Particle size effects on the hydration and microstructure of Ulva cements 

(A and B) (A) The mass loss profiles through TGA and (B) derivative thermogravimetry (DTG) curves of Ulva cements at c = 10%, wc = 0:5, RH = 95%, and 

APS, respectively, of 388.27 and 37.40 μm on day 7 and 28. 

(C) The XRD patterns of Ulva cements with the same formulations on day 7. 

(D–G) The SEM images of Ulva cements at c = 10%, wc = 0:5, RH = 95%, and APS = 388:27 μm (D and E) and APS = 37:40 μm (F and G).

Please cite this article in press as: Lin et al., Closed-loop optimization using machine learning for the accelerated design of sustainable cements incor-

porating algal biomatter, Matter (2025), https://doi.org/10.1016/j.matt.2025.102267

Matter 8, 102267, September 3, 2025 9 

Article
ll

OPEN ACCESS



these choices. We selected a fixed, discrete design space. Dur

ing the closed-loop optimization, we notice that the selected ex

periments rapidly focus on wc = 0:5, which is the boundary 

of the wc design space. This high wc demand for green cement 

points to the known high water uptake capacity of Ulva, stem

ming from its native component hydrophilicity, abundant 

hydrogen bonding sites, and tissue structure that allows for 

swelling. Expanding the wc bound might enable the discovery 

of a green cement with even lower GWP. However, it is not clear 

if this would indeed be beneficial, as a higher wc could also lead 

to a more porous structure and consequently lower strength. 

While we chose a constant design space in this study, in real- 

world applications, the design space could be expanded during 

testing. Similarly, we note that RH also had fast convergence to a 

boundary condition of 95%, although RH is a truly bound vari

able. Even though RH has relatively minimal impacts on GWP, 

we do report large effects on strength. This observation points 

to the need for careful consideration when selecting the design 

space, particularly not only considering GWP but all optimization 

variables. We note that the inclusion of RH introduced an exper

imental constraint, as, in our current lab setup, experiments in 

each round were required to be performed at the same RH if 

they were to be performed in parallel.

There are alternative approaches for defining the acquisition 

function, which is used to select which formulations in the design 

space are tested. Instead of explicitly considering GWP, we 

could have focused exclusively on determining which formula

tions were qualifying (i.e., meet the strength criterion) and then 

selected the cement with the lowest GWP from this set. This 

choice is also reasonable because there is no uncertainty in 

the estimation of GWP. However, we did not pursue this 

approach as our assumption was that this formulation of the 

problem does not take advantage of addressing the strength 

and GWP aims simultaneously, resulting in a larger set of formu

lations of interest at each round and likely a more challenging 

optimization.

Based on both predictive performance and closed-loop 

testing, the aGP model class is well suited to the problem we 

are tackling. One of the key advantages of the aGP approach is 

its mean function, which enables a valid parameterization of the 

compressive-strength evolution and provides a useful constraint 

to better learn from small datasets. This parameterization also en

ables post hoc analysis, which allows us to draw connections be

tween the learned hyperparameters and the underlying physical 

phenomenon. In contrast, alternative models often overfit to 

small sample size and lack intuitive interpretability. However, 

the aGP does come with the risk that the mean function does 

not well approximate true trajectories. This could become a 

more major issue in the case where model errors are not indepen

dent and identically distributed but are a function of time. A failure 

mode would be the case where early time points are well modeled 

and late time points are not, leading to the introduction of bias via 

the early-stopping criteria. In practice, it is critical to evaluate 

model performance both overall and as a function of time to avoid 

these issues and inform an appropriate choice of early-stopping 

criteria. Another significant advantage is the aGP model’s ability 

to capture the highly non-linear response of compressive 

strength to the design space. For example, there is a sharp 

decline in compressive strength from 10% to 12% Ulva concen

tration. Standard GP models rely on smoothness assumptions, 

which retrospectively appear ill-suited to green cements. 

Instead, the aGP model captures these relationships through a 

multi-layer perceptron (MLP) model, allowing for non-linearities. 

As the MLP’s depth and width, which in turn are related to the 

model’s ability to model non-linear functions, are learned using 

the initial data collection, we expect this class of model is well- 

posed to capture a flexible class of relationships.

In this study, we applied a point-based strength criterion and 

determined if a formulation met the criterion based on the 

mean of the measured data. In practice, ASTM C9441 and ACI 

214R42 suggest deciding the required average compressive 

strength after considering the variation of data and specified 

strength. Our framework could be adapted to consider probabi

listic criteria for strength, which would more naturally account for 

this variation; however, we leave this to future work. In addition, 

we used a simplified deterministic function for the GWP charac

terization in this study, which may not be generalized in applica

tions requiring quantified emissions in the life-cycle inventory. In 

practice, LCA studies often adopt various data sources and face 

challenges related to non-standardized analysis procedures and 

inconsistent scopes, leading to data discrepancies.43 The aGP 

model class offers opportunities to incorporate the variations 

found in LCA analyses, providing a distribution in the environ

mental impact dimension and enabling a more comprehensive 

exploration of sustainable materials. These alternative ap

proaches to our experimental and computational choices could 

be interesting to investigate further in future work.

In conclusion, our study, motivated by mitigating GHG emis

sions of conventional cement, has demonstrated that a closed- 

loop design framework assisted by the aGP model and early 

stopping can speed up the discovery of novel green cements uti

lizing carbon-negative biomatter. The model’s ability to integrate 

domain knowledge and predict time-trajectory properties shows 

potential to extrapolate to other cementitious materials. We 

expect this design framework to further support the accelerated 

design for advanced sustainable materials.

METHODS

Materials

Commercially available Type I/II Portland cement (SAKRETE, 

Charlotte, NC, USA) abiding by ASTM C15034 was used as the 

cement matrix and incumbent material. The chemical composi

tion of the Portland cement determined by X-ray fluorescence 

and TGA is shown in Table 2. Ulva expansa was provided by 

the Marine and Coastal Research Laboratory of the Pacific 

Northwest National Laboratory - Sequim (Seattle, WA, USA), 

where Ulva was cultivated in natural seawater in indoor ponds.

Design space and initial data collection

The design space explored to optimize green cements includes 

water content (characterized water to cement mass ratio, [wc], 

Ulva concentration [c], average particle size [APS], and the hu

midity of the curing chamber [(RH]). Ranges of 0.38–0.5 with a 

step size of 0.02 and 0.5 to 15 with a step size 0.5 are investigated 

for water-cement ratio and Ulva concentration, respectively. 
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Particle size distributions of 1–30 (APS = 2:86, P80 = 8:5 μm), 

10–150 (APS = 37:4, P80 = 98:7 μm), 70–400 (APS = 138:49, 

P80 = 357:0 μm), and 200–1,000 μm (APS = 388:27, P80 = 

849:6 μm) and humidity values of RH = 10%, 50%, and 95% 

were also explored. The initial samples were selected based on 

a Latin hypercube experimental design strategy considering 

only a subset of Ulva content values, specifically 0:5%;1%;5%, 

and 15%. A total of 24 experiments were selected and five repli

cates were tested per time point to train the initial model (see 

Table S4 for selected experiments; see the "prediction of 

compressive strength" section for modeling details).

Preparation of the green cement samples

Ulva was collected from the cultivating pool, washed with salt 

water at room temperature, and then dehydrated. The dry Ulva 

tissue was first ground by a coffee grinder (Hamilton Beach 

Fresh Grind, Southern Pines, NC, USA) for 20 s per 6 g. Sieve 

no. 35 (500 μm), no. 50 (297 μm), and no.100 (149 μm) were 

then used to filter two particle sizes of 388.27 ± 208.97 μm and 

138.49 ± 73.59 μm. Next, the Ulva particles passing through 

sieve no.100 were ground by a vertical high-energy planetary 

ball mill (MSE PRO 1L MA0103, MSE Supplies, Tucson, AZ, 

USA) for 30 min at 400 rpm for particle size of 37.40 ± 20.71 

μm and at 500 rpm for that of 2.86 ± 1.87 μm. The Ulva of the tar

geted particle size was premixed with cement powder at the 

selected concentrations between 0.5 and 15 wt % by weight 

of the total dry mass, using a planetary mixer (SpeedMixer 

DAC 330-100 PRO, FlackTek, Landrum, SC, USA) to mix for 

30 s at 1,500 rpm. Next, deionized water was added to the 

mixture to achieve the desired wc, and the mixture was further 

homogenized by the same speed mixer for 3 min at 1,500 rpm. 

Then, the mixed paste was cast into rubber molds to produce 

samples in the dimensions of 10 × 10×10 mm3 for compression 

tests. A vibration table (no. 1A vibrator, Buffalo Dental 

Manufacturing, Syosset, NY, USA) was used when casting the 

samples to remove macroscopic air bubbles. Right after casting, 

the samples were covered with plastic films and placed in a 

moisture-controlled chamber to cure at the desired humidity 

(10%, 50%, or 95% RH) for 7 days and then stored in the ambient 

environment from day 7–28.

Compressive-strength measurement

Compression tests were conducted on five samples for each 

mixture on the designated testing date using a universal test 

frame (Autograph AGS-X 10 kN, Shimadzu Scientific Instru

ments, Columbia, MD, USA) with a 5 kN load cell. The samples 

were compressed at a constant stress rate that complies with 

ASTM C109/C109 M.44 The maximum compressive stress 

value in the stress-strain curve is noted as the ultimate 

compressive strength. A complete set of time points for a sam

ple is days 2, 4, 7, and 28. All initial dataset collection 

measured all time points. During closed-loop optimization, 

days 2 and 28 were always measured and days 4 and 7 were 

measured only when early termination was not recommended 

(see the "accelerated optimization algorithm" section ).

Attributional LCA: Deterministic model for specific CO2 

emissions

In this section, we describe and attribute relevant values to each 

term of the GWP assessment provided in Equation 1. It should be 

emphasized that the values of CO2 emissions can vary widely 

depending on location and the type of available energy sources. 

Specific emissions chosen in this study might not accurately 

represent any green-cement fabrication method.

CO2 emissions of anhydrated OPC

The emission of anhydrated OPC powder was taken as a typical 

value reported in literature of μOPC = 1 g CO2/g OPC.45

CO2 emissions of water

Water-related CO2 emissions vary significantly depending on local 

water availability, but reported values are always significantly 

smaller than OPC CO2 emissions. In our model, we took a reason

able average value of μwater = 0:0004 g CO2/g water (https://www. 

brightest.io/calculate-carbon-footprint-water-emissions). Since 

water emissions are small, we neglect the possibility of water evap

oration during cement hydration (i.e., we assume that the final 

mass of the hydrated green cement is equal to the sum of the 

masses of each component used to fabricate the cement). Note 

that, since water has a much lower carbon footprint than OPC, 

the GWP of hydrated cements will depend on the water-cement ra

tio. Indeed, increasing the amount of water will increase the final 

mass of the hydrated cement, without significantly increasing its 

GWP, thereby globally reducing specific GWP (in g CO2/g hydrat

ed green cement). This decreasing behavior is observed in the top 

left plot of Figure 1C.

CO2 emissions of Ulva powder

The specific CO2 emissions associated with the Ulva content of 

the green cements can be separated into two terms such that

μUlva = μraw:Ulva + μmill(P80); (Equation 3) 

where μraw:Ulva corresponds to the upstream emissions attributed 

to the dry Ulva flakes received and used as raw material, and 

μmill(P80) to the emissions associated with energy consumption 

necessary to grind the raw Ulva down to a smaller particle size 

(characterized by the 80% undersize by weight fraction, P80).

Negative CO2 emissions of raw Ulva. Upon growth, Ulva takes 

up CO2 from the atmosphere through photosynthesis. The spe

cific carbon content contained in seaweed depends on species 

and cultivation conditions. In this study, we make the reasonable 

assumption that each gram of dry Ulva contains 30 wt % of car

bon (C) based on other typical carbon content in algae in litera

ture,46,47 corresponding to an uptake of 1.1 grams of CO2 per 

gram of dry Ulva. This attractive CO2 uptake is mitigated by 

the subsequent steps necessary to make Ulva useful to fabricate 

green cements, such as drying down the harvested (wet) 

Table 2. Oxide content and loss on ignition (wt %) of type I/II Portland cement used in this paper

CaO SiO2 SO3 Al2O3 MgO Fe2O3 K2O Na2O LOI

67.14 14.00 9.68 3.51 1.70 2.81 0.89 0.28 2.63
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seaweed. In an ideal (yet realizable) scenario, Koesling et al.48

provide an estimate of the carbon impact attributed to seeding, 

deployment, harvesting, transport, and drying of the seaweed, 

resulting in total CO2 emissions of 0.41 g CO2/g dry seaweed. 

Accounting for the intrinsic negative emission of − 1.1 g CO2/g 

dry Ulva and the positive processing emissions of 0.41 g 

CO2/g dry seaweed, the resulting CO2 emission attributed to 

the raw dry Ulva used in this study is finally μraw:Ulva = − 0:69 g 

CO2/g dry raw Ulva. Note that a negative specific emission value 

corresponds to beneficial carbon sequestration.

CO2 emissions of milling. The raw Ulva used in this project was 

received in the form of dried flakes of millimetric size. The me

chanical energy required to grind down the particles to a smaller 

APS is responsible for additional positive CO2 emissions. A com

mon approach to predict the milling energy of particles is to use 

the Bond work index, Wi
37. This work index, expressed in kJ/kg, 

corresponds to the energy required to mill particles from theoret

ical infinite size down to a passing size of 100 μm. More gener

ally, this approach enables the prediction of the energy neces

sary, Emill (in kJ/g of powder), to mill down a powder feed of 

given 80% passing size (F80, in μm) down to a target 80% pass

ing size (P80, in μm) using the following equation:

Emill = 10Wi⋅
(

1

P80
−

1

F80

)

: (Equation 4) 

The precise determination of Wi of our Ulva goes beyond the 

scope of this paper, as this parameter is only meaningful when 

measured at an industrially relevant scale. We, therefore, 

approximate our Wi as a value reported in the context of rice mill

ing by Ngamnikom and Songsermpong,49 where the authors 

measured a specific energy of 0.42 kJ/g to bring rice particles 

down to an average size of 95 μm through dry grinding with a 

hammer mill. In our calculations, we used a feed 80% passing 

size of F80 = 1; 000 μm. Finally, we convert this specific energy 

to specific CO2 emissions assuming that electric energy is pro

duced from natural gas, yielding emissions of 0.12 g CO2/kJ 

based on US electricity net generation and resulting CO2 emis

sions using natural gas in 2022 (https://www.eia.gov/tools/ 

faqs/faq.php?id=74&t=11).

CO2 emissions associated with curing in a humidity- 

controlled environment

For completeness, the CO2 associated with the environmental 

relative humidity during curing of the green cements was also 

included in the model. However, given the vast variety of ap

proaches to ensure humid, or dry, environments, we opted for 

a simple model describing μRH. We assumed that no intervention 

is needed to cure the cements at RH = 50%, meaning that no 

additional CO2 emissions are included at this relative humidity. 

On the other hand, water input is necessary to achieve relative 

humidities larger than 50%. Specifically, we assume that, for 

each gram of hydrated green cement, a gram of water would 

be necessary to achieve RH = 100%. The CO2 emissions asso

ciated with a humid environment are therefore proportional 

to μwater. Conversely, we make the assumption that symmetric 

CO2 emissions are associated with drying the environment 

(i.e., that emissions at 0% are equal to emissions at 100%). 

Finally, the term μRH reads

μRH(RH) = 2 μwater|RH = 100 − 0:5|: (Equation 5) 

The influence of RH is represented in the bottom right plot of 

Figure 1C. We observe that the GWP of green cements is 

almost unaffected by the relative humidity. The magnification 

along the GWP axis presented in the inset shows that, in this 

case (wc = 0.45, c = 5%, P80 = 37.4), the influence of RH is 

below 0.005 g CO2/g hydrated green cement between 50% 

and 100%.

SEM

Samples were coated with 4 nm of gold in a sputter coater (108 

Manual, Ted Pella, Redding, CA) prior to imaging in the SEM 

(Phenom ProX Desktop SEM, Thermo Fisher Scientific, Wal

tham, MA, USA) at an accelerating voltage of 10 kV. To conduct 

the particle size analysis, ImageJ was used for post-processing 

on the acquired images.50

TGA

Samples (6–10 mg) were heated in platinum crucibles from 

ambient temperature to 1,000◦C using a TGA instrument (D550, 

TA Instruments, New Castle, DE, USA) under a 25-mL/min flow 

of nitrogen gas. The temperature was first increased to 140◦C 

at a rate of 10◦C/min and was kept isothermal for 30 min to evap

orate the absorbed water in samples, and was then further 

increased to 1,000◦C at a rate of 10◦C/min.

XRD

The X-ray diffraction measurement was conducted using a D8 

Advance XRD, Bruker, Billerica, MA, USA with Cu Kα X-ray radi

ation (wavelength 1.5406 Å). The diffraction patterns were 

collected from 5◦ to 70◦ 2θ with a step increment of 0.02◦ and 

a collection of 0.07 s/step. The XRD analysis was done based 

on the MDI-500 library (JADE 8.3, Materials Data, Liver

more, CA).

Prediction of compressive strength

We selected a class of GP models to predict the compressive 

strength of green cements as a function of time, composition, 

and curing conditions. A GP describes a distribution over func

tions of the form f : X→ℝ, any finite set of which follow a 

Gaussian distribution with mean [μ]i = m(xi) and covariance 

[Σ]ij = k(xi;xj), where xi and xj are two elements of input x. For 

a more complete introduction to GP models, we refer to Williams 

and Rasmussen.51

For our application, we specifically leverage amortized GPs. 

We assume that the compressive strength of each cement is 

modeled as a noisy output of a GP evolving in time

σ̂ i = fi(ti)+ εi(ti); (Equation 6) 

where i denotes a particular sample, and ti, σ̂ i ∈ ℝJi are the time 

points and compressive strengths, respectively. Note that we 

use σ̂ to differentiate the model predictions from measurements 

throughout the manuscript. The GP f is then specified,

fi ∼ GP
(
m(ti; θi); k

(
ti; t

′
i ; θi

))
; (Equation 7) 
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m(ti; θi) = (θi)1

(

1 − exp

(

−
ti

(θi)2

))

; (Equation 8) 

k
(
ti; t

′
i ; θi

)
= (θi)3 exp

(

−

⃒
⃒ti − t′i

⃒
⃒

(θi)4

)

; (Equation 9) 

θi(zi) = hϕ(zi); (Equation 10) 

where θi are the hyperparameters of the GP, zi ∈ ℝd describes the 

composition and curing conditions of sample i, and hϕ is a function 

that predicts the GP hyperparameters, called the hyperparameter 

network. This approach differs from classic GP models where hy

perparameters would be learned for each individual formulation 

and instead learns hϕ, which maps the formulation and curing con

ditions to hyperparameters. This model formulation allows for 

informative priors for unseen formulations while also enabling a 

time-based parameterization of the mean function. The particular 

choices for the mean and kernel functions are motivated by 

domain knowledge. Specifically, the parameterization of the 

mean function, m(ti; θi) (see Equation 8), is motivated by empirical 

evidence of the trajectory of algae-based cements. This time evo

lution corresponds to an initial linear increase, followed by a pla

teauing strength behavior at longer times as proposed by Lin 

et al.18 The parameterization of the kernel function, k(ti; t
′
i ; θi)

(see Equation 9), is motivated by the observation of sharp transi

tions in the compressive-strength trajectory. The observation 

noise model εi(ti) is also informed by domain knowledge

εi(ti) ∼N(0; vit); (Equation 11) 

vit = (θi)5

(

1 − exp

(

−
ti

(θi)6

))

; (Equation 12) 

where θi are also the output of the hyperparameter network. The 

parameters of the hyperparameter network hϕ are learned by 

maximization of the log marginal likelihood of the training data

L(ϕ) =
∑N

i = 1

log p(σ̂ i|ti; zi;ϕ): (Equation 13) 

The initial model is fitted using the round 0 dataset, as described 

in the "design space and initial data collection" section. Four ex

periments are held out as a test set and a parameter sweep over 

the number of the layers and the latent dimension of the MLP is per

formed with 10 random restarts for each setting. Specifically, 

numbers of layers in {2;4; 8; 16;32} and latent dimensions in 

{10; 20;40} are tested. Results are stored for 50, 100, 150, 200, 

and 250 optimization steps. The final model was selected based 

on test data likelihood and has 16 layers with a hidden dimension

ality of 10.

Accelerated optimization algorithm

Our experimental design objective is to find the green cement 

with the lowest GWP while still meeting the 28-day strength 

constraint of 30.8 MPa within a 28-day experimentation budget. 

Although a classic design of experiments such as Latin hyper

cube or factorial design would provide optimal coverage of the 

design space, we use a closed-loop experimental design that 

follows a Bayesian optimization approach52 with additional 

consideration for early termination of experiments to exploit 

our knowledge about the relationship between formulation and 

compressive strength. As outlined in Figure 1, our proposed opti

mization procedure consists of two iterative loops: one to select 

formulations to test (outer loop) and one to determine the dura

tion of the experiment (inner loop). To select experiments, we 

jointly consider which formulations are likely to meet the strength 

criterion and which formulations improve upon the GWP. 

Constraint-weighted acquisition functions53 and constrained 

predictive entropy search54 were both plausible approaches, 

but we selected the former based on straightforward integration 

with early stopping as described below.

Experiments are selected based on a constraint-weighted 

acquisition function53 that considers the improvement in GWP, 

subject to meeting the strength criterion (σ28 ≥ 30.8 MPa). The 

predicted strength is estimated using the amortized GP model 

(see the "prediction of compressive strength" section). We 

note that we need not consider the expected improvement in 

GWP, as GWP is assumed to be a deterministic function of 

cement formulation. The mathematical expression for the acqui

sition function is therefore

A(zi) = p(σ̂ i|t = 28; zi;ϕ)(GWP(z∗) − GWP(zi));

(Equation 14) 

where z∗ is the cement formulation with the current best (lowest) 

GWP and all other terms are as defined above. This choice of 

acquisition function balances the potential improvement, as 

captured in the second term, with the likelihood of meeting the 

strength constraint, as captured in the first term. This implies 

that highly uncertain formulations (those with low probability of 

meeting the constraint) will be selected when they provide a suf

ficiently large potential payoff (i.e., a very large decrease in 

GWP). Because of the high correlation between GWP and 

strength, in practice, we first test whether any of the mean pre

dictions meet the strength criterion, and, if so, select four exper

iments only from this subset using the acquisition function.

To accelerate the optimization process, we employ an early- 

stopping approach that enables the early termination of mechan

ical testing of cement samples under specific conditions, 

bypassing the full 28-day waiting period before the next optimi

zation iteration. The early-termination criteria depends on 

whether the proposed cement is or is not a qualifying formulation 

(i.e., whether it is predicted to meet the strength criterion or not). 

For qualifying cements, when the first compressive strength 

measurements are recorded at 2 days, a posterior probability 

of 28-day strength surpassing the criterion is calculated. The 

RMSE of the prior prediction, before observation, as compared 

to the observed data, is also calculated. If the RMSE is less 

than 6 MPa and the posterior probability of qualifying is at least 

60%, the experiment is terminated and accepted, recorded as a 

qualifying formulation. Otherwise, the experiment continues and 

this procedure is repeated at 4 and 7 days. The maximum 
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duration for an experiment is 7 days. For proposed cements that 

are not qualifying, if the RMSE is less than 6 MPa and the poste

rior probability of qualifying is less than 20%, the experiment is 

terminated and rejected, recorded as a non-qualifying formula

tion. Furthermore, if the RMSE is greater than 6 MPa but the 

posterior prediction of 28-day strength is less than the initial 

prediction, the experiment is recorded as a non-qualifying 

formulation and terminated. The RMSE threshold (of 6 MPa) 

was determined based on the standard deviation of compres

sive-strength measurements for qualifying cements in the initial 

round of experimentation. Both the posterior probability and 

RMSE thresholds were selected to be conservative as compared 

to the true criterion of 50%. By using both, we incorporate both a 

retrospective consideration of our selection (via RMSE) and a 

future-looking consideration of the likelihood of qualifying (via 

the posterior probability). Experimental time and resources pre

vented us from exploring more settings.

Comparison methodology

To demonstrate the value of our proposed approach, we 

compare it to other experimental design methods. We consider 

four alternative settings: LHS, standard GP, GPs with domain- 

inspired kernels, and amortized GPs without early stopping. In 

all cases, we consider both how much of the realizable improve

ment in GWP can be achieved in the alternative setting with the 

same time budget of 28-day as well as what time budget would 

have been required to match the improvement in GWP of our 

analysis. To simulate the results of experiments that were not 

performed, we use an amortized GP model trained on all 

collected data, 44 samples in total, which we refer to as the full 

data model (see Tables S1–S4 for full data description). It should 

be noted that other predictive models were considered, yet the 

aGP model consistently outperformed other approaches and 

was therefore selected as the best possible source of ground 

truth (see Note S2). In the following paragraphs, we describe 

each of the alternative methods.

To compare with LHS, we selected the subset of experiments 

that were a possible improvement in GWP after round 0 and only 

experiments with 95% humidity. The humidity condition was 

added to simplify selection as only one humidity can be tested at 

a time; the impact of this restriction should only be favorable to 

the LHS approach. In the fixed-time budget setting, we perform 

1,000 trials of selecting four experiments and record whether the 

formulation meets the strength criterion and, if so, the correspond

ing GWP. In the fixed-improvement setting, we consider doubling 

the number of experiments until we reach a median improvement 

in GWP that is at least as good as our proposed method.

To compare to a standard GP model, we concatenate each 

formulation with its corresponding time point and fit the model 

using a Matérn kernel, zero-mean function, and Gaussian inde

pendent and identically distributed (i.i.d.) noise. Predictions are 

made using the posterior, and the acquisition function remains 

the same (see Equation 14). New data are simulated from the 

aGP model and added to the GP after each round, updating 

the posterior. A GP model with a product kernel over formulation, 

modeled with a radial basis function kernel, and time, modeled 

with Matérn kernel, is also considered as a more domain- 

inspired approach.
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Supplemental Figures

Figure S1: Cradle-to-gate process flow for the life cycle of Ulva-cement. The supply chain of
ordinary Portland cement is established based on [S1], and the cultivation of sugar kelp [S2] is used as a
proxy data for Ulva.
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Figure S2: Particle size distribution of the four different Ulva powders used in this study. The
cumulative particle undersize was fitted using a Weibull distribution (of the form 1 − exp(−PS/λ)n. The
average particle size (APS) is provided in the legend and the the 80% passing size (P80, based on the fitted
Weibull distribution), is provided next to the corresponding curves.
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Figure S3: Model evolution of different APS during the closed-loop iteration. Contour plots
indicate the predicted compressive 28-day strength σ̂ as a function of water-cement ratio wc and Ulva
concentration c over the rounds of experimentation. All plots show data at 95% RH. Rows (A), (B), (C),
and (D) correspond to APS 2.86, 37.40, 138.49, and 388.27 µm, respectively. Particularly in round 4, these
plots visualize that higher compressive strengths are achievable for high concentrations for lower APS (rows
(A) and (B)).
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Figure S4: Predicted results from full data model. (A) The model performance of the predictive model
using full data model, comparing the estimated compressive strength σ̂ and measured compressive strength
σ at different time points. Contour plots of the predicted compressive 28-day strength σ̂ as a function of
water-cement ratio wc and Ulva concentration c for APS = 2.86µm (B) and APS = 138.49µm (C) at 95%
RH. We observe that as APS increases, the valley disappears at around c = 5% and wc = 0.45, which we
ascribe to the lack of data points under certain conditions.

Figure S5: Trade-off of strength and GWP for formulations near the Pareto front. The found
optimal formulation and another comparable formulation c = 11%, wc = 0.5, APS = 37.40µm, RH = 95%
(not predicted qualified during closed-loop optimization) are on the Pareto front. In addition, due to reducing
particle size with increasing milling energy, c = 11%, wc = 0.5, APS = 2.86µm, RH = 95% is not on the
Pareto front.
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Figure S6: Fracture behavior and compressive stress-strain curves of green cement with different
Ulva particle sizes on day 28. (A) Samples of APS = 37.40µm, c = 10%, wc = 0.5, and RH = 95%
show classic semi-brittle failure with drastic strength reduction and instant crack development upon fracture.
(B) Samples of APS = 388.27µm, c = 10%, wc = 0.5, and RH = 95% present more plastic deformation
after the ultimate compressive strength and the jagged crack pattern keeps developing with deformation.
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Supplemental Tables

Table S1: Recommended formulations for optimization iteration. Table S1 lists the experiments
during closed loop testing, the duration of the experiment, whether or not our approach determined the
formulation was qualifying, the observed 28-day compressive strength and the GWP. We note that one
formulation from week 4 was incorrectly labeled non-qualifying; this incorrect point also happens to be the
true optimum.
Although the entire design space was not measured, we are confident in our assessment of the optimal point,
wc=0.5, c=11%, APS=37.40µm, and RH=95%. To improve upon this point, a formulation must have one
(or more) of these characteristics: higher water-to-cement ratio, higher biomass concentration, higher average
particle size distribution, relative humidity of 50 (very low impact comparatively) and meet the strength
criterion. Considering the results in Table S1 along with the results in Table S4, which were performed
to further investigate the design space, we observe that formulations which would have lower GWP, all
are non-qualifying. Increasing biomass (experiment 3 of week 4), increasing particle size while decreasing
biomass (experiment 4 of the additional experiments), and decreasing particle size while increasing biomass
(experiment 2 of week 4) all result in non-qualifying formulations. Noting that 0.5 is the maximum wc, there
are effectively no untested formulations which could improve upon the stated optimum.

c (%) wc APS(µm) RH (%)

Experiment

Duration

(Days)

Qualifying

Formulation

Observed Avg.

28-Day Strength

(MPa)

GWP

(g CO2/g)

Week 1

7.5 0.5 37.40 95% 4 ✓ 51.8 0.599

8 0.5 2.86 95% 4 ✓ 54.5 0.601

7 0.5 37.40 95% 2 ✓ 54.7 0.604

7 0.5 138.49 95% 7 28.8 0.603

Week 2

8.5 0.5 37.40 95% 2 ✓ 54.5 0.590

9 0.5 2.86 95% 2 ✓ 58.7 0.593

8 0.5 37.40 95% 2 ✓ 54.7 0.595

8.5 0.5 2.86 95% 2 ✓ 53.9 0.597

Week 3

11 0.5 2.86 95% 4 ✓ 40.5 0.576

10 0.5 37.40 95% 2 ✓ 51.4 0.576

10.5 0.5 37.40 95% 2 ✓ 47.4 0.571

10.5 0.5 2.86 95% 4 ✓ 51.9 0.580

Week 4

11 0.5 37.40 95% 2 35.7 0.567

12 0.5 2.86 95% 2 17.5 0.567

11.5 0.5 37.40 95% 2 3.7 0.562

11.5 0.48 37.40 95% 2 6.5 0.569
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Table S2: Peak analysis of XRD patterns for samples with different Ulva particle sizes. Peak
analysis is based on Figure 6C. The Ulva-cements are made at fixed c = 10%, wc = 0.5, and RH = 95%.

Peak Location (2θ) Peak Intensity (a.u.) Peak Width (◦) Crystallite Size (nm)

ASP (µm) 388.27 37.40 388.27 37.40 388.27 37.40

Ettringite 15.93 0.74 0.96 0.61 0.41 14.53 21.80

Portlandite 18.18 2.20 1.21 0.61 0.61 14.57 14.58

Calcite 23.09 1.19 1.33 0.61 0.41 14.69 22.03

Calcite 29.44 3.03 3.15 0.61 0.61 14.88 14.88

Alite/ Belite 32.30 1.94 2.66 1.02 0.82 8.99 11.24

Portlandite 34.14 4.41 3.20 0.82 1.02 11.29 9.03

Alite/ Belite 41.30 0.99 1.10 1.20 1.02 9.22 9.23

Portlandite 47.23 1.95 1.63 0.61 0.82 15.70 11.78

Portlandite 50.92 1.51 1.35 0.61 0.61 15.93 15.94

Table S3: Additional experimentation tested at all time points in full data model.

c (%) wc APS(µm) RH (%)
Observed Avg.

28-Day Strength (MPa)

5 0.5 388.27 95 24.4

5 0.5 138.49 95 35.3

10 0.5 388.27 95 14.5

10 0.5 138.49 95 28.0
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Table S4: Initial experimentation based on Latin Hypercube design.

c (%) wc APS(µm) RH (%)
Observed Avg.

28-Day Strength (MPa)

0.5 0.42 37.40 50 41.5

0.5 0.42 388.27 10 28.1

0.5 0.44 2.86 95 40.0

0.5 0.46 388.27 10 24.0

0.5 0.48 37.40 95 37.5

0.5 0.48 388.27 50 33.3

1 0.38 138.49 10 42.0

1 0.4 37.40 50 48.7

1 0.44 138.49 50 36.0

1 0.46 388.27 50 31.9

1 0.48 388.27 50 29.8

1 0.5 2.86 50 33.0

5 0.38 138.49 95 27.8

5 0.4 138.49 95 46.9

5 0.42 2.86 95 45.6

5 0.44 37.40 10 43.7

5 0.5 2.86 95 48.7

5 0.5 2.86 10 31.7

15 0.38 138.49 10 0

15 0.4 37.40 10 0.7

15 0.4 138.49 10 0

15 0.44 37.40 95 16.8

15 0.46 388.27 95 6.7

15 0.5 2.86 50 3.1
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Supplemental Note S1

Measurement of CO2 Emissions from Biomass Degradation during Curing

To assess the possible CO2 emissions from any possible degradation reactions of components within Ulva
during cement curing reactions, where the high alkalinity may provide grounds for such degradation pathways
we devised the following experiment. We followed a similar method to ASTM D5988 [S3], which measures
the degradation and CO2 emission during the aerobic biodegradation of plastic materials through reactions
of emitted CO2 with potassium hydroxide (KOH). The CO2 capturing reaction of KOH is:

2KOH + CO2 −→ H2O +K2CO3 (1)

To prevent the cement hydration reaction from affecting the measurement of CO2 emission resulting from the
Ulva degradation, we first prepared the cement alkaline solution at pH 13.3 by extracting the supernatant of
the cement slurry at w/c 0.6 through centrifugation to simulate the alkaline environment in cement. Next,
we submerge 3 g of Ulva powder in 30 mL of cement alkaline solution. Next to the Ulva sample submerging
in the alkaline solution, we place another beaker of 20 mL 0.5 M KOH. Both beakers are placed in a sealed
desiccator for 8 days, as shown in Figure S7A, while blank desiccators only containing the KOH solution are
prepared as controls to account for ambient activity. Note that this test is done in triplicates and the test
duration of 8 days is chosen because the pore water in cement would substantially decrease over 7 days.

To assess the amount of emitted CO2 when Ulva is subject to a cement alkaline environment we need to
measure the amount of consumed KOH during CO2-capturing reactions, which is achieved through titration
with hydrochloride (HCl) according to the following reaction:

HCl +KOH −→ H2O +KCl (2)

Given the initial concentration of KOH, cKOH,i, of 0.5 M, the amount of KOH consumed during the curing
process can be estimated. First, using titration reaction Equation 2, we obtain the required neutralization
volume of HCl, VHCl, to reach pH 7.0. The titration curves are shown in Figure S7B. Next, we can calculate
the concentration of KOH solution at the time of measurement, cKOH,t, by Equation 3:

cKOH,t · VKOH = cHCl · VHCl (3)

where cHCl, the concentration of HCl, is 0.25 M, and the amount of KOH solution, VKOH , is 20 mL. By
comparing the difference in KOH concentrations between the initial 0.5 M and cKOH,t, we can get the moles
of CO2, nCO2 , absorbed by KOH over time using the 1/2 molar ratio of CO2 and KOH in Equation 1.

nCO2
(mole) =

1

2
(cKOH,i − cKOH,t)(mole/L) · VKOH(L) (4)

The amount of CO2 in grams, WCO2 , consumed by KOH over time is:

WCO2
(g) = 44(g/mole) · nCO2

(mole) (5)

The concentrations of KOH in the controls and samples on day 8 are shown in Figure S7C. We find the
differences in KOH concentrations between the controls and Ulva samples are not statistically significant,
as indicated by Welch’s t-test (p=0.13). This result suggests that when Ulva are subjected to the cement
alkaline environment, the CO2 emissions, in the first 8 days are negligible. It is important to note that this
experiment simulates Ulva’s reaction to an abundant cement alkaline solution and does not represent actual
CO2 emissions in Ulva-cement composites, where the ratio of Ulva to alkaline solutions would be much lower
- likely resulting in an even lower GWP contribution from Ulva degradation. Moreover, this result does not
account for long-term (e.g., 100-year) CO2 emissions, as potential microbial interactions beyond our LCA
boundaries could alter the outcome.
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Figure S7: Experiments for CO2 emissions simulating Ulva degradation in green cements (A) A
sealed glass desiccator containing two beakers. One with KOH solution and the other with Ulva in a cement
alkaline solution. (B) Titration curves of KOH solutions using 0.25 N HCl. The inset images show the color
change of the solution with the addition of 100 µm phenolphthalein when pH decreases from basic to acidic.
(C) Concentrations of KOH solutions at day 8.

Supplemental Note S2

Comparison of Simulation Data

To develop a simulator for the methodological comparison, we consider three models, amortized Gaussian
processes (the model class used in the closed-loop design), Gaussian process with Matérn kernel, and Gaus-
sian process with a product kernel. Note these are the same model types used for the comparison in the
”comparing different experiment design strategies” section and they are explained in additional detail in
the ”comparison methodology” section. Using the full data dataset (as described in Table S1-S4), the three
models are trained using the same train/test split. Models are compared based on the root mean square
error (RMSE) for all time points as well as 28 days only; results are reported in Table S5. Although both
GP models with Matérn and product kernels have lower RMSE during training, they generalize poorly, as
indicated by test performance, compared to the aGP model. This observation is true for all time points and
the subset of 28-day time points. Therefore we proceed with the aGP model as the best available simulator.
Note that the metrics for the aGP do not exactly match those reported in Figure 5 as the metrics presented
in this section are calculated using all available data as opposed to only the closed-loop and initial datasets.
The difference is the validation experiments (listed in Table S3). The models (referred to in the text as full
data model) are identical, but evaluated differently in the different contexts.

Table S5: Metrics comparing various full data models.

aGP GP-Matern GP-Product

Train Test Train Test Train Test

RMSE (MPa), all time points 4.39 6.41 3.81 11.00 3.91 11.81

RMSE (MPa), 28 days only 5.38 8.90 4.91 12.70 5.07 15.06
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