This is the Trace Id: a0fd8323de22584b79e605a5de6a0c77

AI を活用する企業のセキュリティに関する Microsoft ガイド: 開始する

タッチ スクリーンを使用している女性。

AI アプリケーションを開始する

人工知能 (AI) は、ビジネス オペレーションを変革し、イノベーションをもたらすと同時に、新たなリスクも生じさせています。シャドウ AI (監視のないまま採用された消費者向けツール) からプロンプト インジェクション攻撃、EU AI 法などの規制の進化にいたるまで、組織は AI を安全に活用するためにこれらの課題に対処する必要があります。

このガイドでは、AI に関連するリスク (データ漏洩、新たな脅威、コンプライアンスの課題、エージェント型 AI に特有のリスク) について説明します。また、AI 導入フレームワークに基づいたガイダンスと実践的なステップも紹介しています。より詳細な分析情報と実践的なステップについては、ガイドをダウンロードしてください

AI は時代を変えるものですが、そのセキュリティを確保できるかどうかが鍵となります。さあ始めましょう。

組織が AI を採用する中で、リーダーは 3 つの主要な課題に対処する必要があります:
  • 80% のリーダーが、データ漏洩を最大の懸念事項として挙げています。1 IT 部門の承認を得ずに使用されるシャドウ AI ツールは、機密情報を漏洩し、侵害のリスクを高める可能性があります。
  • 88% の組織が、悪意のある人物による AI システムの操作を懸念しています。2 プロンプト インジェクションなどの攻撃は、AI システムの脆弱性を悪用するものであり、先回り型の防御策の必要性を浮き彫りにしています。
  • 52% のリーダーが、AI 規制への対応について不確実性を感じていると認めています。3 EU AI 法などのフレームワークへのコンプライアンスの維持は、信頼を築き、イノベーションの勢いを維持させるのに不可欠です。

エージェント型 AI は変革の可能性を秘めていますが、その自律性は独自のセキュリティ上の課題をもたらすため、積極的なリスク管理が不可欠です。以下に、これらの課題に対応するための主要なリスクと戦略をまとめました:

ハルシネーションと意図しない出力

エージェント型 AI システムは、不正確、古い、または不適切な出力を生成する可能性があり、これらは業務の混乱や意思決定の誤りを引き起こす可能性があります。

これらのリスクを軽減するため、組織は AI が生成した出力を、正確性と関連性について検証するための厳格なモニタリング プロセスを導入する必要があります。トレーニング データの定期的な更新は、現在の情報との整合性を確保し、複雑なケースにおけるエスカレーション パスにより、必要に応じて人間の介入を可能になります。AI ドリブンの運用の信頼性と信頼性を維持するため、人間の監督は引き続き不可欠です。

AI の意思決定への過度の依存

エージェント型 AI システムへの盲目的な信頼は、ユーザーが検証なしに欠陥のある出力を基にアクションを起こすことで、脆弱性につながる可能性があります。

組織は、AI の影響を受ける高リスクな意思決定において、人間のレビューを義務付けるポリシーを確立する必要があります。従業員に対し AI の限界について教育することで、情報に基づいた懐疑心を育み、エラーの発生確率を低減させることができます。AI 分析情報と人間の判断を、階層的な意思決定プロセスで組み合わせることで、全体的な回復性が強化され、過度の依存を防止できます。

新たな攻撃ベクトル

エージェント型 AI の自律性と適応性は、攻撃者が脆弱性を悪用する機会を生み出し、運用上のリスクとシステム的なリスクの両方を引き起こします。

運用上のリスクには、AI システムを操作して有害な行動 (不正なタスクの実行やフィッシング攻撃など) を実行させる行為が含まれます。組織は、リアルタイム異常検知、暗号化、厳格なアクセス制御などの堅固なセキュリティ対策を実施することで、これらのリスクを軽減できます。
システム的なリスクは、侵害されたエージェントが相互接続されたシステムを混乱させ、連鎖的な障害を引き起こす場合に発生します。NIST などのサイバーセキュリティ フレームワークに準拠したフェールセーフのメカニズム、冗長性プロトコル、定期的な監査は、これらの脅威を最小限に抑え、敵対的な攻撃に対する防御を強化するのに役立ちます。

説明責任と法的責任

エージェント型 AI は、直接的な人間の監視なしに動作することが多く、エラーや失敗に対する責任の所在や法的責任に関する複雑な問題を引き起こします。

組織は、AI に関連する結果に対する役割と責任を明確に定義した説明責任のフレームワークを確立する必要があります。AI の意思決定プロセスについての透明性のある文書により、エラーの特定と責任の割り当てがサポートされます。法的チームとのコラボレーションにより規制に確実に準拠し、AI ガバナンスのための倫理基準の採用によって信頼を築き、評判リスクを軽減することができます。

エージェントなどの新しい AI のイノベーションにより、組織は "決して信頼せず、常に検証する" というゼロ トラストの原則に基づく強固な基盤を確立する必要があります。" このアプローチにより、すべてのやり取りが認証、承認され、継続的に監視されます。ゼロ トラストの実現には時間がかかりますが、段階的な戦略を採用することで、着実に進歩し、AI の安全な統合に対する信頼を構築することができます。

Microsoft の AI 導入フレームワークは、3 つの重要な段階: AI の管理、AI の運用、AI のセキュリティに焦点を当てています。

これらの領域に取り組むことで、組織は責任ある AI の活用のための基盤を築きながら、重大なリスクを軽減することができます。

成功させるためには、AI のリスクを認識し、承認されたツールを安全に利用できるようにするための従業員のトレーニングを優先します。IT、セキュリティ、ビジネス チーム間の協力を促進し、統一されたアプローチを確保します。AI セキュリティ イニシアチブをオープンに共有し、透明性を促進することで、信頼を築き、リーダーシップを示します。

適切な戦略を、ゼロ トラストの原則に基づいて構築することで、リスクを軽減し、イノベーションを解放し、進化する AI の状況の中を自信を持って進むことができます。

セキュリティに関するその他の情報

AI 時代のサイバー脅威に対処し、防御を強化する

人工知能 (AI) の進歩は、サイバーセキュリティに新たな脅威と機会をもたらします。脅威の主体がどのように AI を利用してより巧妙な攻撃を行うかを知り、従来のサイバー脅威と AI を利用したサイバー脅威から身を守るためのベスト プラクティスを詳しくご確認ください。

AI を活用している CISO: 脅威インテリジェンスの分析情報でより良い戦略を可能にする

セキュリティに生成 AI を導入する CISO にとっての主な 3 つの利点: 強化された脅威インテリジェンスの分析情報、脅威へのより素早い応答、戦略的意思決定での支援。3 つのサンプル シナリオを通して、なぜ 85% の CISO が、セキュリティに AI が欠かせないと考えているのかをご確認ください。

Microsoft デジタル防衛レポート 2024

2024 年版の Microsoft デジタル防衛レポートでは、国家関与型の脅威グループやサイバー犯罪アクターによって展開されるサイバー脅威の進化について検討し、回復性の充実と防御を強化に役立つ新しいインサイトやガイダンスを示し、そして、サイバーセキュリティに生成 AI がもたらすインパクトの増大について考えます

Microsoft Security をフォロー